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Abstract—The paper attempts to solve the generalized 

“Assignment problem” through genetic algorithm and simulated 
annealing. The generalized assignment problem is basically the 
“N men- N jobs” problem where a single job can be assigned to 
only one person in such a way that the overall cost of assignment is 
minimized. While solving this problem through genetic algorithm 
(GA), a unique encoding scheme is used together with Partially 
Matched Crossover (PMX). The population size can also be varied 
in each iteration. In simulated annealing (SA) method, an 
exponential cooling schedule based on Newtonian cooling process 
is employed and experimentation is done on choosing the number 
of iterations (m) at each step. The source codes for the above have 
been developed in C language and compiled in GCC. Several test 
cases have been taken and the results obtained from both the 
methods have been tabulated and compared against the results 
obtained by coding in AMPL.  
 

Index Terms—Assignment problem, Genetic Algorithm, 
Newtonian cooling schedule, Partially Matched Crossover (PMX), 
Simulated Annealing.  
 

I. INTRODUCTION 
The Assignment model, as discussed in different text-books of 
Operations Research, can be paraphrased as: “Given N men 
and N machines, we have to assign each single machine to a 
single man in such a manner that the overall cost of assignment 
is minimized.” To put it mathematically, let us define the 
following symbols: 
i →row number denoting ith  man                i ε [1, N] 
j →column number denoting jth machine     j ε [1, N] 

[ ][ ]C i j → cost of assigning jth machine to ith man  

[ ][ ]X i j  = 1 if  jth machine is assigned to ith man 
                  = 0 otherwise  
The problem can be formulated as: 

       Minimize the total cost function  
1 1

[ ][ ] [ ][ ]
N N

i j
C i j X i j

= =
∑∑

Subject to the following constraints: 
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                          [ ][ ]X i j =1 or 0                                                      (3)      
The Hungarian mathematician D.König proved an essential 
theorem for the development of the “Hungarian method” to 
solve this model. The problem can also be formulated as an 
integer-programming model and solved by techniques such as 
“Branch-and-Bound technique”. Reference [1] states that the 
Hungarian algorithm for solving the assignment model is more 
efficient than branch-and-bound algorithms. This paper 
attempts to solve the same model using two non-traditional 
techniques: Genetic Algorithm and Simulated Annealing. It is 
basically an experimental investigation into the various 
parameters affecting these two algorithms and adapting them to 
our own problem. These two approaches are discussed one by 
one. 

II. GENETIC ALGORITHM APPROACH 
Genetic algorithms (GA) are computerized search and 
optimization algorithms based on the mechanics of natural 
genetics and natural selection. They were first envisioned by 
John Holland and were subsequently developed by various 
researchers. Each potential solution is encoded in the form of a 
string and a population of strings is created which is further 
processed by three operators: Reproduction, Crossover, and 
Mutation. Reproduction is a process in which individual strings 
are copied according to their fitness function (Here the fitness 
function is taken to be the total cost function). Crossover is the 
process of swapping the content of two strings at some point(s) 
with a probability. Finally, Mutation is the process of flipping 
the value at a particular location in a string with a very low 
probability. A more comprehensive treatment of GA can be 
found in [2], [3], [4]. 
Now, for adapting GA to our problem, it is necessary that we 
develop an encoding scheme. Consider the case when N=3 and 
let us presume that machine M1 is assigned to man m1, 
machine M2 to man m2, and machine M3 to man m3 as shown: 

.  
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         Machine→      
                              M1     M2     M3 
                m1          1         0         0 

Man     m2          0         1         0 
   ↓       m3          0         0         1  
Figure 1.  A sample assignment. 

Consider the first column: 100 which is equivalent to 4 in base 
10 representation. Similarly the other two columns decode to 2 
and 1 respectively. Hence, the above assignment can be 
encoded as <4 2 1>. A quicker insight leads us to the 
observation that the each permutation of <4 2 1> i.e., <1 2 4>, 
<1 4 2>, <2 1 4>, <2 4 1>, <4 2 1>, and <4 1 2> is a possible 
solution. As the total number of solutions possible to this 
particular problem are 3! =6, we can easily conjecture that in 
case of N men, N machine, the total number of solutions 
possible is N! and our task is to select the best string (the one 
with minimum total cost). As our encoding scheme also 
generates N! strings, therefore it is correct and there is one to 
one correspondence between each possible solution and each 
string. It is also evident that each component (value at each 
position) in the string can be uniquely expressed as 2^r where r 
is a positive whole number varying from 0 to N-1. As the 
powers of 2 increase rapidly, a more compact way of encoding 
would be to express the component 2^r simply as r. This is 
easier to write and saves space when N is high.   
After encoding of the string, the population selection for 
crossover is done by “Binary tournament selection” method. 
Here s=2 strings are randomly chosen and compared, the best 
one being selected for parenthood. This is repeated M times 
where M is the size of the population.  Reference [4] also cites a 
method for generating the parent strings which are then ready 
for crossover. Here simple crossover will not work; instead we 
choose the method of Partially Matched Crossover (PMX) 
which was initially developed for tackling the “Traveling 
Salesman Problem” [2]. The concept of PMX can be 
understood by considering an example: 
Suppose we want to have crossover between two permutations 
of the string <1 2 3 4 5> i.e., <1 3 4 2 5> and <2 1 3 5 4>. Two 
random numbers are generated between 1 and L where L is the 
length of the string (L=5 in this case). Suppose the crossover 
points have been choosen as shown below: 
                                     1   3    4    2   5 
                                          │        │      
                                     2   1   3    5   4 
Where the dashed positions show the chosen points. Now PMX 
defines the following scheme for interchangeability: 
                  3 ↔1   4 ↔3   2↔5 implies 1↔4 and 2↔5 
Now the portion between the selected crossover points is 
swapped and the rest of the values are changed according to the 
above rule (this means 1 in the portion outside the two 
crossover points is replaced by 4 and 2 in the portion outside 
the two crossover points is replaced by 5). So the two children 
strings generated are: 
                               4   1   3   5   2 
                               5   3   4   2   1 
Which are again valid permutations of <1 2 3 4 5>. After 

Crossover, we have a family of parent population and children 
population out of which we are to select the population for next 
iteration. Here we have a choice of altering the population size 
at each iteration. We must maintain the diversity in population 
or else it may lead to premature convergence to a solution 
which may not be optimal. One method of selecting the 
population may be to arrange the entire population in ascending 
order of their objective function value (the string that decodes 
to lowest total cost of assignment will have the highest 
objective function value) and choose a predetermined number 
of individual strings from each category i.e., from those that are 
above average, from those around the average, and from those 
below the average. This threshold can be set by using the 
concept of mean and standard deviation applied to the 
population. For instance, if we assume the string values to be 
normally distributed with mean value µ and standard deviation 
σ, we divide the population into four categories: those having 
values above µ + 3*σ, those having values between µ + 3*σ and 
µ, those having values between µ and µ - 3*σ, and those having 
values less than µ - 3*σ. In this way the diversity in population 
is maintained. Another aspect is that the string with the best 
objective function value at each iteration is stored in a separate 
array and subsequently compared with the best string of the 
population at next iteration. In this way, the best string cannot 
escape. Also note that we are not using mutation but a slight 
variant of it (Inversion) by choosing two random spots in a 
string and swapping the corresponding values at that position. 
Inversion is allowed only when the sum of the costs at these 
positions before swapping is greater than the sum of costs 
associated with these positions after swapping. 
Thus, if we want to swap in the string <1 2 3 4> at say second 
and third positions, it will only be allowed if cost of <1 2 3 4> is 
greater than cost associated with <1 3 2 4>.  
The program was developed for the test problem given in [1]. 
Two cases were implemented: one in which Inversion was used 
and another in which Inversion was not used. In both the cases, 
the answer converged to the final optimum value. On an 
average, there was not much difference in the number of 
iterations required to reach the final value in both the cases. The 
observations are plotted in the table as shown below: 
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  Figure 2. Graph showing convergence to the global minimum 
in case of both inversion and without inversion. 



 
 

 

 
On an average, the time taken was 0.01s measured on a 
standard desktop with processor Intel Pentium 4, 2.40 GHz. 
The population size at each generation was kept equal to 20.                                 

While using this algorithm in our case, we represented each 
possible solution by the string as developed previously in the 
case of genetic algorithm. E refers to the function value (the 
total cost of assignment for a particular string). We have 
employed the scheme of Newtonian cooling wherein the 
temperature at each generation is determined according to the 
law: T

                                

III. SIMULATED ANNEALING APPROACH 
Simulated Annealing is another non-traditional method 

which was originally developed by S. Kirkpatrik, C.D. Gelatt, 
Jr., and M.P. Vecchi [5]. The simulated annealing procedure 
simulates the process of slow cooling of molten metal to 
achieve the minimum function value in a minimization 
problem. It is a point-by-point method. The algorithm begins 
with an initial point and a high temperature T. A second point is 
taken at random in the vicinity of the initial point and the 
difference in the function values (∆E) at these two points is 
calculated. The second point is chosen according to the 
Metropolis algorithm which states that if the second point has a 
smaller function value, the point is accepted; otherwise the 
point is accepted with a probability exp (-∆E / T). This 
completes one iteration of the simulated annealing procedure. 
In the next generation, another point is created at random in the 
neighborhood of the current point and the Metropolis algorithm 
is used to accept or reject the point. In order to simulate the 
thermal equilibrium at every temperature, a number of points 
(m) is usually tested at a particular temperature before reducing 
the temperature. The algorithm is terminated when a 
sufficiently small temperature is obtained or a small enough 
change in the function values is found. A detailed description of 
this can be found in [4]. 

 i = T0 * exp (-τ) where T i is the temperature at ith 
generation, T0 is the initial temperature and τ is a suitable 
constant (τ is initially taken 0 when temperature equals T0 and 
is incremented by a factor “increment” at each stage). Now 
consider the task of randomly generated valid strings: two 
techniques are being employed. Suppose we have the string <1 
2 3 4> and we want to produce another random permutation of 
these 4 numbers. The first method is to slide each number by a 
random number generated between 1 and L (L not included) 
where L is the length of the string. Thus, assuming that the 
random number generated is 2, the string <1 2 3 4> gets 
transformed to <3 4 1 2>. The second method of generating a 
valid permutation is two choose two positions at random in the 
string and swap the values at those points. We search for the 
potential solution in two regions: first we search in the region of 
strings created by the above first method. When the answer 
converges to a particular value, we store the corresponding 
string in a separate array. Then we proceed with our search 
again in the region of strings created by the second method. 

Once again, we converge to another string and this string is 
compared with the string which was initially stored in a 
separate array. The minimum of these two (the one with lesser 
function value) is selected as the final answer. 

The important parameters affecting simulated annealing are 
the number of iterations (m) at each step and the cooling 
schedule. The total number of iterations is proportional to m as 
well as the rate of change of temperature. The cooling schedule 
is based on Newton’s law of cooling. This model of cooling can 
be compared to the discharge of an initially charged capacitor 
in a RC circuit as they both follow exponential decay law. For 
all practical purposes, it is assumed that the capacitor is fully 
discharged at t=5*RC. Hence, in our schedule we also ran our 
program from Tmax=700 to Tmin around 700*exp (-5), 
keeping the number of iterations m fixed (=50). Tmax is 
generally computed by calculating the average of function 
values at several points. The program was run on a standard 
desktop with processor Intel Pentium 4, 2.40 GHz and the test 
case considered was the one given in [1]. The results obtained 
have been plotted as shown in figure 3 as shown below: 
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       Figure 3. Program run for various schedules (m constant) 
 
The average time taken was 0.051s. Now m at each step was 

changed, decreasing it from an initial value of 100 till a 
minimum value (=20 in our case) was reached. It was observed 
that the program converged to the minimum value at lesser total 
number of iterations. This is shown below: 
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       Figure 4. Program run for various schedules (m varying) 
 
Reference [1] reports to have solved the above test problem 



 
 

 

in 0.09s of IBM 370/168 time. The problem was also coded in 
AMPL with MINOS 5.5 as the solver and it took 0.03125s on 
the standard desktop mentioned earlier. While solving the 
problem using Genetic Algorithm, the average time taken was 
0.01s while the time taken for solving it using Simulated 
Annealing was 0.05s (The time was noted on a standard 
desktop with processor Intel Pentium 4, 2.40 GHz). 

IV. CONCLUSION 
An experimental investigation into solving the Assignment 

model using Genetic Algorithm and Simulated Annealing is 
presented. Various parameters affecting the algorithms are 
studied and their influence on convergence to the final 
optimum solution is shown. 
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