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Abstract—The repeated homogeneous balance
method is used to construct new exact traveling
wave solutions of the (3+1) dimensional Kadomtsev-
Petviashvili (KP) equation, in which the homoge-
neous balance method is applied to solve the Riccati
equation and the reduced nonlinear ordinary differ-
ential equation, respectively. Many new exact trav-
eling wave solutions are successfully obtained. This
method is straightforward and concise, and it can be
also applied to other nonlinear evolution equations.

The investigation of the exact traveling wave solutions
of nonlinear evolutions equations plays an important
role in the study of nonlinear physical phenomena.
For example, the wave phenomena observed in fluid
dynamics, elastic media, optical fibers, etc.

In recent years Wong et al. presented a useful homo-
geneous balance (HB) method [1-3] for finding exact
solutions of a given nonlinear partial differential equa-
tions. Fan [4]used HB method to search for Backlund
transformation and similarity reduction of nonlinear
partial differential equations. Also, he showed that
there is a close connection among the HB method,
Wiess, Tabor, Carnevale(WTC)method and Clark-
son, Kruskal(CK)method.

In this paper, we use the HB method to solve the
Riccati equation φ′ = αφ2 + β and the reduced nonlin-
ear ordinary differential equation for the (3+1) KP
equation, respectively. It makes the HB method use
more extensively.

For the (3+1) KP equation [5-7]

(ut + 6uux + uxxx)x − 3uyy − 3uzz = 0, (1)

Let us consider the traveling wave solutions

u(x, y, t) = u(ζ), ζ = kx + ly + mz + nt + d, (2)

where k, l, m, n and d are constants.

Substituting (2) into (1), then (1)is reduced to the
following nonlinear ordinary differential equation

k4u′′′′ + (3(m2 − l2) + kn)u′′ + 6k2(uu′)′ = 0. (3)

∗Mathematics Department, Faculty of Science, South Val-
ley University, Qena, Egypt, Tel: 0020965218208 Email:
mm−kalf@yahoo.com

We now seek the solutions of Eq.(3) in the form

u =

m∑
i=0

qiφ
i, (4)

where qiare constants to be determined later and φ
satisfy the Riccati equation

φ′ = αφ2 + β, (5)

where α, β are constants. It is easy to show that m = 2
if Balancing u′′ with uu′. Therefore use the ansatz

u = q0 + q1φ + q2φ
2, (6)

Substituting Eq.(5),and(6) into Eq.(3),and equating
the coefficients of like powers of φi(i = 0, 1, 2, 3, 4, 5, 6)
to zero yields the system of algebraic equations to
q0, q1, q2, k, l, m and n

16k4αq2β
3 +2(3k2q2

1 − 3l2q2− 3m2q2 +kn2 +6k2q0q2)β
2 = 0,

4(9q2 + 4k2α2)k2q1β
2 − 2(3(l2 + m2)− kn− 6k2q0)q1αβ = 0,

4(9q2 + 34k2α2)k2q2β
2 + 8γαβ = 0,

4(27q2 +10k2α2)k2q1αβ−2(3(l2 +m2)−kn−6k2q0)q1α
2 = 0,

48(2q2 + 5k2α2)k2q2αβ + 6γα2 = 0,

24(3q2 + k2α2)k2q1α
2 = 0,

60(q2 + 2k2α2)k2q2α
2 = 0, (7)

where γ = 3k2q2
1−3l2q2−3m2q2+knq2+6k2q0q2. for which,

with the aid of ”Mathematica”, we get the following
solution

q0 =
3(l2 + m2)− k(n + 8k3αβ)

6k2
, q1 = 0, q2 = −2k2α2. (8)

For the Riccati Eq.(5), we can solve it by using the
HB method as follows

(I) Let φ = Σm
i=0bi tanhi ζ. Balancing φ′with φ2leads to

φ = b0 + b1 tanh ζ. (9)

Substituting Eq.(9)into Eq.(5),we obtain the following
solution of Eq.(5)

φ = β tanh ζ = − 1

α
tanh ζ, αβ = −1. (10)
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From Eq.(6), (8)and (10), we get the following trav-
eling wave solutions of (3+1) KP equation (1)

u(x, y, t) =
3(l2 + m2)− k(n + 8k3αβ)

6k2
− 2k2 tanh2 ζ. (11)

Similarly, let φ = Σm
i=0bi cothi ζ, then we obtain the fol-

lowing traveling wave solutions of (3+1) KP equation
(1)

u(x, y, t) =
3(l2 + m2)− k(n + 8k3αβ)

6k2
− 2k2 coth2 ζ. (12)

Where ζ = kx + ly + mz + nt + d.

(II) From [8], when α = 1, the Riccati equation 5)has
the following solutions

φ =

⎧⎨
⎩
−√−β tanh(

√−βζ), β < 0,
− 1

ζ
, β = 0,√

β tan(
√

βζ). β > 0.

(13)

From (6),(8) and (13), we have the following traveling
wave solutions of (3+1) KP equation (1).

When β < 0, we have

u(x, y, t) =
3(l2 + m2)− k(n + 8k3β)

6k2
+ 2k2β tanh2(

√
−βζ)).

(14)

When β = 0, we have

u(x, y, t) =
3(l2 + m2)− k(n + 8k3β)

6k2
− 2k2

aζ2
. (15)

When β > 0, we have

u(x, y, t) =
3(l2 + m2)− k(n + 8k3β)

6k2
+ 2k2β tan2(

√
−βζ)).

(16)
Where ζ = kx + ly + mz + nt + d.

(III) We suppose that the Riccati equation (5) have
the following solutions of the form

φ = A0 +

m∑
i=1

(Aif
i + Bif

i−1g), (17)

with

f =
1

cosh ζ + r
, g =

sinh ζ

cosh ζ + r
,

which satisfy

f ′(ζ) = −f(ζ)g(ζ), g′(ζ) = 1− g2(ζ)− rf(ζ),

g2(ζ) = 1− 2rf(ζ) + (r2 − 1)f2(ζ).

Balancing φ′ with φ2 leads to

φ = A0 + A1F + B1g. (18)

Substituting Eq.(18)into (5), collecting the coefficient
of the same power f igj (i = 0, 1, 2; j = 0, 1) and set-
ting each of the obtained coefficients to zero yield the
following set of algebra equations

αA2
1 + α(r2 − 1)B2

1 + (r2 − 1)B1 = 0,

2αA1B1 + A1 = 0,

2αA0A1 − 2αrB2
1 − rB1 = 0,

2αA0B1 = 0,

αA2
0 + αB2

1 + β = 0, (19)

which have solutions

A0 = 0, A1 = ±
√

(r2 − 1)

4α2
, B1 = − 1

2α
. (20)

where 4αβ = −1. From Eqs.(17-20), we have

φ =
−1

2α
(
sinh ζ ∓

√
(r2 − 1)

cosh ζ + r
) (21)

From Eqs.(6),(8)and (21), we obtain

u(x, y, t) =
1

6k2
(3(l2 + m2)− k(n + 8k3αβ)

−3k4(
±√r2 − 1− sinh(ζ)

r + cosh(ζ)
)2), (22)

where
ζ = kx + ly + mz + nt + d.

(IV) We take φ in the Riccati equation(5) being of the
form

φ = ep1ζρ(z) + p4(ζ), (23)

where
z = ep2ζ + p3, (24)

where p1, p2 and p3 are constants to be determined.

Substituting (23),(24) into (5), we have

p2e
(p1+p2)ζρ′−αe2p1ζρ2 +(p1−2αp4)e

p1ζρ+p′4−αp2
4−β = 0.

(25)
Setting p1 + p2 = 2p1, we get p1 = p2, if we assume that

p4 = p1
2α

and β = − p2
1

4α
, then Eq.(25) becomes

p2ρ
′ − αρ2 = 0. (26)

By solving Eq.(26), we have

ρ = − p1

αz
= − p1

αep1ζ + p3
. (27)

Substituting (27) and p4 = p1
2a

into (23), we have

φ = − p1e
p1ζ

α(ep1ζ + p3)
+

p1

2α
. (28)

If p3 = 1 in (28), we get

φ = − p1

2α
tanh(

1

2
p1ζ). (29)

If p3 = −1 in (28), we get

φ = − p1

2α
coth(

1

2
p1ζ). (30)

From (6),(8) and (28), we obtain the following trav-
eling wave solutions of (3+1) KP equation (1)

u(x, y, t) =
1

6k2
(3(l2+m2)−k(n+8k3αβ)−3p2

1k
4(

2ep1ζ − 1

ep1ζ + p3
)2).

(31)
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When p3 = 1, we have from (29)

u(x, y, t) =
1

6k2
(3(l2+m2)−k(n+8k3αβ)−3p2

1k
4 tanh2(

p1

2
ζ)).

(32)
Clearly, (11) is the special case of (32) with p1 = 2.
When p3 = −1, we have from (30)

u(x, y, t) =
1

6k2
(3(l2+m2)−k(n+8k3αβ)−3p2

1k
4 coth2(

p1

2
ζ)).

(33)
Where ζ = kx + ly + mz + nt + d. Clearly, (12) is the
special case of (33) with p1 = 2.

(V) We suppose that the Riccati equation (5) have
the following solutions of the form

φ = A0 +

m∑
i=1

sinhi−1(Ai sinh ω + Bi cosh ω),

where dω/dζ = sinh ω or dω/dζ = cosh ω. It is easy to
find that m = 1 by balancing φ′ and φ2. So we choose

φ = A0 + A1 sinh ω + B1 cosh ω, (34)

when dω/dζ = sinh ω, we substitute (34)and
dω/dζ = sinh ω, into (5) and set the coefficient of
sinhi ω coshj ω(i = 0, 1, 2; j = 0, 1) to zero. A set of al-
gebraic equations is obtained as follows

αA2
0 + αB2

1 + β = 0,

2αA0A1 = 0,

αA2
1 + αB2

1 = B1

2αA0B1 = 0,

2αA1B1 = A1, (35)

for which, we have the following solutions

A0 = 0, A1 = 0, B1 =
1

α
, (36)

where β = −1
α

, and

A0 = 0, A1 = ± 1

2α
, B1 =

1

2α
, (37)

where β = − 1
4α

.

To dω/dζ = sinh ω, we have

sinh ω = −cschζ, cosh ω = − coth ζ. (38)

From (35)-(38), we obtain

φ = − cothζ

α
, (39)

where β = − 1
α

, and

φ =
coth ζ ± cschζ

2α
, (40)

where β = − 1
4α

.

Clearly, (39)is the special case of (31)with p1 = 2.

From (6),(8),(39) and (40), we get the exact travel-
ing wave solutions of (3+1) KP equation (1) in the
following form

u(x, y, t) =
3(l2 + m2)− k(n + 8k3αβ)

6k2
− 2k2 coth2 ζ. (41)

Which is identical with (12).

u(x, y, t) =
1

6k2
(3(l2+m2)−k(n+8k3αβ)−3k4(cothζ±cschζ)2).

(42)
Where ζ = kx + ly + mz + nt + d.
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