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Abstract— In this study, we present a one dimensional descriptor 
for the two dimensional object silhouettes which in theory remains 
absolutely invariant under affine transforms. The proposed 
descriptor operates on the affine enclosed area. We design a 
normalizing contour method. After this normalization, the number 
of points on a contour between two appointed positions doesn’t 
change with affine transforms. We prove that for the filtered 
contour, the area of a triangle whose vertices are the centroid of 
the contour and a pair of successive points on the normalized 
contour is linear under affine transforms. Experimental results 
indicate that the proposed method is invariant to: boundary 
starting point variation, affine transforms even in the case of high 
deformations and noise on shapes in a given. We also propose a 
method to simulate the noise contaminating the test shapes and 
define the signal-to-noise ratio for a shape. In addition, the 
proposed normalization method can be associated to other 
algorithms for increasing their robustness to affine transforms and 
decreasing their complexity in similarity measurements. 
Index Terms—Affine-invariant, Contour, Descriptor, Filter, Noise. 
 

Ⅰ. INTRODUCTION 
 

The advent of multimedia and large image collections in 
different domains and applications bring a necessity for 
image retrieval systems. These systems are supposed to 
retrieve images in an effective manner based on a user’s 
input query. Image retrieval is based on observation of an 
ordering of match scores obtained by searching through a 
database. The key challenges in building a retrieval system 
are the choice of attributes, their representations, query 
specification methods, match metrics and indexing 
strategies. 
Considerable amount of information exists in two 
dimensional boundaries of objects which enable us to 
recognize objects without using further information. A 
shape is originally defined by x and y coordinates of its 
boundary points which are subject to changes if the camera 
is allowed to change its viewpoint with respect to the object, 
the resulting boundary of the object will be deformed. This 
deformation can be approximated by general affine 
transforms. As a result, a shape representation must be 
robust under similarity transformation which includes 
scaling, changes in orientation, shearing and translation. A 
number of shape representations have been suggested to 
recognize shapes even under affine transforms. Some of 
them are the extensions of well-known methods such as 
dyadic wavelet transform [1], Fourier descriptors [2], affine 
curvature scale space (CSS) [3], affine arc length [4] and 
moment invariants [5], etc. In these methods, the basic idea 
is to use a parameterization which is robust with respect to 
affine transforms. 
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In this paper, to extract an affine invariant attribute, a new 
algorithm based on area equal normalization is proposed. In 
theory this attribute is absolutely robust under the affine 
transforms, even with serious transformations. 
Experimental results show that the proposed algorithm is 
also rather insensitive to noise. In addition, a high 
computationally efficient object recognition scheme is 
briefly presented.  
 

Ⅱ. FUNDAMENTAL CONCEPTS 
 

A. Closed Curve 
Let us consider the discrete parametric equation of a closed 
curve: 

Γ(μ) = (x(μ), y(μ))    (2.1) 
where ∈μ {0, . . . ,N − 1 }. In general, curves of an 

application may have been parameterized with different 
number of vertices N.  
B. Affine Transforms 
The affine transformed version of a shape can be 
represented by the following equations [6]: 
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Where )(μax and )(μay  represent the coordinates of the 
transformed shape. Translation is represented by matrix B, 
while scaling, rotation and shear are reflected in the matrix 
A. They are represented by the following matrices: 
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If Sx is equal to Sy, AScaling represents a uniform scaling. A 
shape is not deformed under rotation, uniform scaling and 
translation. However, non-uniform scaling and shear 
contribute to the shape deformation under general affine 
transforms.  
C. Affine Invariant Parameters 
There are two parameters which are linear under affine 
transforms. They are the affine arc length, and the enclosed 
area.  
The first parameter can be derived based on the properties 
of determinants. It is defined as follows: 

∫ −=
b

a
dyxyx μμμμμτ 3/1)](')('')('')('[  (2.3) 

The second affine invariant parameter is enclosed area 
which is derived based on the property of affine transforms: 
Under an affine mapping, all areas are changed in the same 
ratio. Based on this property, Arbter et al. [2] defined a 
parameter σ , which is linear under a general affine 
transform, as follows: 

μμμμμσ dxyyx
b

a∫ −= )(')()(')(
2
1   (2.4) 

where x(μ) and y(μ) are the coordinates of points on the 
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(a)               (b)      (c)      (d) 

 
(e)               (f)      (g)             (h)  
Fig.1. The comparison of equidistant vertices normalization and equal area normalization. (a) is the image of top 

viewpoint of a plane. (b) is the contour of image (a). (c) is a part of contour (b) normalized by equidistant vertices. 

(d) is a part of contour (b) normalized by equal area. (e) is the image of back top viewpoint of the plane. (f) is the 

contour of image (e). (g) is a part of contour (f) normalized by equidistant vertices. (h) is a part of contour (f) 

normalized by equal area. 
 
contour with the origin of system located at the centroid of 
the contour. The parameter σ  is essentially the 
cumulative sum of triangular areas produced from 
connecting the centroid to a pairs of successive vertices on 
the contour. 
 

Ⅲ. EQUAL AREA NORMALIZATION 
 

All points on a shape contour could be expressed in terms 
of the parameter of index points along the contour curve 
from a specified starting point. With the affine transforms, 
the position of each point changes and it is possible that the 
number of points between two specified points changes too. 
So if we parameterize the contour using the equidistant 
vertices, the index point along the contour curve will 
change under affine transforms. For example, Fig.1(a) is 
the top viewpoint of a plane, and (e) is the back top 
viewpoint of the plane, so (e) is one of affine transforms of 
the image (a). Via region segmentation or edge following, 
we get the contours of the images (b) and (f). (c) and (g) are 
the parts of the contour (b) and (f) normalized by equal 
distance respectively. In Fig.1(c), the number of points 
between the appointed points A and B is 21; however, the 
number is 14 in Fig1.(g). So the contour normalised by 
equidistant vertices is variance to possible affine 
transforms.  
In order to be invariance under affine transforms, a novel 
curve normalization approach is proposed that provides an 
affine invariant description of object curves at a low 
computational cost, while at the same time preserving all 
information on curve shapes. This approach is equal area 
normalization (EAN) and we present it as follow:  
All points on a shape contour could be expressed in terms 
of two periodic functions ))'(),'(()'( μμμ yxC = , where 

variable 'μ  is measured along the contour curve from a 
specified starting point. 

1) Normalize the contour to N points with 
equidistance vertices. The new periodic functions are 

))(),(()( μμ=μ yxC and all the points on the contour 
are μp .where ]1,0[ −∈μ N . 

2) Calculate the second-order moments of the 
contour as its centroid G. 

3) Transfer the contour to make centroid G to be at 
the origin of coordinates. 

4) The last point ))(),(( NyNx  is assumed to be the 
same as the first. Compute the area of the contour using the 
formula: 
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where )()1()1()(
2
1 μμμμ yxyx +−+  is the area of the 

triangle whose vertices are μp (x(μ), y(μ)), 1+μp (x(μ+1), 
y(μ+1)) and centroid G (cf. Fig.2). 
 

 
 

Fig.2. The method of normalization equal area. “●”is the 
vertex p of equidistant vertices normalization, and “■” is 
the point 'p of equal area normalization. G is the centroid 
of the contour. 



 

 

 
 

Fig.3. Demonstration of the theorem1 
 

5) Let the number of points on the contour after EAN 
be N too. Of course, any other number of points could be 
chosen. Therefore, after EAN, each enclosed area partS  
defined by the two successive points on the contour and 
centroid equal to NSS part /= . 
Suppose all the points on the contour after EAN are tp' . 
Let ))('),('()( tytxtC =  represent the contour, 
where ]1,0[ −∈ Nt . Choose the starting point 

0p ))0(),0(( yx on the equidistant vertices normalization as 
the starting point '0p ))0('),0('( yx of the EAN, on the 
segment 10 pp , we seek for a point ))1('),1('('1 yxp , let 
thearea )0(s of the triangle whose vertices are 

'0p ))0('),0('( yx , )0(G and ))1('),1('('1 yxp equal to partS . 
If there is not point to satisfy the condition, then we seek 
for the point '1p  on the segment 21 pp . So the area )0(s , 
which is the sum of the areas of triangle 10Gpp and 
triangle '11Gpp , equal to partS . If there is not the point to 
satisfy the condition yet, we continue to seek for this point 
at the next segment until the condition is satisfied. This 
point '1p is the second point on the normalized contour. 

6) From point ))1('),1('('1 yxp , we use the same 
method to calculate all the points ))('),('(' tytxpt , 

]1,0[ −∈ Nt along the contour. Because the area of each 
closed zone, for example, the polygon Gpppp tt 11 '][' ++μμ  

]2,0[ −∈ Nt equal to partS , the total area of 1−N polygon 

is partSN ⋅− )1( . According to 5), we know it equal 

to partSS − . So the area of the last zone '' 01 GppN − equal 

to partS exactly. 

From Fig.2 we know, the area of the triangle 1'' +tt Gpp  
equal to the area tS of polygon Gpppp tt 11 '][' ++μμ  
approximately if the distance between the two 
points 1+μμ pp is close enough or the number N of the points 
on the contour is big enough. Therefore, we can use the 
points tp' ]1,0[ −∈ Nt to replace the points 

μp ]1,0[ −∈ Nμ . Then the process of EAN is 
accomplished. 
According to subsectionⅡ.C, after this normalization, the 
number of vertices between the two appointed points on a 

contour is invariant under affine transforms. Fig.1(d) and (h) 
are the same parts of Fig.1(c) and (g) respectively. We 
notice that the distance between the consecutive points is 
not uniform. In Fig.1(d), the number of points between the 
appointed points A and B is 23, the number is also 23 in 
Fig.1(g). Therefore, after applying EAN, the index of the 
points on a contour can remain stability with their positions 
under affine transforms. This property will be very 
advantageous to extract the robust attributes of a contour 
and decrease complexity in the similarity measure. We can 
also use EAN to the others algorithm, to improve their 
robustness with affine transforms. For example, before do 
the algorithm of curvature scale space (CSS), the contour is 
normalized by EAN, all the maximum points in the image 
CSS will not change under affine transforms. This is 
beneficial to calculate the similarity between two CSS 
attributes.  
In the following, we will study the part area partS change 
with the effect of affine transforms and filtering.  
 

Ⅳ. NORMALIZED PART AREA VECTOR 
 

In this section, we look for the existing relations between 
the part area partS , affine transforms and low-pass filtering.  
THEOREM1:  
If Γa(xa(μ), ya(μ)) is the transformed version of a planar 
curve Γ(x(μ), y(μ)) under an affine transform A, where μ is 
an arbitrary parameter, Γaf(xaf(μ), yaf(μ)) notes that Γa is 
filtered by a linear low-pass filter F; and if Γf(xf(μ), yf(μ)) 
notes that Γ is filtered by the same low-pass filter F, 
Γfa(xfa(μ), yfa(μ)) refers to the transformed version of Γf 
under the same affine transform A. Planar curve Γaf is then 
the same as planar curve Γfa. In other words: 
F[A(Γ)]=A[F(Γ)]. (cf. Fig.3) 
PROOF:  
From Eq.2.2 we have 

ebyaxxa ++= )()()( μμμ   (4.1) 
fdycxya ++= )()()( μμμ   (4.2) 

Translation is represented by e and f . For all affine 
transforms contour, we transfer the centre gravity to origin. 
So the represents of translation e and f can be removed. 
Therefore, the affine transform can be represented by two 
simple formulae:  

)()()( μμμ byaxxa +=     (4.3) 
)()()( μμμ dycxya +=      (4.4) 

The computation starts by convolving each coordinate of  

Γ 

Affine transform 
A 

Low pass filter 
F 

Affine transform 
A

Low pass filter 
F 

Γa

Γf 

Γaf

Γfa



 

 

 
 

Fig.4. Demonstration of the theorem2 
 

the curve Γa(μ) with a linear low-pass filter F whose 
impulse response is g(μ). In continuous form we have 

)()()( μμμ gxx aaf ∗=  

)()]()([ μμμ gbyax ∗+=  
)()()()( μμμμ gbygax ∗+∗=  

)()( μμ ff byax +=       (4.5) 

Where * denotes convolution. Likewise, 
)()()( μμμ ffaf dycxy +=    (4.6) 

Compare Eqs.4.5, 4.6 and Eqs.4.3, 4.4, it is clear that point 
(xaf(μ), yaf(μ)) is also the point (xf(μ), yf(μ)) transformed by 
the affine transform A. So the planar curve Γaf is same as 
the planar curve Γfa. 
The theorem1 indicates that after exchanging computation 
order between affine transform and filtering, there is no 
change in the result. 
THEOREM2: 
For any affine transform of a closed contour, using EAN to 
set the parameters produces planar curve Γa(xa(t), ya(t)). If 
area sp(t) is the area of an enclosed sector whose vertices 
are a pair of successive points and the centroid of the 
contour and if Γaf(xaf(t), yaf(t)) indicates that Γa is filtered by 
a low-pass filter F, then the changes in enclosed areas sp(t) 
on the Γaf are linear with affine mapping. See Fig.4. 
PROOF: 
In section 3, we know the enclosed area sp(t)of the triangle 
on the contour filtered whose vertices are (xaf(t), yaf(t)), 
(xaf(t+1), yaf(t+1)) and the centroid G is 

)]()1()1()([
2
1)( tytxtytxabsts afafafafp +−+=  (4.7) 

In the following, we will show that sp(t)is absolutely affine 
invariant to affine transforms. Due to the THEOREM1,  

)()()( tbytaxtx ffaf +=      (4.8) 
)()()( tdytcxty ffaf +=      (4.9) 

and 
)1()1()1( +++=+ tbytaxtx ffaf    (4.10) 

)1()1()1( +++=+ tdytcxty ffaf    (4.11) 
Therefore from Eq.4.7 

{ )]1()1()][()([
2
1)( ++++= tdytcxtbytaxabsts ffffp  

- }])()()][1()1([ tdytcxtbytax ffff ++++  

= )()1()1()([
2
1 tytbcxtytadxabs ffff +++  

- )]()1()()1( txtbcytytadx ffff +−+  

= )]()1()1()([)(
2
1 tytxtytxabsbcadabs ffff +−+⋅− (4.12) 

Observing the Eq.4.12, sp(t) is just linearly proportional by 
a scale factor abs(ad-bc). Accordingly, we have proved that 
enclosed areas sp(t) are linear with affine mapping.  
DEDUCTION: 
The proportion v’(t) of the closed areas sp(t) with the total 
area S of the filtered contour is preserved under general 
affine transforms . 
PROOF:  
According to Eq.4.12, the total area S of the filtered contour 
is: 
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Observe the Eq.4.14, )(' tv doesn’t relate with the affine 
parameters cba ,, and d . Therefore )(' tv is preserved under 
general affine transforms. 
In addition, we can deduct major property of )(' tv : the 
integration of ]/1)('[)( Ntvtv −= equal to zero. 
PROOF: 
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We refer to vector v(t) as the normalized part area vector 
(NPAV). As theorem2 and its deduction show, in all cases, 
even those with severe deformations, the function sp(t) is 
also preserved, only the amplitude changes under general 
affine transforms; the NPAV )(tv has an affine-invariant 
feature.  
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Fig.5. The framework of experiments 
 

Ⅴ. EXPERIMENTAL RESULTS AND MULTISCALE 
NPAV 

 
In experimental results, we will observe NPAV behavior in 
relation to affine transforms, EAN parameterization, 
filtering and noise. We experiment on the MPEG-7 
CE-shape-1 database containing 1400 shape images. The 
framework of these experiments can be seen in Fig.5. Here, 
the low-pass filter is a Gaussian filter with a scale 
parameter σ. The evaluation output is the maximum linear 
correlation coefficient between the NSAV of the upper 
pathway after affine transforms, noise, EAN 
parameterization and filtering and the NSAV of the lower 
pathway with the original contour.  
First, we evaluate the effect of affine transforms on NSAV. 
Let the number of normalized points be 512, the position of 
the starting point be the same as the original contour and 
σ=10. According to subsectionⅡ.B, if the range of uniform 
scaling transforms and shearing transforms changes from 
0.1 to 10 and the respective rotation angles are 60°, 120°, 
180°, 240° and 300°, then all the linear correlation 
coefficients on NSAV have values above 97%.   
We then assess the effect of equal area normalization (EAN) 
on NSAV. This experiment includes two aspects: on one 
hand the relation between NSAV and the number of points 
normalized by EAN and on the other hand the relation 
between NSAV and the position of the starting points on a 
contour. The results show that for a number of points on a 
contour normalized to 64, 128 and 256 , and 
simultaneously with a starting point position displaced to 
12.5%, 25%, 37.5% and 50% of the index points along the 
contour, all the linear correlation coefficient values stay 
above 97%.   
Finally, we study the effect of noise on NSAV. When we 
resample the edges of an object, the original shapes are 
affected by noise and impairments, generating fluctuations 
on the boundary. The general method for noise simulation 
on a contour is to shift the x, y coordinates of the points on 
a contour independently. In this way, the order of certain 
points on the contour becomes confused (cf. Fig.6(a)). 
However, in practice, such distortion cannot be present. In 
order to simulate the real effect of noise on an object, the 
displacement direction of each point affected by noise is 
controlled so that it is only vertical to the tangent of the 
point. Fig.6(b) shows the effect of noise simulated with the 
proposed method i.e. there is a significant decrease in 
self-intersections. 
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(a)      (b) 

Fig.6. Two effects of adding simulated noise. (a) is the 
effect of the general method of simulation. (b) is the effect 
of the proposed method 
 

If its amplitude is controlled by a uniform random value, 
suppose the amplitude range is [-r, r], and the average 
distance between all the points on the contour and its 
centroid is D, we define the signal-to-noise ratio (SNR) as 
follows: 

(dB)
r

2D 20lgSNR =  

We performed the experiments in such a way that the test 
contours were contaminated by random uniform noise 
ranging from high to low SNRs (cf. Fig.7(a)-(d)).  
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Fig.7. Demonstration of a contour contaminated by various 
SNRs. 

 
TableⅠ. The average correlation coefficient of different SNR 
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40dB 0.96366 
35dB 0.96298 
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25dB 0.89765 
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(a)                            (d)                              (e) 
Fig.8. NPAV and the scale. (a) is two original contours. (b)-(e) are their NPAVs with different scale. 

 
TableⅠ shows the average correlation coefficient of all the 
NSAVs of shapes in the database with different SNRs. 
Correlation between NSAVs remains at an adequate level 
to allow efficient pattern recognition.  
By analysing the results of experiments, we notice that 
NPAV is quite robust with respect to scale, orientation 
changes of objects, shearing, the position of starting point 
and the noise. Therefore, NPAV can be used to characterize 
a pattern for recognition purpose. In the following, we 
propose the object recognition scheme based on multiscale 
technology. 
Under the high scale, it’s possible that some of objects 
different have the similar NPAV. However the NPAVs of 
these objects have probably different feature under low 
scale. Fig.8 shows an example, the two objects in (a) are 
normalized by EAN to 256 points. Fig.8 (b)-(e) are their 
NPAVs under the scale 40=σ , 30=σ , 20=σ and 

10=σ respectively. As can be seen in figures, the higher 
scale is, the more similar they are. On the contrary, the 
lower scale is, the more different they are. So we can 
present a shape with different scale: high-scale NPAV can 
be used to eliminate dissimilar shapes and low-scale images 
can discriminate between similar shapes. 
In addition, as the NPAV expresses a contour with all the 
points normalized by EAN, it is rather redundant. To 
decrease the redundancy, we apply the wavelet algorithm to 
compress the NPAV. We have noticed that the higher the 
value of σ, the less high frequency remains in the NPAV, 
on the contrary, the lower the value of σ, the more high 
frequency remains in it. So we can use the high compress 
ratio to NPAV with higher σ, and low compress ratio to that 
with lower σ. In this way, a high computationally efficient 
object recognition scheme can be designed. 
 

Ⅵ. CONCLUSION 
 
In this paper, a new method of extracting invariants of an 
image under affine transform is described. Our 
representation is based on the association of the two 

parameters the affine arc length and enclosed area, viz. we 
normalize a contour to invariant length by the affine 
enclosed area. We then prove two theorems and a 
deduction. They reveal that for a filtered contour, the part 
area is linear under affine transforms. We further define an 
affine-invariance vector: normalized part area vector 
(NPAV). A number of experiments on the MPEG-7 
database demonstrate that NPAV is quite robust with 
respect to affine transforms and noise, even in the presence 
of severe noise. In addition, we propose a method to 
simulate the noise contaminating the test shapes and define 
the signal-to-noise ratio for a shape. Finally, a shape 
recognition scheme is briefly presented. 
Future directions of the research include doing more 
extensive tests to assess retrieval results by multiscale 
NPAV, ameliorating the retrieval performance of the 
NPAN under part of the shape occluded.  
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