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Abstract

This paper reports on a novel approach to binary im-
age deconvolution using Positive Semidefinite (PSD)
Programming. We note the combinatorial nature of
this problem: binary image deconvolution requires the
minimization of a global energy function over binary
variables, taking into account not only both local sim-
ilarity and spatial context, but more specifically the
relationship between individual pixel values and the
point spread function. We subsequently modify the
problem to a convex relaxation of the original prob-
lem without introducing additional parameters. We
first compute the optimal solution of the convex re-
laxation based on PSD programming, and then use
the randomized-hyperplane method to find the com-
binatorial solution to the original problem. We apply
our approach to a collection of blurred binary images,
and show the advantages of this approach in binary
image deconvolution.

Keywords: point spread function (PSF), convex relax-
ation, image restoration, Positive Semidefinite (PSD)
Programming, randomized-hyperplane

1 Introduction

Image blurring is a common phenomenon in photogra-
phy, and is caused by various reasons, such as moving
objects in still images (motion blur), defocus, and vi-
bration in the machinery. Image restoration is there-
fore important in obtaining a good estimate of the
degraded images [1]. One important special case is
where the true scenery is binary, appropriate for many
useful scenarios such as black-illuminated opaque ob-
jects, fingerprinting recognition, automated document
handling and alike. There have been numerous efforts
in the area using machine vision techniques to deal
with binary image restoration. Meloche and Zamar [2]
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developed the weighted mean square error (WMSE)
method to restore noisy images. Hitchcock and Glas-
bey [3] identified a statistical model for digital image
data, and proposed an inferential procedure to restore
images of blob-like and filamentous objects. In other
words, the method required some assumptions on the
form of the image. Gu et al. [4] used pulse coupled
neural network to restore noisy binary images. Chan
et al. [5] provided a convergent method to find a mini-
mizer of the total-variation functional to restore noisy
binary images. These approaches, however, are de-
signed to restore noisy binary images, while in most
cases, images are degraded not only because noise is
present, but also because they are blurred.

Most blurring processes can be approximated by
the two dimensional convolution of the true image
f(x1, x2) with a linear shift-invariant blur, also known
as the point spread function (PSF), h(x1, x2). That
is,

g(x1, x2) = f(x1, x2) ∗ h(x1, x2), (1)

in which “∗” denotes the two dimensional linear con-
volution operator and g(x1, x2) represents the de-
graded image. The problem of recovering the true
image f(x1, x2) requires the deconvolution of the PSF
h(x1, x2) from the degraded image g(x1, x2). Several
deconvolution methods have been proposed such as
Maximum Entropy Method [6], Wiener filter, One-
Step Least Squares [7], etc. The reversal of blur is a
numerically unstable procedure which can be made
tractable only by including assumptions about the
form of the true scene. For example, a linear de-
convolution such as the Wiener filter suppresses the
high frequency component of the images, and in max-
imum entropy restoration the constraint is used such
that pixels cannot take negative values. Recently, the
combinatorial nature of binary image restoration has
been noted in [8, 9, 10, 11]: the optimization process
to restore a noisy binary image requires the the mini-
mization of a global energy function over binary vari-
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ables. The optimization method was studied in detail
and its application to several combinatorial problems
such as binary partitioning, perceptual grouping and
restoration was further discussed in [12]. In this pa-
per, we extend this optimization process and design
the energy function which combines not only both the
local similarity and spatial context, but more specifi-
cally the relationship between individual pixel values
and the PSF to deal with binary image deconvolu-
tion with known linear PSFs. As such, both deblur-
ring and denoising functions are simultaneously car-
ried out through the proposed method.

This paper is organized as follows. Section 2 describes
the binary combinatorial optimization of the prob-
lem and designs the energy function. Section 3 gives
an introduction to positive semidefinite programming
and describes the optimization relaxation to solve the
combinatorial problem in Section 2. Experimental re-
sults are given in Section 4. Finally, Section 5 draws
some concluding remarks and provides some future
insights.

2 Binary Combinatorial Optimization

Keuchel et al. [9, 12] investigated the combinatorial
problem of binary image restoration or binary image
denoising. Consider some scalar-valued feature (gray-
value, color feature, etc.) g, suppose that, for each
pixel i, the feature-value gi is known to originate from
either of two prototypical values u1, u2. In practice, of
course, g is real-valued due to measurement errors and
noise. For binary image restoration and in our case,
binary image deconvolution, gi would be the pixel val-
ues, and the two prototype values u1 and u2 can be
represented by u1 : −1 and u2 : +1 without loss of
generosity. To restore a discrete-valued image func-
tion represented by the vector x ∈ {−1,+1}n from
the measurement g, we would like to minimize the
functional:

z(x) =
1
4

∑
i

((u2 − u1)xi + u2 + u1 − 2gi)2

+
λ

2

∑
<i,j>

(xi − xj)2, (2)

with λ being the smoothness term parameter, and
< i, j > stands for adjacent vector entry indices.
Equation (2) comprises two terms, namely, a data-
fitting term and a smoothness term modeling spatial
context. Suppose that the true image is of size u by v,
vector x ∈ {−1,+1}n is of size uv, and contains the

columns of true binary image, stacked upon one an-
other. It can be noted that the numerical result of (2)
finds its local minimum when vector x ∈ {−1,+1}n

represents the true binary image: by assigning every
individual xi as either of the prototype values u1 or
u2, every summation in the first term of (2) will reach
its minimum. As such the whole optimization process
will minimize the functional and denoise the degraded
binary image. Up to constant terms, (2) leads to the
following optimization problem:

inf
x

1
4
xT Qx +

1
2
bT x, x ∈ {−1,+1}n, (3)

with bi = (u2 − u1)(u1 + u2 − 2gi) and matrix en-
tries Qij = −2λ for adjacent pixels i, j and Qij = 0
otherwise.

When a true image f is blurred by a linear PSF h,
the blurred image g is the convolution of f and h
as in (1). Suppose that h is a matrix of size m by
n, and the entries of h are denoted by h(i, j), i =
1, ...,m, j = 1, ..., n. In the computation of convolu-
tion, the columns and lines of h are flipped to form
hr as follows

hr(i, j) = h(m + 1− i, n + 1− j). (4)

For a specific pixel xi in the discrete-valued image
function represented by x ∈ {−1,+1}n, the blurred
pixel value would be the linear combination of xi to-
gether with its neighboring pixel values and entry val-
ues of the PSF:

xb
i =

m∑
j=1

n∑
k=1

xi+(j−m̃)+(k−ñ)uhr(j, k), (5)

with m̃ and ñ being the “center” entry of hr, respec-
tively, m̃ =

⌊
m+1

2

⌋
and ñ =

⌊
n+1

2

⌋
. To restore the

vector x ∈ {−1,+1}n, now the functional is changed
by replacing xi in (2) with xb

i in the data-fitting term,
and we have

z(x) =
1
4

∑
i

((u2 − u1)xb
i + u2 + u1 − 2gi)2

+
λ

2

∑
<i,j>

(xi − xj)2. (6)

Similarly as in (2), every single summation in the first
term of the energy function designed as in (6) will take
its numerical minimum when individual xi is assigned
a prototype value, either u1 or u2, which represents
the true binary image scene. Therefore the functional
in (6) will be able to deconvolve and denoise the de-
graded binary images at the same time. It can also be



noted that in (6), u1, u2, gi are constants and x2
i = 1,

the computation of (6) leads to

1
2

∑
i

(u2 − u1)(u2 + u1 − 2gi)xb
i

+
1
4

∑
i

((u2 − u1)xb
i )

2 − λ
∑

<i,j>

xixj . (7)

We define g(ĥ,v̂) to represent the image shifting

g by ĥ lines and v̂ columns, in which ĥ > 0
means shifting ĥ lines down, otherwise |ĥ| up; and
v̂ > 0 means shifting v̂ columns right, other-
wise |v̂| left. To represent

∑
i(u2 − u1)(u2 + u1 −

2gi)
∑m

j=1

∑n
k=1 xi+(j−m̃)+(k−ñ)uhr(j, k) in the form

of bT x, bi is defined as:

bi =
m∑

j=1

n∑
k=1

(u2 − u1)(u2 + u1 − 2g(j−m̃,k−ñ)i)hr(j, k),

(8)
where g is the blurred image. To represent the sum-
mation∑

i

1
4
(u2 − u1)2(

m∑
j=1

n∑
k=1

xi+(j−m̃)+(k−ñ)uhr(j, k))2,

(9)
it is noted that for any i, x2

i = 1 and∑
i xi+(j−m̃)+(k−ñ)uxi+(ĵ−m̃)+(k̂−ñ)u, in which j =

ĵ and k = k̂ do not happen concurrently, dif-
fers from

∑
i xixi+(j−ĵ)+(k−k̂)u in that for an ar-

bitrary
∑

i xixi+p+qu, if p > 0 then the summa-
tion does not include the last p lines in the im-
age, otherwise the first p lines; if q > 0, the sum-
mation does not include the last q columns, other-
wise the first q columns in the image. Q of size uv
by uv is constructed as: when the summation re-
gion of

∑
i xi+(j−m̃)+(k−ñ)uxi+(ĵ−m̃)+(k̂−ñ)u is iden-

tified and we define T = (u2 − u1)2/2, for line
i, Q(i, i + (j − ĵ) + (k − k̂)u) will be added with
value 2 × T × hr(j, k)hr(ĵ, k̂). There are altogether
mn×(mn−1)

2 summation terms in (9). The third term
of (6) can also be represented in Q, viz., for every line
i of Q, Q(i, i − 1) and Q(i, i + 1) will be added with
value −2λ. Thus the second term and the third term
can be represented in the form of 1

4xT Qx and (7) also
leads to the optimization problem in (3).

For example, if the PSF is a 2 by 2 matrix 1
4

[
1 1
1 1

]
,

according to (5), we have

xb
i =

1
4
(xi + xi+u + xi+1 + xi+1+u).

We will use this PSF as an example to illustrate how
to construct matrices Q and b. Up to constant terms,
the computation of (6) leads to the following equation:

1
2

∑
i

1
16

(u2 − u1)2(xixi+u + xixi+1 + xixi+1+u

+xi+1xi+u + xi+1xi+1+u + xi+uxi+1+u)

+
1
2

∑
i

1
4
(u2−u1)(u2+u1−2gi)(xi+xi+u+xi+1+xi+1+u)

−λ
∑

<i,j>

xixj . (10)

Equation (10) comprises three terms. In the first
term,

∑
i xixi+1 and

∑
i xi+uxi+1+u are different only

because
∑

i xi+uxi+1+u starts the summation from in-
dex i + u, that is from the second column in the im-
age;

∑
i xixi+u and

∑
i xi+1xi+1+u are different only

because
∑

i xi+1xi+1+u starts the summation from in-
dex i + 1, that is from the second line in the image.
We construct the matrix Q of size uv by uv. With T
defined as (u2−u1)2, for line i of Q, Q(i, i+1) has the
value T/8 if i ≤ u, or otherwise 2× T/8, correspond-
ing to

∑
i xixi+1 +

∑
i xi+uxi+1+u. Q(i, i+u) has the

value T/8 if entry with index i of x ∈ {−1,+1}n de-
notes a pixel in the first line of the image, or otherwise
2×T/8, corresponding to

∑
i xixi+u+

∑
i xi+1xi+1+u.

Q(i, i+1+u) has the value T/8 if entry with index i of
x ∈ {−1,+1}n does not denote a pixel in the last line
of the image, corresponding to

∑
i xixi+1+u. Finally,

Q(i, i− 1 + u) has the value T/8 if entry with index i
of x ∈ {−1,+1}n does not denote a pixel in the first
line of the image, corresponding to

∑
i xi+1xi+u.

In the second term,
∑

i(u2 − u1)(u2 + u1 − 2gi)xi

is already in the form of bT x; to obtain
∑

i(u2 −
u1)(u2 + u1 − 2gi)xi+1, the blurred image g is shifted
a line down to have g(1,0); to obtain

∑
i(u2−u1)(u2 +

u1−2gi)xi+u, the blurred image g is shifted a column
right to have g(0,1); to obtain

∑
i(u2 − u1)(u2 + u1 −

2gi)xi+1+u, the blurred image g is shifted a line down
and a column right to have g(1,1). Now the second
term of (10) is rewritten as 1

2bT x with

bi =
1
4
(u2 − u1)(4u2 + 4u1

−2gi − 2g(1,0)i − 2g(0,1)i − 2g(1,1)i).

The third term of (10) can also be represented in Q
by adding value −2λ to Q(i, i− 1) and Q(i, i + 1), for
every line i of Q.



3 Positive Semidefinite Relaxation

In this section, we first introduce the optimization
approach to solve the problem presented in Section 2,
then we will give a brief review of positive semidefinite
(PSD) programming and the randomized-hyperplane
technique.

3.1 PSD Relaxation

In fact, the objective function of (10) can be homog-
enized in the following way:

xT Qx + 2bT x =
(

x
1

)T

L

(
x
1

)
, L =

(
Q b
bT 0

)
.

(11)
In order to relax (11), the integer constraint is first
replaced by its quadratic equivalence x2

i − 1 = 0, i =
1, ..., n. Denoting the Lagrangian multiplier variables
with yi, i = 1, ..., n, the Lagrangian of (11) reads

xT Lx−
n∑

i=1

yi(x2
i − 1) = xT (L−D(y))x + eT y,

in which D(y) denotes the diagonal matrix with yi as
the diagonal values, and e is a vector of all entries
being 1. This leads to the Lagrangian relaxation

sup
y

inf
x

xT (L−D(y))x + eT y.

Removing the constraint on x, the inner minimiza-
tion is finite-valued if and only if L−D(y) is positive
semidefinite. Hence, the relaxed problem can be de-
scribed as

zd := sup
y

eT y, L−D(y) ∈ Sn
+, (12)

and (12) is a convex optimization problem. The set
Sn

+ is a cone which is also self-dual, so that it coincides
with its dual cone (Sn

+)∗ = {Y : X • Y ≥ 0, X ∈ Sn
+},

where X • Y stands for trace(XY ).

To obtain the dual problem to (12), the Lagrangian
dual of (12) is derived. Choosing Lagrangian multi-
plier X ∈ Sn

+, similar reasoning as above yields:

zd = sup
y

inf
x∈Sn

+

eT y + X • (L−D(y))

≤ inf
x∈Sn

+

sup
y

eT y + X • (L−D(y))

= inf
x∈Sn

+

sup
y

L •X −D(y) • (X − I).

Here, the inner maximization of the above relaxation
is finite only if D(X) = I. Hence, the dual problem
to (12) is obtained as

zd := inf
x∈Sn

+

L •X, D(X) = I, (13)

which again is convex. This final semidefinite relax-
ation (13) can also be obtained intuitively in a direct
way from (11) by writing the objective function as
infx xT Lx = infx L • xxT . Note that matrix xxT is
positive semidefinite and has rank one. In (13), the
rank one condition is dropped by replacing xxT by
an arbitrary matrix X ∈ Sn

+ and the constraints are
lifted to the higher-dimensional space respectively.

3.2 PSD programming and randomized-
hyperplane technique

We consider the problem of minimizing a linear func-
tion of a variable x̄ ∈ Rm subject to a matrix inequal-
ity:

minimize cT x̄

subject to F (x̄) > 0, (14)

where

F (x̄) = F0 +
m∑
i

x̄iFi.

The problem data are the vector c ∈ Rm and m + 1
symmetric matrices F0, · · · , Fm ∈ Rn×n. The inequal-
ity in F (x̄) ≥ 0 means that F (x̄) is positive semidefi-
nite, i.e., zT F (x̄)x > 0 for all z ∈ Rn. The inequality
F (x̄) ≥ 0 is called a linear matrix inequality and prob-
lem in (14) is a semidefinite program. A semidefinite
program is a convex optimization problem since its
objective and constraint are convex: if F (x̄) ≥ 0 and
F (ȳ) ≥ 0, then for all θ, 0 ≤ θ ≤ 1,

θF (x̄) + (1− θ)F (ȳ) ≥ 0.

Although the semidefinite program in (14) may ap-
pear quite specialized, it includes many important op-
timization problems such as the linear program (LP)
and quadratic programming. Semidefinite program-
ming can be regarded as an extension of linear pro-
gramming where the componentwise inequalities be-
tween vectors are replaced by matrix inequalities, or,
equivalently, the first orthant is replaced by the cone
of positive semidefinite matrices. There are good rea-
sons for studying PSD programming. First, positive
semidefinite programming constraints arise in may
practical applications. Secondly, PSD programming
provides a unified way of studying the properties and



the derived algorithms of the convex optimization
problems. As mentioned earlier, many optimization
problems can be incorporated in the category of PSD
programming. And the most important reason is that
PSD programming can be solved very efficiently, both
in theory and in practice.

To compute the optimal solution X∗ in (13) and y∗

in (12), a wide range of iterative interior-point algo-
rithms and corresponding solvers are available, such
as the popular package SP [13], SDPA [14], CSDP
[15], SDPHA [16] and SDPT3 [17]. The optimization
solver SeDuMi [18] is used in our experiments. Se-
DuMi is chosen because it possesses some beneficial
features including taking full advantage of sparsity
which leads to significant speed benefits, a theoret-
ically proven worst-case iteration bounds, promoting
sparsity by handling dense columns separately, et al.
In SeDuMi, X∗ and y∗ are obtained by the call

[X∗, y∗, info] = sedumi(Ā, b̄, c̄,K),

where Ā, b̄ and c̄ contain problem data, and K is a
cone. The call solves the optimization problem

minimize c̄T X∗

subject to ĀX∗ = b̄,

X∗ ∈ K. (15)

Comparing (15) with (13), Ā, b̄, c̄ and K can be de-
fined, and X∗ can thus be computed.

Based on the solution matrix X∗ to the convex opti-
mization problem (13), a combinatorial solution x to
the original problem (11) can be found by using the
randomized-hyperplane technique proposed by Goe-
mans and Williamson [19]. Since X∗ ∈ Sn

+, X∗ can be
decomposed as V T V, V = (v1, ..., vn) using Cholesky
factorization. From the constraint D(X) = I, it fol-
lows that ‖vi‖ = 1, i = 1, ..., n and hence each primi-
tive xi is associated with a vector vi on the unit sphere
in a high-dimensional space. Accordingly, the ma-
trix entries (xxT )ij = xixj are replaced by the ma-
trix entries Xij = vT

i vj . Choosing a random vector r
from the unit sphere, a combinatorial solution vector
x is calculated from X∗ = V T V by setting xi = 1 if
vT

i r ≥ 0, and xi = −1 otherwise. This is done for
multiple times for different random vectors. The final
solution, xSDP , is the one that yields the minimum
value for the objective function xT Lx. This technique
can be interpreted as selecting different hyperplanes
through the origin, identified by their normal r, which
partition the vectors vi, i = 1, ..., n into two sets.

Figure 1: The true original binary image of size 10 by
10.

Figure 2: (Left) The image blurred by h1×2. (Right)
The result of deconvolution.

4 Experimental Results

In Section 2, we have discussed the binary combinato-
rial optimization of binary image deconvolution. The
functional to be minimized has been set up and the
corresponding matrices constructed. In Section 3, we
have described the relaxation of the original problem
to PSD programming and the randomized-hyperplane
technique for finding the solution. In this section, we
apply the proposed optimization technique to blurred
binary images, thereby validating the feasibility of the
method. In our experiments, the true original binary
image is an image extracted from the map of Iceland
with a size of 10 by 10 shown in Figure 1.

First, we blur the original image with a PSF of
h1×2 =

[
0.5 0.5

]
, and apply our method to restore

the original image. The blurred image and the result
of the deconvolution are shown in Figure 2. Note that
in our approach, in the final optimization solution
x ∈ {−1,+1}n, vector entries with value 1 and −1
actually have the value 255 and 0 respectively. From
this experiment, we can see that the accuracy of our
method is 100%, thus demonstrating the deblurring
capability of the proposed method.

Next, we add Gaussian white noise of mean 0 and vari-



Figure 3: (Left) The image blurred by h1×2 and with
noise. (Right) The result of deconvolution.

Figure 4: (Left) The image blurred by h2×2. (Right)
The result of deconvolution.

ance 0.01 to the blurred image in Figure 2 to check
the noise fighting ability of the optimization method.
From Figure 3, only 1 pixel value out of the 100 pix-
els is wrong, from this, we can see that the proposed
method fights noise quite well. This demonstrates
that in addition to deblurring, the proposed method
simultaneously possesses good denoising capability.

Now, we extend the PSFs to 2 dimensional matrices.

In Figure 4, the PSF is defined as h2×2 = 1
4

[
1 1
1 1

]
.

The accuracy of the proposed method is 88%. In Fig-
ure 5, the blurred image is added with the same noise
as in Figure 3, and this time the proposed method
shows its ability to fight noise, with the accuracy of
91%.

Figures 6 and 7 show the results of our method to de-
convolve the blurred image when the PSF is defined

as h3×3 = 1
9

 1 1 1
1 1 1
1 1 1

 and when the blurred im-

age is added with the same noise as in Figure 3. The
accuracy of the deconvolution when there is no noise
is 77%, and the accuracy when noise is present is 75%.

Figure 5: (Left) The image blurred by h2×2 and with
noise. (Right) The result of deconvolution.

Figure 6: (Left) The image blurred by h3×3. (Right)
The result of deconvolution.

Figure 7: (Left) The image blurred by h3×3 and with
noise. (Right) The result of deconvolution.

Table 1: CPU Time

Deconvolution Experiments CPU time(s)

PSF size 1 by 2, no noise 23.2
PSF size 1 by 2, with noise 20.7
PSF size 2 by 2, no noise 21.0
PSF size 2 by 2, with noise 21.0
PSF size 3 by 3, no noise 22.1
PSF size 3 by 3, with noise 22.0



The experiments were conducted on a 3.2GHz PC
with 512MB RAM. The CPU times of the experiments
are given in table 1. It can be shown that in our exper-
iments, when the true image is blurred by our selected
1 dimensional PSF, the proposed method restores the
original image with almost 100% accuracy. When the
size of the PSF starts to increase, the accuracy drops
to around 80% when the size reaches 3 by 3. It should
be noted that, even when noise is present in addition
to blurring, the proposed method continues to restore
the true binary image with satisfactory accuracy. It
should also be noted that the price paid for the out-
standing performance of the optimization approach is
the computation complexity. The computational time
grows exponentially with the number of variables such
that problems with thousands of variables cannot be
solved in practical time. At present moment, this lim-
its the application of our approach to the restoration
of large binary images.

5 Conclusions and Future Work

This paper has presented a novel image processing
technique for solving the combinatorial problem of bi-
nary image deconvolution. The problem is relaxed to
a positive semidefinite (PSD) relaxation, the subopti-
mal solution of the PSD relaxation is computed and
an optimal solution to the original problem is obtained
using randomized-hyperplane technique. The pro-
posed optimization method is accurate, anti-noise and
simple without introducing new parameters. Numer-
ical examples have demonstrated the excellent per-
formance of the proposed method in simultaneously
carrying out deblurring and denoising functions.

One way to speed up restoration process of large bi-
nary images is to apply image segmentation. The de-
graded binary images can be segmented to smaller im-
age blocks before applying the optimization approach
to each block. An obvious problem is that without
taking into account the pixels on the boundary lines
of columns of the block, error inevitably increases be-
cause the computation of xb

i requires its adjacent pix-
els within the range of the PSF matrix as illustrated
in (5). As such, a tradeoff has to be made between
the computation time and quality of the restored im-
ages. A hybrid scheme with overlapping lines and
columns will be considered to restore large binary im-
ages in our future research work. Furthermore, future
research efforts might also lead to blind binary image
deconvolution wherein the PSF is unknown.
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