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Abstract—–In this paper, we consider a linear pop-
ulation dynamics model, in which the birth process
is described by a nonlocal term and the initial dis-
tribution is unknown. We want here, to use an ap-
proximate controllability result for retrieving this un-
knowm datum. The method uses an approximate con-
trollability result for the adjoint system. This result
is proved using a global Carleman inequality for the
direct problem. More precisely, we prove here that
one can expect to compute the initial distribution u-
sing observations on a small part of the boundary.
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1 Introduction

We consider in this paper an age and space structured
population living in a bounded domain Ω ⊂ RN , N ≥ 1
with a regular boundary ∂Ω. In what follows, we will
denote by ŷ(t, a, x) the distribution of individuals of age
0 < a < A at time t > 0 and location x. Let μ̂(a) and
β̂(a) denote the natural death rate and the natural fertil-
ity rate of individuals of age a. Let T be a positive real
and A > 0, the maximal life expectancy. When the diffu-
sion of individuals in the domain follows the Fick’s law,
namely ∇ŷ(t, a, x)) with ∇ the gradient with respect to
the spatial variable, then ŷ solves the following equation:
∂ŷ

∂t
+
∂ŷ

∂a
−Δŷ + μ̂(a)ŷ = 0 in (0, T )× (0, A)× Ω (1)

where ∂ŷ
∂t and ∂ŷ

∂a are partial derivatives with re-
spect to the variables t and a in the sense of
D′

(
(0, T )× (0, A) ;

(
H1 (Ω)

)′). See [10] or [8].
Equation (1) is completed by:

ŷ(t, 0, x) =
∫ A

0

β̂(a)ŷ(t, a, x)da in (0, T )× Ω; (2)
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ŷ(0, a, x) = ŷ0(a, x) in (0, A)× Ω (3)

and by

∂ŷ

∂ν
(t, a, σ) = 0 in (0, T )× (0, A)× ∂Ω. (4)

Biologically, (2) gives the birth process. Indeed, this gives
the distribution of newborn individuals at time t and lo-
cation x. Equation (3) describes the initial distribution of
individuals of age a at location x and relation (4) means
that there is no flux of individuals through the boundary
of Ω.
From [2] and [8], one can define the trace at t = t0 or
a = a0 in the spaces L2(QA) and in L2(QT ) respectively,
for any solution of (1). This makes conditions (2) and (3)
meaningfull.

In this paper, we assume that the function ŷ0 is un-
known and our goal is to establish a new technique for
its determination using some ”measurement” on a part
of the boundary. More precisely, let us denote by Γ0

and Γ1 a partition of ∂Ω, we present a method for re-
covering ŷ0 using the values of y(t, a, σ) when (t, a, σ) ∈
(0, T )× (0, A)× Γ0.
This problem has a great importance in practice, since in
the study of a population one cannot get directly the dis-
tribution of the individuals on all the domain. But, one
can always get information on a part of the boundary or
on a small open subset of the domain Ω. Note that, the
method works well also in the case of distributed obser-
vation.
The problem under our consideration is in fact an inverse
problem. Many papers deal with this topic. An introduc-
tion to the subject was given in [3] and in [11].The Inverse
problems are generally ill- posed and a traditional way to
solve them, is the use of the so called Tikhonov regulari-
sation and the minimization of a quadratic functional [9].
Although thousands papers has been devoted to inverse
problems and despite its great importance in practice,
a little addresses population dynamic. Let us describe
briefly what was done in the litterature on population
dynamics.
In [15], the author performed a technique of recovering
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the natural death rate in a Mc Kendrick model. The
method there, used an overdeterminated data y(T, a) =
ψ(a) and the explicit form of the solution. In [7], the
goal is different from the previous. Indeed, the authors
proposed in [7] a method for determining the individual
survival and the reproduction function from data on the
population size and the cumulative number of birth in a
linear population model of a Mc Kendrick type.
These studies are quite different from the subject we con-
sider here. Though our method uses essentially an ap-
proximate controllability result for the adjoint equation
of (1-4), it is different from the method of [12]. In [12],
the authors consider a Laplace equation and a generalized
Stokes system for which the boundary value is unknown.
They tried to retrieve an approximation of the bound-
ary value from some ”measurement” of the solutions on
a given internal surface. The idea in [12] is to take the
unknown value as a control function in a approximate
controllability problem. In [16] the method used a null
controllability result with distributed control and follows
the idea of JP Puel [13] that consists to compute the state
ŷ at time T > 0 in order to compute the state at time
t > T . This idea is also different, since presently, one
want to compute the initial distribution.
As one will see, our method works well too for many evo-
lutions equations.
We recall that, the first approximate controllability re-
sult for a linear population dynamics model was proved
by B. Ainseba [1]. In [1], a linear population dynamics
model with Dirichlet boundary conditions is considered
and, an approximate controllability result with internal
control was studied. The main ingredient there, is a Car-
leman inequality for the adjoint problem. Here, we give
a Carleman inequality with homogenous Neuman bound-
ary condition. This Carleman inequality is more difficult
to prove and is in fact the main difficulty of this pa-
per. Afterwards, we study an approximate controllability
problem with boundary control.

The remainder of this paper is as follows; in the next sec-
tion, we will state assumptions and we prove an approx-
imate controllability results. In section 3, we describe a
method for recovering the initial distribution.

2 Assumptions and approximate control-
lability results

Throughout this paper, we set: Q = (0, T )× (0, A)× Ω;
QA = (0, A)×Ω; QT = (0, T )×Ω; Σ = (0, T )×(0, A)×∂Ω
and Σ0 = (0, T ) × (0, A) × Γ0 where Γ0 is a nonempty
open subset of ∂Ω.
We assume that the following assumptions are fulfilled:

A1) β̂ ∈ L∞(0, A); and β̂ ≥ 0 a.e in (0, A);

A2) μ̂ = μ+ μ0 ; μ ∈ L∞(0, A); μ0 ∈ L1
loc(0, A);

μ ≥ 0 a.e (0, A) and lima→A

∫ a

0
μ0(s)ds = +∞;

A3) ŷ0 is unknown but, ŷ0 �= 0 and belongs to
L2

π0
((0, A)× Ω) with π0(a) = exp(

∫ a

0
μ0(s)ds);

A4) y|Σ0 (t, a, σ) is known a.e on Σ0.

Let us consider for v ∈ L2 (Σ) the following controlled
system :⎧⎪⎪⎨
⎪⎪⎩
−∂z

∂t − ∂z
∂a −Δz + μp = βz (t, 0, x) in (0, T )× (0, A)× Ω

∂z
∂ν (t, a, σ) = v(t, a, σ)1Σ0(t, aσ) on Σ

z(T, a, x) = 0 in QA

z(t, A, x) = 0 in QT

(5)
where β = π(a)−1β̂.
The system (5) is said to be approximately
controllable at time T if the set R0 ={
z(0, ., .), z solves (5); v ∈ L2 (Σ)

}
is dense in

L2 (QA).
The main result of this section is :

Theorem 2.1 Assume that assumptions A1−A2 are ful-
filled, then the system (5) is approximately controllable.

The main ingredient of the proof is an unique continu-
ation result. So, let ω be a nonempty open subset of Ω
and ω0 an open subset of ω such that ω0 ⊂ ω. There
exists a function Ψ ∈ C2(Ω) such that Ψ(x) = 0, for all
x ∈ ∂Ω; ∇Ψ(x) �= 0, for x ∈ Ω− ω0 and Ψ(x) > 0, for
all x ∈ Ω. See [6].
In the sequel C will denote several positive constants.
We define for λ > 0: η(t, a, x) = e2λ‖Ψ‖−eλΨ(x)

a(A−a)t(T−t) and

ϕ(t, a, x) = eλΨ(x)

a(A−a)t(T−t) .

Let p ∈ C2([0, T ]× [0, A]× Ω) be such that:

∂p

∂t
+
∂p

∂a
−Δp+ μp = f in Q (6)

and
∂p

∂ν
= 0 on Σ, (7)

then we have

Proposition 2.2 There exist positive constants s0 > 1;
λ0 > 1 and C > 0 such that for s > s0 and λ > λ0 the
following inequality hold:

L(p) ≤ C

∫
q

s3λ4ϕ3e−2sηp2dadxdt+C
∫

Q

e−2sηf2dadxdt.

(8)

where p solves (6-7); q = (0, T )× (0, A)× ω and

L(p) =
∫

Q

(
e−2sη

sϕ

(∣∣∣∣∂p∂t + ∂p

∂a

∣∣∣∣
2

+ |Δp|2
))

dtdadx+
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∫
Q

e−2sη
(
sλϕ |∇p|2 + s3λ4ϕ3 |p|2

)
dadtdx.

We adapt the proof of the Carleman inequality estab-
lished in [6] for the heat equation .

Proof of the Proposition 2.2
Let η(t, a, x) = e2λ‖Ψ‖−e−λΨ(x)

a(A−a)t(T−t) and ϕ(t, a, x) =
e−λΨ(x)

a(A−a)t(T−t) . We set w = e−sηp and w = e−sηp, then
we have:

∂w

∂t
+
∂w

∂a
= e−sη

(
∂p

∂t
+
∂p

∂a

)
− s

(
∂η

∂t
+
∂η

∂a

)
w (9)

and

∇w = −s∇ηw + e−sη∇p = sλϕw∇Ψ+ e−sη∇p. (10)

Therefore:

Δw = sλ2ϕ |∇Ψ|2 w + sλϕwΔΨ− s2λ2ϕ2 |∇Ψ|2 w+
2sλϕ∇Ψ.∇w + e−sηΔp. (11)

So that, we get:

∂w

∂t
+
∂w

∂a
−Δw + μw = e−sη

(
∂p

∂t
+
∂p

∂a
−Δp− μp

)
−

sλ2ϕ |∇Ψ|2 w−sλϕΔΨw+s2λ2ϕ2 |∇Ψ|2 w−2sλϕ∇Ψ.∇w−

s

(
∂η

∂t
+
∂η

∂a

)
w. (12)

This gives:

∂w

∂t
+
∂w

∂a
−Δw + 2sλ2ϕ |∇Ψ|2 w + 2sλϕ∇Ψ.∇w−

s2λ2ϕ2 |∇Ψ|2 w + s

(
∂η

∂t
+
∂η

∂a

)
w =

e−sηf − sλϕΔΨw + sλ2ϕ |∇Ψ|2 w − μw. (13)

Note that:

∇w = −s∇η w+ e−sη∇p = −sλϕw∇Ψ+ e−sη∇p. (14)
In the same way, as for the variable w one can get:

∂w

∂t
+
∂w

∂a
−Δw + 2sλ2ϕ |∇Ψ|2 w − 2sλϕ∇Ψ.∇w

−s2λ2ϕ2 |∇Ψ|2 w+ s
(
∂η

∂t
+
∂η

∂a

)
w = e−sηf + sλϕΔΨw

+sλ2ϕ |∇Ψ|2 w − μw. (15)

One can rewrite respectively (13) and (15) as:

P1w + P2w = gs (16)

and
P 1w + P 2w = gs (17)

where

P1w =
∂w

∂t
+
∂w

∂a
+2sλϕ∇Ψ.∇w+2sλ2ϕ |∇Ψ|2 w; (18)

P2w = −Δw + s

(
∂η

∂t
+
∂η

∂a

)
w − s2λ2ϕ2 |∇Ψ|2 w; (19)

gs = e−sηf − sλϕΔΨw + sλ2ϕ |∇Ψ|2 w − μw; (20)

P 1w =
∂w

∂t
+
∂w

∂a
−2sλϕ∇Ψ.∇w+2sλ2ϕ |∇Ψ|2 w; (21)

P 2w = −Δw + s

(
∂η

∂t
+
∂η

∂a

)
w − s2λ2ϕ2 |∇Ψ|2 w (22)

and

gs = e−sηf + sλϕΔΨw + sλ2ϕ |∇Ψ|2 w − μw. (23)

Now, let us take the square of (16) and integrate the
result over Q, we get:

∫
Q

|P1w|2 dtdadx+
∫

Q

|P2w|2 dtdadx+2
∫

Q

P1wP2wdtdadx

=
∫

Q

|gs|2 dtdadx. (24)

Integrating the square of (17) over Q yields:∫
Q

∣∣P 1w
∣∣2 dtdadx+∫

Q

∣∣P 2w
∣∣2 dtdadx+2∫

Q

P 1wP 2wdtdadx

=
∫

Q

|gs|2 dtdadx. (25)

Let us compute first,

K =
∫

Q

P1wP2wdtdadx.

Note before this computation, that from the definition
of Ψ one has

∇Ψ(σ) = ∂Ψ
∂ν

(σ)ν(σ), ∀σ ∈ ∂Ω (26)

and using (10); (26) and (7) we get clearly

∂w

∂ν
(t, a, σ) = sλϕ

∂Ψ
∂ν

w (t, aσ) a.e in Σ. (27)

Note also, that from the definition ϕ and η we have:∣∣∣∂η
∂t

∣∣∣ ≤ Cϕ2;
∣∣∣∂η
∂a

∣∣∣ ≤ Cϕ2;
∣∣∣∂2η

∂t2

∣∣∣ ≤ Cϕ3;
∣∣∣∂2η
∂a2

∣∣∣ ≤ Cϕ3;∣∣∣∂2η
∂a2

∣∣∣ ≤ Cϕ3;
and
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∣∣∣∂ϕ
∂t

∣∣∣ ≤ Cϕ2;
∣∣∣∂ϕ

∂a

∣∣∣ ≤ Cϕ2;
∣∣∣∂2ϕ

∂t2

∣∣∣ ≤ Cϕ3;
∣∣∣∂2ϕ

∂a2

∣∣∣ ≤ Cϕ3;∣∣∣∂2ϕ
∂a2

∣∣∣ ≤ Cϕ3.

On the other hand, from the definition of η and w,
we have:

w(0, a, x) = w(T, a, x) = 0 in (0, A)× Ω (28)

and
w(t, 0, x) = w(t, A, x) = 0 in (0, T )× Ω. (29)

We compute now K. This computation gives twelve
terms that we denote by Ii,j for i = 1, 2, 3, 4; j = 1, 2, 3.
The notation Ii,j denotes the product of the term num-
ber i of (18) and the term number j of (19). So that, we
have:

I1,1 = −
∫

Q

∂w

∂t
Δwdtdadx.

An integration by parts over Q with respect to the spatial
variable gives:

I1,1 = −
∫

Σ

∂w

∂t

∂w

∂ν
dtdadσ +

∫
Q

∂∇w
∂t

.∇wdtdadx.

Using (27) we get

I1,1 = −
∫

Σ

∂w

∂t

(
sλϕ

∂Ψ
∂ν

w

)
dtdadσ+

1
2

∫
Q

∂ |∇w|2
∂t

dtdadx.

Using now (28) we obtain after an integration by parts
with respect to the variable t:

I1,1 =
sλ

2

∫
Σ

∂ϕ

∂t

∂Ψ
∂ν
|w|2 dtdadσ. (30)

We have:

I1,2 = s

∫
Q

∂w

∂t

(
∂η

∂t
+
∂η

∂a

)
wdtdadx

=
s

2

∫
Q

∂ |w|2
∂t

(
∂η

∂t
+
∂η

∂a

)
dtdadx.

An integration by parts and (28) yield

I1,2 = −s2
∫

Q

|w|2
(
∂2η

∂t2
+

∂2η

∂a∂t

)
dtdadx. (31)

We have,

I1,3 = −s2λ2

∫
Q

∂w

∂t
ϕ2 |∇Ψ|2 wdtdadx

=
−s2λ2

2

∫
Q

∂ |w|2
∂t

ϕ2 |∇Ψ|2 dtdadx.

The above equality gives:

I1,3 = s2λ2

∫
Q

∂ϕ

∂t
ϕ |∇Ψ|2 |w|2 dtdadx (32)

Similarly one has:

I2,1 =
sλ

2

∫
Σ

∂ϕ

∂a

∂Ψ
∂ν
|w|2 dtdadσ; (33)

I2,2 = −s2
∫

Q

|w|2
(
∂2η

∂a2
+

∂2η

∂a∂t

)
dtdadx (34)

and
I2,3 = s2λ2

∫
Q

∂ϕ

∂a
ϕ |∇Ψ|2 |w|2 dtdadx. (35)

Now, let us compute

I3,1 = −2sλ
∫

Q

ϕ∇Ψ.∇wΔwdtdadx.

Standard calculations, (26) and (27) give:

I3,1 = −2s3λ3

∫
Σ

ϕ3

(
∂Ψ
∂ν

)3

|w|2 dtdadx+2sλ2

∫
Q

ϕ |∇Ψ.∇w|2 dtdadx

+sλ
∫

Σ

ϕ
∂Ψ
∂ν
|∇w|2 dtdadx− sλ

∫
Q

ϕ |∇w|2ΔΨdtdadx+

2sλ
∑
i,j

∫
Q

ϕ
∂2Ψ
∂xi∂xj

∂w

∂xi

∂w

∂xj
dtdadx−sλ2

∫
Q

ϕ |∇Ψ|2 |∇w|2 dtdadx.

(36)
Let us compute now the term I3,2

I3,2 = 2s2λ
∫

Q

ϕ∇Ψ.∇w
(
∂η

∂t
+
∂η

∂a

)
wdtdadx

= s2λ

∫
Q

ϕ∇Ψ.∇
(
|w|2

)(
∂η

∂t
+
∂η

∂a

)
dtdadx

An integration by parts and (26) give

I3,2 = −s2λ2

∫
Q

ϕ |w|2 |∇Ψ|2
(
∂η

∂t
+
∂η

∂a

)
dtdadx+

+s2λ
∫

Σ

ϕ
∂Ψ
∂ν

(
∂η

∂t
+
∂η

∂a

)
|w|2 dtdadx

−s2λ
∫

Q

|w|2 ϕ∇.
(
∇Ψ

(
∂η

∂t
+
∂η

∂a

))
dtdadx. (37)

We have:

I3,3 = −2s3λ3

∫
Q

ϕ3 |∇Ψ|2 w∇Ψ.∇wdtdadx

= −s3λ3

∫
Q

ϕ3 |∇Ψ|2 w∇Ψ.∇
(
|w|2

)
dtdadx.

Then, this gives:

I3,3 = −s3λ3

∫
Σ

ϕ3

(
∂Ψ
∂ν

)3

|w|2 dtdadx
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+3s3λ4

∫
Q

ϕ3 |∇Ψ|4 |w|2 dtdadx

+s3λ3

∫
Q

ϕ3∇.
(
|∇Ψ|2∇Ψ

)
|w|2 dtdadx (38)

where ∇.
(
|∇Ψ|2Ψ

)
=

∑
i

∂
∂xi

(
|∇Ψ|2∇Ψ

)
.

We want now to compute the three last terms I4,j :

I4,1 = −2sλ2

∫
Q

ϕw |∇Ψ|2Δwdtdadx

= −2sλ2

∫
Σ

ϕw |∇Ψ|2 ∂w
∂ν

dtdadσ

+2sλ2

∫
Q

∇
(
ϕ |∇Ψ|2 w

)
∇wdtdadx.

Therefore, one gets:

I4,1 = −2s2λ3

∫
Q

ϕ2

(
∂Ψ
∂ν

)3

|w|2 dtdadx

+2sλ3

∫
Q

ϕ |∇Ψ|2 w∇Ψ.∇wdtdadx+

2sλ2

∫
Q

ϕw∇
(
|∇Ψ|2

)
∇wdtdadx

+2sλ2

∫
Q

ϕ |∇Ψ|2 |∇w|2 dtdadx. (39)

We get directly

I4,2 = 2s2λ2

∫
Q

ϕ |∇Ψ|2
(
∂η

∂t
+
∂η

∂a

)
|w|2 dtdadx. (40)

I4,3 = −2s3λ4

∫
Q

ϕ |∇Ψ|4 |w|2 dtdadx. (41)

Finally we obtain:

2K = sλ

∫
Σ

(
∂ϕ

∂t
+
∂ϕ

∂t

)
∂Ψ
∂ν
|w|2 dtdadσ

−6s3λ3

∫
Σ

ϕ3

(
∂Ψ
∂ν

)3

|w|2 dtdadσ+

2sλ
∫

Σ

ϕ
∂Ψ
∂ν
|∇w|2 dtdadσ

+2s2λ
∫

Σ

ϕ
∂Ψ
∂ν

(
∂η

∂t
+
∂η

∂a

)
|w|2 dtdadσ

−4s2λ3

∫
Σ

ϕ2

(
∂Ψ
∂ν

)3

|w|2 dtdadσ

−s
∫

Q

|w|2
(
∂2η

∂t2
+ 2

∂2η

∂a∂t
+
∂2η

∂a2

)
dtdadx

+2s2λ2

∫
Q

(
∂ϕ

∂t
+
∂ϕ

∂a

)
ϕ |∇Ψ|2 |w|2 dtdadx+

4sλ2

∫
Q

ϕ |∇Ψ.∇w|2 dtdadx− 2sλ
∫

Q

ϕ |∇w|2ΔΨdtdadx

+4sλ
∑
i,j

∫
Q

ϕ
∂2Ψ
∂xi∂xj

∂w

∂xi

∂w

∂xj
dtdadx

−2s2λ2

∫
Q

ϕ |w|2 |∇Ψ|2
(
∂η

∂t
+
∂η

∂a

)
dtdadx

−2s2λ
∫

Q

|w|2 ϕ∇.
(
∇Ψ

(
∂η

∂t
+
∂η

∂a

))
dtdadx+

2s3λ4

∫
Q

ϕ3 |∇Ψ|4 |w|2 dtdadx

+2s3λ3

∫
Q

ϕ3∇.
(
|∇Ψ|2∇Ψ

)
|w|2 dtdadx

−2s2λ3

∫
Σ

ϕ2

(
∂Ψ
∂ν

)3

|w|2 dtdadx+4sλ3

∫
Q

ϕ |∇Ψ|2 w∇Ψ.∇wdtdadx

+4sλ2

∫
Q

ϕw∇
(
|∇Ψ|2

)
∇wdtdadx

+2sλ2

∫
Q

ϕ |∇Ψ|2 |∇w|2 dtdadx

+4s2λ2

∫
Q

ϕ |∇Ψ|2
(
∂η

∂t
+
∂η

∂a

)
|w|2 dtdadx. (42)

In the same way, recalling that

∂w

∂ν
= −sλ∂Ψ

∂ν
w (σ) a.e in Σ, (43)

we can compute

K =
∫

Q

P 1wP 2wdtdadx

to get also twelve terms Ii,j . Finally, one obtains:

2K = −sλ
∫

Σ

(
∂ϕ

∂t
+
∂ϕ

∂t

)
∂Ψ
∂ν
|w|2 dtdadσ

+6s3λ3

∫
Σ

ϕ3

(
∂Ψ
∂ν

)3

|w|2 dtdadσ

−2sλ
∫

Σ

ϕ
∂Ψ
∂ν
|∇w|2 dtdadσ

−2s2λ
∫

Σ

ϕ
∂Ψ
∂ν

(
∂η

∂t
+
∂η

∂a

)
|w|2 dtdadσ

+4s2λ3

∫
Σ

ϕ2

(
∂Ψ
∂ν

)3

|w|2 dtdadσ

−s
∫

Q

|w|2
(
∂2η

∂t2
+ 2

∂2η

∂a∂t
+
∂2η

∂a2

)
dtdadx

+2s2λ2

∫
Q

(
∂ϕ

∂t
+
∂ϕ

∂a

)
ϕ |∇Ψ|2 |w|2 dtdadx

+4sλ2

∫
Q

ϕ |∇Ψ.∇w|2 dtdadx
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+2sλ
∫

Q

ϕ |∇w|2ΔΨdtdadx

−4sλ
∑
i,j

∫
Q

ϕ
∂2Ψ
∂xi∂xj

∂w

∂xi

∂w

∂xj
dtdadx

−2s2λ2

∫
Q

ϕ |w|2 |∇Ψ|2
(
∂η

∂t
+
∂η

∂a

)
dtdadx

+2s2λ
∫

Q

|w|2 ϕ∇.
(
∇Ψ∂η

∂t
+
∂η

∂a

)
dtdadx+

2s3λ4

∫
Q

ϕ3 |∇Ψ|4 |w|2 dtdadx

−2s3λ3

∫
Q

ϕ3∇.
(
|∇Ψ|2∇Ψ

)
|w|2 dtdadx−

4sλ3

∫
Q

ϕ |∇Ψ|2 w∇Ψ.∇wdtdadx

+4sλ2

∫
Q

ϕ w∇
(
|∇Ψ|2

)
∇wdtdadx

+2sλ2

∫
Q

ϕ |∇Ψ|2 |∇w|2 dtdadx

+4s2λ2

∫
Q

ϕ |∇Ψ|2
(
∂η

∂t
+
∂η

∂a

)
|w|2 dtdadx. (44)

Note that
ϕ(t, a, σ) = ϕ(t, a, σ) on Σ

and
η(t, a, σ) = η(t, a, σ) on Σ.

So that,
w(t, a, σ) = w(t, a, σ) on Σ.

Using these last identities and adding (42) and (44) one
gets:

2K + 2K = A+B +D

+2sλ2

∫
Q

(
ϕ |∇w.∇Ψ|2 + ϕ |∇w.∇Ψ|2

)
dtdadx

+2sλ2

∫
Q

ϕ |∇Ψ|2 |∇w|2 dtdadx

+2sλ2

∫
Q

ϕ |∇Ψ|2 |∇w|2 dtdadx+

2s3λ4

∫
Q

ϕ3 |∇Ψ|4 |w|2 dtdadx

+2sλ2

∫
Q

ϕ3 |∇Ψ|4 |w|2 dtdadx (45)

where

A = 4sλ
∑
i,j

∫
Q

ϕ
∂2Ψ
∂xi∂xj

∂w

∂xi

∂w

∂xj
dtdadx

+2sλ
∫

Q

ϕΔΨ |∇w|2 dtdadx

−4sλ
∑
i,j

∫
Q

ϕ
∂2Ψ
∂xi∂xj

∂w

∂xi

∂w

∂xj
dtdadx

−2sλ
∫

Q

ϕΔΨ |∇w|2 dtdadx

B = −s
∫

Q

|w|2
(
∂2η

∂t2
+ 2

∂2η

∂a∂t
+
∂2η

∂a2

)
dtdadx

+2s2λ2

∫
Q

(
∂ϕ

∂t
+
∂ϕ

∂a

)
ϕ |∇Ψ|2 |w|2 dtdadx

−2s2λ
∫

Q

|w|2 ϕ∇.
(
∇Ψ

(
∂η

∂t
+
∂η

∂a

))
dtdadx

+2s3λ3

∫
Q

ϕ3∇.
(
|∇Ψ|2∇Ψ

)
|w|2 dtdadx

−s
∫

Q

|w|2
(
∂2η

∂t2
+ 2

∂2η

∂a∂t
+
∂2η

∂a2

)
dtdadx

+2s2λ2

∫
Q

(
∂ϕ

∂t
+
∂ϕ

∂a

)
ϕ |∇Ψ|2 |w|2 dtdadx

−2s2λ
∫

Q

|w|2 ϕ∇.
(
∇Ψ∂η

∂t
+
∂η

∂a

)
dtdadx

−2s3λ3

∫
Q

ϕ3∇.
(
|∇Ψ|2∇Ψ

)
|w|2 dtdadx

and
D = 4sλ3

∫
Q

ϕ |∇Ψ|2 w∇Ψ.∇wdtdadx

+4sλ2

∫
Q

ϕw∇
(
|∇Ψ|2

)
∇wdtdadx

−4sλ3

∫
Q

ϕ |∇Ψ|2 w∇Ψ.∇wdtdadx

+4sλ2

∫
Q

ϕw∇
(
|∇Ψ|2

)
∇wdtdadx

Classical algebra show that:

|A| ≤ C
(
sλ+ λ2

) ∫
Q

(
ϕ |∇w|2 + ϕ |∇w|2

)
dtdadx;

|B| ≤ C
(
s3λ3 + s2λ4

) ∫
Q

(
ϕ3 |w|2 + ϕ3 |w|2

)
dtdadx

and

|D| ≤ C
(
sλ+ λ2

) ∫
Q

(
ϕ |∇w|2 + ϕ |∇w|2

)
dtdadx+

C
(
s3λ3 + s2λ4

) ∫
Q

(
ϕ3 |w|2 + ϕ3 |w|2

)
dtdadx.

Note also that Ψ ∈ C2
(
Ω
)
and |∇Ψ| �= 0 in Ω− ω0.

Therefore, there exists δ such that |∇Ψ| ≥ δ in Ω− ω0.
Next, (45) gives:

2K + 2K + 2sλ2δ2
∫

q0

(
ϕ |∇w|2 + ϕ |∇w|2

)
dtdadx
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+2s3λ4δ4
∫

q0

(
ϕ3 |w|2 + ϕ3 |w|2

)
dtdadx

≥ A+B +D + 2sλ2δ2
∫

Q

(
ϕ |∇w|2 + ϕ |∇w|2

)
dtdadx

+2s3λ4δ4
∫

Q

(
ϕ3 |w|2 + ϕ3 |w|2

)
dtdadx (46)

where q0 = (0, A)× (0, T )× ω0.
Furthermore,∫

Q

(
g2

s + g2
s

)
dtdadx ≤

∫
Q

(
e−2sη + e−2sη

)
f2dtdadx

+C
(
sλ+ λ2

) ∫
Q

(
ϕ |∇w|2 + ϕ |∇w|2

)
dtdadx+

C
(
s3λ3 + s2λ4

) ∫
Q

(
ϕ3 |w|2 + ϕ3 |w|2

)
dtdadx. (47)

Adding (24) and (25) we get, taking account of (47) and
(46) that

∫
Q

(
|P1w|2 + |P2w|2 +

∣∣P 1w
∣∣2 + ∣∣P 2w

∣∣2) dtdadx
+2sλ2δ2

∫
Q

(
ϕ |∇w|2 + ϕ |∇w|2

)
dtdadx

+2s3λ4δ4
∫

Q

(
ϕ3 |w|2 + ϕ3 |w|2

)
dtdadx

≤
∫

Q

(
e−2sη + e−2sη

)
f2dtdadx

+C
(
sλ+ λ2

) ∫
Q

(
ϕ |∇w|2 + ϕ |∇w|2

)
dtdadx

+C
(
s3λ3 + s2λ4

) ∫
Q

(
ϕ3 |w|2 + ϕ3 |w|2

)
dtdadx

2sλ2δ2
∫

q0

(
ϕ |∇w|2 + ϕ |∇w|2

)
dtdadx

+2s3λ4δ4
∫

q0

(
ϕ3 |w|2 + ϕ3 |w|2

)
dtdadx. (48)

Let us choose s and λ large enough such that:

sλ2δ2
∫

Q

(
ϕ |∇w|2 + ϕ |∇w|2

)
dtdadx

+s3λ4δ4
∫

Q

(
ϕ3 |w|2 + ϕ3 |w|2

)
dtdadx

≥ C
(
sλ+ λ2

) ∫
Q

(
ϕ |∇w|2 + ϕ |∇w|2

)
dtdadx

+C
(
s3λ3 + s2λ4

) ∫
Q

(
ϕ3 |w|2 + ϕ3 |w|2

)
dtdadx.

Therefore, there exist s1 > 1 and λ1 > 1 such that for
s > s1 and λ1 > λ1, (48) gives∫

Q

(
|P1w|2 + |P2w|2 +

∣∣P 1w
∣∣2 + ∣∣P 2w

∣∣2) dtdadx
+sλ2δ2

∫
Q

(
ϕ |∇w|2 + ϕ |∇w|2

)
dtdadx

+s3λ4δ4
∫

Q

(
ϕ3 |w|2 + ϕ3 |w|2

)
dtdadx

≤
∫

Q

(
e−2sη + e−2sη

)
f2dtdadx

+2sλ2δ2
∫

q0

(
ϕ |∇w|2 + ϕ |∇w|2

)
dtdadx

+2s3λ4δ4
∫

q0

(
ϕ3 |w|2 + ϕ3 |w|2

)
dtdadx. (49)

We want now to eliminate the term
2sλ2δ2

∫
q0

(
ϕ |∇w|2 + ϕ |∇w|2

)
dtdadx.

For this aim, we introduce a cut-off function α such that:
α ∈ C∞0 (ω); 0 ≤ α ≤ 1; and α = 1 on ω0.
Multiplying P2w by ϕα2w and integrating the result over
Q give:∫

Q

ϕα2wP2wdtdadx = −s
∫

Q

(
∂η

∂t
+
∂η

∂a

)
w2ϕα2dtdadx

−
∫

Q

wΔwϕα2dtdadx− s2λ2

∫
Q

w2ϕ3α2 |Ψ|2 dtdadx.
(50)

Note that:∫
Q

wΔwϕα2dtdadx = −
∫

Q

|∇w|2 ϕα2dtdadx

−λ
∫

Q

w∇w.∇Ψϕα2dtdadx− 2
∫

Q

w∇w.∇αϕαdtdadx.
(51)

Therefore,∫
Q

ϕα2wP2wdtdadx = −s
∫

Q

(
∂η

∂t
+
∂η

∂a

)
w2ϕα2dtdadx

+
∫

Q

|∇w|2 ϕα2dtdadx− s2λ2

∫
Q

w2ϕ3α2 |Ψ|2 dtdadx

+λ
∫

Q

w∇w.∇Ψϕα2dtdadx+ 2
∫

Q

w∇w.∇αϕαdtdadx.
(52)

This gives:∫
Q

|∇w|2 ϕα2dtdadx =
∫

Q

ϕα2wP2wdtdadx

+s2λ2

∫
Q

w2ϕ3α2 |Ψ|2 dtdadx
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s

∫
Q

(
∂η

∂t
+
∂η

∂a

)
w2ϕα2dtdadx

−λ
∫

Q

w∇w.∇Ψϕα2dtdadx− 2
∫

Q

w∇w.∇αϕαdtdadx.
(53)

Note that:

−λ
∫

Q

w∇w.∇Ψϕα2dtdadx ≤ Cλ2

∫
Q

|w|2 ϕα2dtdadx

+
1
2

∫
Q

|∇w|2 ϕα2dtdadx

where C is a positive constant. As ϕ ≤ Cϕ3 with C a
positive constant, using now the properties of α and Ψ
we deduce:∫

q0

|∇w|2 ϕα2dtdadx ≤ C

∫
Q

ϕα2wP2wdtdadx

+Cs2λ2

∫
Q

w2ϕ3α2dtdadx

+C
∫

Q

wϕ1/2 |∇w|ϕ1/2αdtdadx. (54)

From (54) we deduce that:

2sλ2δ2
∫

q0

|∇w|2 ϕdtdadx ≤ 1
2

∫
Q

|P2w|2 dtdadx

+Cs3λ4

∫
q

w2ϕ3dtdadx (55)

where C is a positive constant.
Analogous calculations yield

2sλ2δ2
∫

q0

|∇w|2 ϕdtdadx ≤ 1
2

∫
Q

|P2w|2 dtdadx

+Cs3λ4

∫
q

w2ϕ3dtdadx. (56)

Combining (49),(55) and (56) one gets:

∫
Q

(
|P1w|2 + |P2w|2 +

∣∣P 1w
∣∣2 + ∣∣P 2w

∣∣2) dtdadx
+sλ2δ2

∫
Q

(
ϕ |∇w|2 + ϕ |∇w|2

)
dtdadx

+s3λ4δ4
∫

Q

(
ϕ3 |w|2 + ϕ3 |w|2

)
dtdadx

≤
∫

Q

(
e−2sη + e−2sη

)
f2dtdadx+

Cs3λ4δ4
∫

q0

(
ϕ3 |w|2 + ϕ3 |w|2

)
dtdadx.

This gives, as ϕ ≤ ϕ and e−2sη ≤ e−2sη:∫
Q

(
|P1w|2 + |P2w|2

)
dtdadx+ sλ2δ2

∫
Q

ϕ |∇w|2 dtdadx

+s3λ4δ4
∫

Q

ϕ3 |w|2 dtdadx

≤ C

∫
Q

e−2sηf2dtdadx+ Cs3λ4δ4
∫

q

ϕ3 |w|2 dtdadx.
(57)

Note that w = e−sηp, so, we get from (57)

s3λ4

∫
Q

ϕ3e−2sη |p|2 dtdadx ≤ C

∫
Q

e−2sηf2dtdadx+

(58)

Cs3λ4

∫
q

ϕ3e−2sη |p|2 dtdadx.

Recalling (10) and inequality ϕ ≤ Cϕ2 one derives:

sλ2e−2sη |∇p|2 ≤ C
(
sλ2 |∇w|2 + s2λ2ϕ3 |w|2

)
.

Therefore, (57) and the inequality above yield:

sλ2

∫
Q

ϕe−2sη |∇p|2 dtdadx

≤ C

∫
Q

e−2sηf2dtdadx

+Cs3λ4

∫
q

ϕ3e−2sη |p|2 dtdadx.

Using the definition of P1w we see that:

1
sϕ

∣∣∣∣∂w∂t + ∂w

∂a

∣∣∣∣
2

≤ C

(
1
sϕ
|P1w|2 + sλ4ϕ |w|2 + sλ2ϕ |∇w|2

)
.

(60)
Moreover, we have from (9):

e−sη

(
∂p

∂t
+
∂p

∂a

)
=
∂w

∂t
+
∂w

∂a
+ s

(
∂η

∂t
+
∂η

∂a

)
w.

This gives

e−2sη

∣∣∣∣∂p∂t + ∂p

∂a

∣∣∣∣
2

≤ C

(∣∣∣∣∂w∂t + ∂w

∂a

∣∣∣∣
2

+ s2 |w|2
)
. (61)

Now, (57); (60) and (61) gives:

∫
Q

e−2sη

sϕ

∣∣∣∣∂p∂t + ∂p

∂a

∣∣∣∣
2

dtdadx ≤ C

∫
Q

e−2sηf2dtdadx
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+Cs3λ4

∫
q

ϕ3e−2sη |p|2 dtdadx. (62)

We use now the definition of P2w and the fact that∣∣∣∂η
∂t +

∂η
∂a

∣∣∣2 ≤ Cϕ4 to find that on the one hand

1
sϕ
|Δw|2 ≤ C

(
1
sϕ
|P2w|+ s3λ4ϕ3 |w|2

)
.

On the other hand we have from (11):

e−sη |Δp|2 ≤ C
(
|Δw|2 + s2λ2ϕ2 |∇w|2 + s3λ4ϕ4 |w|2

)
.

The two last inequalities together with (57) give:∫
Q

e−2sη

sϕ
|Δp|2 dtdadx ≤ C

∫
Q

e−2sηf2dtdadx

+Cs3λ4

∫
q

ϕ3e−2sη |p|2 dtdadx. (63)

Finally adding (58), (59) (62) (63) one gets (8).

Our goal now, is to derive from the Proposition 2.2 the
following result.

Corollary 2.3 Suppose that f = 0. Let p be a function
that verifies (6-7) and

p(t, a, σ) = 0 for (t, a, σ) ∈ Σ0 (64)

then
p(t, a, x) = 0 a.e in Q. (65)

Proof of Corollary 2.3
We suppose that f = 0. Let σ0 ∈ Γ0 and r > 0 such that
the ball B(σ0, 2r) verifies
B(σ0, 2r) ∩ ∂Ω ⊂ Γ0. Set Ω̂ = Ω ∪ B(σ0, 2r) and

p̂(t, a, x) =
{

p(t, a, x) (t, a, x) ∈ (0, T )× (0, A)× Ω
0 (t, a, x) ∈ (0, T )× (0, A)× B(σ0, 2r)

Then standard device gives that p̂ verifies:

∂p̂

∂t
+
∂p̂

∂a
−Δp̂+ μp̂ = 0 in (0, T )× (0, A)× Ω̂ (66)

and
∂p̂

∂ν
= 0 on (0, T )× (0, A)× ∂Ω̂. (67)

Let σ1 ∈ Ω̂ − Ω. There exists r0 such that B(σ1, r0) ⊂
B(σ0, 2r).
As p̂(t, a, x) = 0 a.e in (0, T ) × (0, A) × B(σ1, r0) then,
the Proposition 2.1 with ω = B(σ1, r0) implies that
p̂(t, a, x) = 0 in (0, T )× (0, A)× Ω̂. Therefore, p ≡ 0.

Remark 2.4 One can prove easily theorem 2.1 us-
ing a version of the Hahn Banach theorem like in [1].
More precisely, let g0 be a vector of the orthogonal set of

R0 =
{
z(0, ., .), z solves (5); v ∈ L2 (Σ)

}
. Let us mul-

tiply (5) by p(g0) solution of (68) below with p0 = g0.
Integrating the result over Q gives∫

QA

g0(a, x)z(0, a, x)dadx =
∫

Σ0

v(t, a, σ)p(t, a, σ)dtdadx.

Therefore, as∫
QA

g0(a, x)z(0, a, x)dadx = 0,

one obtains:∫
Σ0

v(t, a, σ)p(t, a, σ)dtdadx = 0,

for all v ∈ L2 ((0, T )× (0, A)× ∂Ω).
This gives via the Corollary 2.3 that p ≡ 0. So, it
follows that g0 = 0. Therefore, the Hahn Banach theorem
yields that R0 is dense in L2 ((0, T )× (0, A)× Ω).

We prefer the proof below, since it is very usefull in prac-
tice.

Proof of theorem 2.1 Let g ∈ L2 ((0, A)× Ω) and ε >
0. We have to prove that there exists a control ṽ such that
the associated solution z̃ of (5) verifies ‖z̃(0, ., .)− g‖ ≤ ε.
If ‖g‖ ≤ ε one can take ṽ = 0 to get that z̃ = 0.
Therefore, it follows that

‖z(0, ., )− g‖ = ‖g‖ ≤ ε.

Suppose now that ‖g‖ > ε. For a given p0 ∈
L2 ((0, A)× Ω), we consider the following system

⎧⎪⎪⎨
⎪⎪⎩

∂p
∂t +

∂p
∂a −Δp+ μp = 0 in (0, T )× (0, A)× Ω

∂p
∂ν (t, a, σ) = 0 on (0, T )× (0, A)× ∂Ω
p(0, a, x) = p0(a, x) in (0, A)× Ω
p(t, 0, x) =

∫ A

0
βpda in (0, T )× Ω

(68)
we take v = p|Σ and consider the new controlled system:

⎧⎪⎪⎨
⎪⎪⎩
−∂z

∂t − ∂z
∂a −Δz + μ0p = βz (t, 0, x) in (0, T )× (0, A)× Ω

∂z
∂ν (t, a, σ) = p(t, a, σ)1Σ0(σ) on (0, T )× (0, A)× ∂Ω

z(T, a, x) = 0 in (0, A)× Ω
z(t, A, x) = 0 in (0, T )× Ω

.

(69)
We recall that the solution of (69) is taken in the following
sense: z ∈ L2((0, T )×(0, A);H1(Ω)) and ∀θ ∈ L2((0, T )×
(0, A);H1(Ω)) we have

−
∫ A

0

∫ T

0

〈
∂z

∂t
+
∂z

∂a
, θ

〉
(H1)′,H1

dtda+
∫

Q

(∇z.∇θ + μzθ) dtdadx

−
∫

Σ0

pθdtdadσ =
∫

Q

βz(t, 0, x)θdtdadx
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and {
z(T, a, x) = 0 in (0, A)× Ω
z(t, A, x) = 0 in (0, T )× Ω .

One can use the method of [14] to prove that (69) admits
a unique solution.

Let us denote by p(p0) and z(p) respectively, the solutions
of (68) and (69). We consider now the functional

Jg(p0) =
1
2

∫
Σ0

p2dadtdx+ ε
∥∥p0

∥∥
L2(QA)

−
∫

QA

gp0dadx.

(70)
Note that, the function p0 �→ p is continuous from
L2 (QA) into L2

(
(0, T )× (0, A);H1(Ω)

)
. So that, the

function p0 �→ p|Σ0 is continuous from L2 (QA) into
L2 (Σ). Therefore, Jg is continuous. In addition, the
functional Jg is trivially convex. Moreover, Jg is coer-
cive. More precisely, we have:

lim inf
‖p0‖L2(QA)→+∞

J(p0)
‖p0‖L2(QA)

≥ ε. (71)

The proof of (71) follows what was proposed in [5] for
the heat equation. Let us consider the sequence p0

n in
L2 ((0, A)× Ω) such that

∥∥p0
n

∥∥
L2(QA)

→∞ as n→∞.

We note p̂0
n =

p0
n

‖p0
n‖L2(QA)

and p̂ the associated solution of

(68).
Then:

Jg(p0
n)

‖p0
n‖L2(QA)

=

∥∥p0
n

∥∥
L2(QA)

2

∫
Σ0

p̂2
ndadtdσ+ε−

∫
QA

gp̂0
ndadx.

(72)
Using the fact that∫

Σ0

p̂2
ndtdadσ ≥ 0, (73)

we obtain

lim inf
n→∞

∫
Σ0

p̂2
ndtdadσ > 0 or lim inf

n→∞

∫
Σ0

p̂2
ndtdadσ = 0.

(74)
In the first case, we get obviously

lim inf
n→∞

J(p0
n)

‖p0
n‖L2(QA)

= +∞. (75)

This gives obviously (71).
In the secund case, we extract a subsequence still denoted
p̂0

n such that∫
Σ0

p̂2
ndtdadσ → 0 as n→ +∞,

p̂0
n ⇀ p̂0 weakly in L2 (0, A)× Ω)

and

p̂n ⇀ p̂ = p(p̂0)weakly in L2 ((0, T )× (0, A)× Ω) .

Therefore, we get that p̂ = p(p̂0) verifies

p̂|Σ0 = 0 a.e Σ0.

Using now Corollary 2.3 we obtain that

p̂ = 0 a.e in Q.

This gives p̂0 = 0 a.e in QA. Then, equality (72) yields
(71).

Recalling that Jg is continuous, convex and coercive, it
follows that it admits a minimizer denoted p̃0. More
precisely, there exists p̃0 ∈ L2 ((0, A)× Ω) such that
Jg

(
p̃0)

)
= minp0∈L2(QA) Jg

(
p0

)
Using the fact that Jg(0) = 0 and ‖g‖ < ε, we infer that
there exists p0 ∈ L2 ((0, A)× Ω) such that Jg(p0) < 0.
This implies that p̃0 �= 0.

Next, for p0 ∈ L2 ((0, A)× Ω) setting p = p(p0) and p̃ =
p(p̃0) one has:

lim
τ→0

Jg

(
p̃0 + τp0

)− Jg

(
p̃0

)
τ

=
∫

Σ0

pp̃dtdadσ+
ε

‖p̃0‖
∫

QA

p̃0p0dadx

−
∫

QA

gp0dadx = 0.

This gives,∫
Σ0

pp̃dtdadσ = − ε

‖p̃0‖
∫

QA

p̃0p0dadx+
∫

QA

gp0dadx.

(76)
Let us multiply now equation (69) with p̃ instead of p by
p = p(p0). An integration by parts of the result over Q
yields:∫

QA

z̃(0, a, x)p0 (a, x) dadx−
∫

Σ0

pp̃dtdaσ = 0. (77)

This equality and (76) yield for all p0

∫
QA

(
z̃(0, a, x)− g (a, x) + ε

‖p̃0‖ p̃
0 (a, x)

)
p0dadx = 0

(78)
Therefore, we get:

z̃(0, a, x)− g (a, x) = ε

‖p̃0‖ p̃
0 a.e in (0, A)× Ω. (79)

Consequently:
‖z̃(0, ., .)− g‖ ≤ ε. (80)
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3 The method for recovering the initial
distribution

Let us consider the function ŷ solution of system (1-4).
In order to work with bounded coefficients we make the
following change of variables : y = π(a)ŷ; β = π−1(a)β̂;
y0 = π(a)ŷ0.
As ŷ0 is unknown, y0 is also unknown, but y solves the
system:⎧⎪⎪⎨

⎪⎪⎩
∂y
∂t +

∂y
∂a −Δy + μp = 0 in (0, T )× (0, A)× Ω

∂y
∂ν (t, a, σ) = 0 on (0, T )× (0, A)× ∂Ω
y(0, a, x) = y0(a, x) in (0, A)× Ω
y(t, 0, x) =

∫ A

0
βyda in (0, T )× Ω

(81)
Let ε > 0 be small enough and consider N > 1, an inte-
ger. Let (gk) be a orthonormal basis of L2 ((0, A)× Ω).
We set y0,N =

∑N
j=1 θkgk with θk =∫

QA
y0(a, x)gk(a, x)dadx. Clearly y0,N converges

strongly to y0.
For all k > 0, there exists a function p̃0

k ∈ L2(QA) and
consequently vk such that the associated solution zk of
(5) verifies:

zk(0, a, x) = gk(a, x) +
ε

N
∥∥∥p̃0

k

∥∥∥ p̃
0
k(a, x)

Let

θ̂k =
∫

Σ0

y|Σ0vkdtdadσ and ŷ0,N,ε =
N∑

j=1

θ̂kgk.

As one can compute θ̂k then we may consider ŷ0,N,ε as a
known datum . Then the main result is:

Theorem 3.1 Assume that assumptions A1−A4 are ful-
filled. Then we have:
(i) the following estimate:

‖ŷ0,N,ε − y0,N‖ ≤ ε ‖y0‖ (82)

(ii) ŷ0,N,ε converges strongly to y0,N in L2 ((0, A)× Ω)
as ε tends to 0.

(iii) Let yi be the solution of (81) associated to the
initial distribution yi

0, i = 1, 2. Then, y1
|Σ0

≤ y2
|Σ0

a.e on
Σ0 ⇒ y1

0 ≤ y2
0 a.e in Q

Remark 3.2 Proposition iii) seems to be natural. It
means that the greater the value on Σ0, the higher the
initial distribution. We note that one cannot derive the
above property by the use of the traditional Tykonov reg-
ularisation method. In fact, our method can give some
properties of the unknown datum.

Proof of Theorem 3.1 (i) For all k, multiplying (5) by
zk associated solution of (69) to vk, integrating the result
by parts over Q and using the definition of θ̂k lead to

θ̂k =
∫

QA

y0(a, x)zk(0, a, x)dadx.

Therefore,

θ̂k =
∫

QA

gk(a, x)y0(a, x)dadx

+
ε

N
∥∥∥p̃0

k

∥∥∥
∫

QA

p̃0
k(a, x)y0(a, x)dadx (83)

Consequently

θ̂k − θk =
ε

N
∥∥∥p̃0

k

∥∥∥
∫

QA

p̃0
k(a, x)y0(a, x)dadx. (84)

This implies that:

∣∣∣θ̂k − θk

∣∣∣ ≤ ‖y0‖ ε

N
. (85)

On the other hand we have:

ŷ0,N,ε − y0,N =
N∑

k=1

(
θ̂k − θk

)
gk.

Owing to (85) we get:

‖ŷ0,N,ε − y0,N‖ ≤ ε ‖y0‖ . (86)

Let us prove ii).
As ε is independent of ‖y0‖ the second proposition follows
easily.

We now perform the proof of (iii).
Using the fact that y1

|Σ0
≤ y2

|Σ0
a.e on Σ0, setting θ̂

j
k =∫

Σ0
yj
|Σ0

vkdtdadσ it follows that:∣∣∣θ̂1k∣∣∣ ≤ ∣∣∣θ̂2k∣∣∣ .
Therefore, we derive that∥∥ŷ1

0,N,ε

∥∥ ≤ ∥∥ŷ2
0,N,ε

∥∥ . (86)

Using (ii) we get now that:∥∥y1
0,N

∥∥ ≤ ∥∥y2
0,N

∥∥ .
As yj

0,N converges strongly to yj
0 in L2 (Q) the last in-

equality implies ∥∥y1
0

∥∥ ≤ ∥∥y2
0

∥∥ .
Now, since yj

0 is non negative we infer that: y
1
0 ≤ y2

0 a.e
in QA. This achieves the proof.
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4 Concluding Remark

In this paper, we have studied first, an approximate con-
trollability problem by means a new Carleman inequality.
Afterwards, our goal was to show, how one can use this
approximate controllability result in the study of an in-
verse problem. The method outlined in this paper, gives
in fact an approximation of the unknown datum, y0. This
approximation is somewhat incomplete in order, it be-
comes more precise when ‖y0‖ is known.
The traditional way, that consists to minimize the func-
tional
J(z) = 1

2

∫
Σ0
|yz − yobs|2 dtdadσ + α

∫
QA

z2(a, x)dadx
where, yz is the solution of (1-4) with z instead of y0
and yobs the observed value, gives in fact the function
that is close to y0 and moreover, minimizes the cost:
α
∫

QA
z2(a, x)dadx. Therefore, this traditional method

is not better than ours in term of precision.
Nevertheless, in practice, our method is not trivial, since
it requires the minimization of many functionals. We
are planning to check numerically our method and to do
a comparative study with the traditional method else-
where.
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