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Abstract—A robust control strategy for design of

robust model following sliding mode load frequency

controller for single area power system based on un-

certainty and disturbance estimator (UDE) has been

presented where simple first order lowpass filter is

used. The control strategy for elimination of reach-

ing phase uses Ackermann’s formula and UDE for the

estimation of uncertainty and disturbances. The con-

trol strategy proposed does not require the knowl-

edge of bounds of uncertainty and disturbances and

is continuous. The simulation results of the control

strategy for load frequency control is presented with

uncertainties of 40% in plant parameters from their

nominal values. The error with simple first order low

pass filter has been improved with the help of higher

order filter. The error in estimation with first or-

der filter is proportional to filter time constant O(τ).

This error can be improved by using higher order fil-

ter. We have proposed a UDE with second order low

pass filter to improve this error. The analysis shows

that, in first order filter error varies with O(τ), which

further can be improved to the O(τ2) by using second

order filter estimation. As the τ is very small the er-

ror can be reduced sufficiently small with the help of

this filter.

Keywords: load frequency controller, uncertainty and

disturbance estimator, sliding mode control

1 Introduction

Electric power systems consist of a number of control ar-
eas, which generate power to meet the power demand.
However, poor balancing between generated power and
demand can cause the system frequency to deviate away
from the nominal value and create inadvertent power ex-
changes between control areas. To avoid such situation,
load frequency controllers are designed and implemented
to automatically balance generated power and demand
in each control area [18][19]. In power systems, one of
the most important issues is the load frequency control
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(LFC), which deals with the problem of how to deliver
the demanded power of the desired frequency with mini-
mum transient oscillations [11]. Whenever any small load
perturbations resulted from the demands of customers oc-
cur in any areas of the power system, the changes of hi-
line power exchanges and the frequency deviations will
occur. Thus, to improve the stability and performance
of the power system, it is necessary that generator fre-
quency should be setup under different loading condi-
tions. For this reason, many control approaches have
been developed for the load frequency control. Among
them, PID controllers [10], optimal controllers [12], non-
linear controllers [13] and robust control strategies [5],
neural and/or fuzzy [15][16][17] etc. approaches have
been proposed in the past. In an industrial plant, such
as a power system, one of the problems always encoun-
tered is the parametric uncertainties. The usual design
approach for load frequency controller employs the lin-
ear control theory to develop control law on the basis of
the linearized model with fixed system parameters. As
the operating point of a power system and its parameter
changes continuously, a fixed controller may no longer
be suitable in all operating conditions. In order to take
this parametric uncertainties into account, several papers
have been published using the concept of variable struc-
ture system [1], various adaptive control techniques [4] to
the design of load frequency control. The VSMFC tech-
nique presented in [6] fails to provide robustness if the
parameter variations are more than 50%. This limita-
tions has been overcome in [14], but still the accuracy of
estimation error was more due to use of first order filter.
In this paper the design of robust model following slid-
ing mode load frequency controller for single area power
system based on uncertainty and disturbance estimator
(UDE) [7][8] with second order filter for error improve-
ment has been presented. In the method proposed in this
paper, we have used Ackermann’s formula [9] for reaching
phase elimination while uncertainty and disturbance es-
timation (UDE) method [7] for estimation of uncertainty
and disturbances. The control proposed does not require
the knowledge of bounds of uncertainty and disturbance
and is continuous. The simulation results of the con-
trol strategy for load frequency control is presented by
changing all parameters by up to 40% which can be ex-
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tended to 98% [14] from their nominal values where some
other existing method fails. The results shows that sys-
tem performance is robust to parameter variations and
disturbance. Initially we used first order filter for the es-
timation where the error is varying with O(τ) where τ is
filter time constant which is very small. This result has
been extended using second order filter for estimation of
error which is O(τ2) without causing any disturbance.
As ’τ ’ is very small, error also becomes very small. This
result can be generalized for nth order filter, where it can
be easily proved that error is of the order O(τn).
This paper is organized as follows: Section II describes
dynamic model for load frequency control, while Section
III explains the concept of model following and UDE
based sliding mode control with first and second order
filter. The model following and UDE based control law
for load frequency controller is proposed in Section IV.
Simulation results and discussions are presented in Sec-
tion V which is followed by conclusion in Section VI.

2 Dynamic Model For Load Frequency
Control

Electrical power systems are complex, nonlinear and dy-
namic. The usual practice is to linearize the model
around the operating point and then develop the con-
trol laws. Since the system is exposed to small changes
in loads during its normal operation, the linearized model
will be sufficient to represent the power system dynam-
ics. The dynamic model in state variable form can be
obtained from the transfer function model. The state
equations can be written as [2, 3],

∆ḟ =
−1
Tp

∆f +
Kp

Tp
∆Pg − Kp

Tp
∆Pd (1)

∆Ṗg =
−1
Tt

∆Pg +
1
Tt

∆Xg (2)

∆Ẋg =
−1
RTg

∆f − 1
Tg

∆Xg − 1
Tg

∆Pc +
1
Tg

∫
∆fdt (3)

We introduce an integral control of ∆f

∆E = K

∫
∆fdt

to ensure the regulation property of ∆f i.e.

∆Ė = K∆f (4)

where K is the integral control gain. The different sym-
bols used in (1-4) are:
The dynamic model in state variable form can be written
as:

ẋ = Ax + bu + F∆Pd (5)

where,

A =




−1
Tp

Kp
Tp

0 0

0 −1
Tt

1
Tt

0
−1

RTg
0 −1

Tg
−1
Tg

K 0 0 0


 ; b =

[
0
0
1

Tg
0

]
; (6)

and the input u =
∫

∆fdt.

x1 = ∆f Incremental frequency deviation in Hz
x2 = ∆Pg Incremental change in generator output power in p.u. MW
x3 = ∆Xg Incremental change in governor valve position in p.u. MW
x4 = ∆E Incremental change in phase angle of voltage in radians
∆Pd Load disturbance in p.u.MW
∆Pc Incremental change in speed changer position in p.u.MW
Tg Governor time constant in seconds
Tt Turbine time constant in seconds
Tp Plant time constant in seconds
Kp Plant gain
R Speed regulation ratio in Hz p.u. MW−1

3 Model Following and UDE based Con-
trol Law

3.1 Problem statement

Consider a LTI single input single output (SISO) system
[7][8] defined by

ẋ = Ax + bu + ∆Ax + ∆bu + d(x, t) (7)

where x is the state vector, u is the control input, A and b
are the known constant matrices, ∆A, ∆b are uncertain-
ties in the system and d(x, t) is the unknown disturbance.

Assumption 1 : The uncertainties ∆A and ∆b and dis-
turbance d(x, t) satisfy the matching conditions given by

∆A = bD, ∆b = bE, d(x, t) = bv(x, t) (8)

where D and E are unknown matrices of appropriate di-
mensions and v(x, t) is an unknown function.

The system of equation (7) can be written as

ẋ = Ax + bu + be(x, t) (9)

where e(x, t) = Dx + Eu + v(x, t). The term e(x, t) al-
though contains uncertainty and disturbance will be re-
ferred as lumped uncertainty.
Let

ẋm = Amxm + bmum (10)

Assumption 2 The choice of a model is such that

A−Am = bL, bm = bM (11)

where L and M are suitable known matrices.

The objective is to design a control u so as to force
the plant (9) to follow the model (10) inspite of the pa-
rameter variations. The equation (8) and (11) are well
known matching conditions required to guarantee invari-
ance and are explicit statements of the structural con-
straints stated in [7].

3.2 Design of control

In this section a model following control is designed with
help of method suggested in [9][8]. Define a sliding surface

σ = bT x + z (12)

IAENG International Journal of Applied Mathematics, 37:1, IJAM_37_1_5 
______________________________________________________________________________________

(Advance online publication: 15 August 2007)



where

ż = −bT Amx− bT bmum z(0) = −bT x(0) (13)

Equation (13) for the auxiliary variable z defined here is
different from that given in [9]. By virtue of the choice
of the initial condition on z, σ = 0 at t = 0. If a control
u can be designed ensuring sliding then σ̇ = 0 implies

ẋ = Amx + bmum (14)

and hence fulfills the objective of the model following.
Differentiating equation (12) and using (9) and (13) gives

σ̇ = bT Ax + bT bu + bT be(x, t) (15)

− bT Amx− bT bmum (16)

= bT bLx− bT bMum + bT bu + bT be(x, t) (17)

Let the required control be expressed as

u = un + ueq (18)

Selecting

ueq = −Lx + Mum − (bT b)−1kσ (19)

where k is a positive constant. From (15) and (19) we
get

σ̇ = bT bun + bT be(x, t)− kσ (20)

Now we will design the component un. The lumped un-
certainty e(x, t) can be estimated as given in [7]. Rewrit-
ing above equation

e(x, t) = (bT b)−1(σ̇ + kσ)− un (21)

It can be seen that lumped uncertainty e(x, t) can be
computed from (21). This cannot be done directly. Let
the estimate of the uncertainty be defined as

ê(x, t) = [(bT b)−1(σ̇ + kσ)− un]Gf (s) (22)

where Gf (s) strictly proper first order low pass filter with
unity gain steady-state gain and have enough bandwidth.
With such filter

ê(x, t) ∼= e(x, t) (23)

Error in the estimation is

ẽ(x, t) = e(x, t)− ê(x, t) (24)

3.2.1 UDE with first order filter

If Gf (s) is proper first order low pass filter with unity
gain defined as

Gf (s) =
1

τs + 1
(25)

where τ is small positive constant. With the above Gf (s)
and in view of (21), (22) and (24)

ẽ(x, t) = (1−Gf (s))[(bT b)−1(σ̇ + kσ)− un] (26)
= τ ė(x, t)Gf (s)

The error in estimation varies with τ , enabling design of
un as

un = −ê(x, t) (27)
= −(bT b)−1(σ̇ + k)Gf (s) + Gf (s)un(s)

Solving for un gives

un =
(bT b)−1

τ

(
1 +

k

s

)
σ (28)

3.2.2 UDE with second order filter

The accuracy of estimation can be improved as much as
desired by an appropriate choice of filter Gf (s). The
second order filter is used here with transfer function

Gf (s) =
1

τ2s2 + 2τs + 1
(29)

The lumped uncertainties and disturbances can be writ-
ten as

e(x, t) = e(x, t)Gf (s) + e(x, t)(1−Gf (s)) (30)

= e(x, t)Gf (s) + e(x, t)(2τs + τ2s2)Gf (s) (31)
= e(x, t)(1 + 2τs)Gf (s) (32)

+ τ2Gf (s)ë(x, t) (33)

Now the estimation is

ê(x, t) = e(x, t)(1 + 2τs)Gf (s) (34)
= (1 + 2τs)Gf (s) (35)

((bT b)−1(σ̇ + kσ)− un) (36)
= (1 + 2τs)Gf (s) (37)

((bT b)−1(σ̇ + kσ)− un) (38)

From (30) and (34)

ẽ = τ2Gf (s)ë(x, t)

which proves error of the estimation is proportional to τ2

so control un

un = −(1 + 2τs)Gf (s)[(bT b)−1(σ̇ + kσ)− un] (39)

after simplifying

un(1− (1 + 2τs)Gf (s)) = −(1 + 2τs)Gf (s)

[(BT B)−1(σ̇ + kσ)]
(40)

put the value of Gf (s) in preceding equation from (29)
and simplify

un = (bT b)−1
[2
τ

+
(2τk + 1)

τ2s
+

k

τ2s2

]
σ (41)
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4 Model Following and UDE based Load
Frequency Controller

The plant considered is as equation (6) with the param-
eter values as[1, 3],

Tp = 20 sec, Tt = 0.3 sec, Tg = 0.08 sec,

Kp = 120 Hz p.u. MW−1,K = 0.6 p.u. rad−1,

R = 2.4 Hz p.u. MW−1

The state space model is given by,

A =
[ −0.05 6 0 0

0 −3.333 3.333 0
−5.208 0 −12.5 −12.5

0.6 0 0 0

]
b =

[
0
0

12.5
0

]
;

Disturbance F∆Pd = 10sin(10t). The reference input
um is a square wave of unity amplitude. In order to sat-
isfy the model following conditions we will convert above
system into phase variable form by using transformation,

Z = Tx

Then the plant in equation (6) becomes,

Ż = TAT−1Z + Tbu + TF∆Pd (42)

where,

T AT
−1 =




0 1 0 0
0 0 1 0
0 0 0 1

−149.985 −106.2327 −42.4545 −15.833




T b =




0
0
0
1




The model selected was critically damped model such
that,

ẋm = Amxm + Bmum (43)

where

Am =




0 1 0 0
0 0 1 0
0 0 0 1
−24 −50 −35 −10


 ; Bm =




0
0
0
24


 .

The initial conditions for plant and model states
are given by x(0) = [1 0 0 0]T , xm(0) =
[0 1 1 1]T . Uncertainties in A and b are

∆A =




0 0 0 0
0 0 0 0
0 0 0 0

−43.5 −55 −17 −29


 ; ∆b =




0
0
0

−0.4


 .

5 Simulation Results

The simulation results are shown in Fig.1-Fig.7. System
response by using UDE with first and second order fil-
ter are shown in Fig.1 and Fig.2. The Fig.1(a)-(d) shows
the plant states, while Fig.1(e) indicate control torque
required. Fig.1(f) shows error plot, after using first order
filter. Similar results using second order filter are shown
in Fig.2(a)-(f). Both results are for 40% parameter un-
certainties. The figure reveals the ability of the controller

to drive the system to follow the reference model. It is ob-
served that the system remains invariant to the imposed
parameter variation. This reveals the controller ability
to force the plant to follow the model in spite of param-
eter variations. Fig.3-Fig.7 shows comparison of error
plot after using first and second order filter estimation
when τ changes differently. Table 1 shows the numerical
variation of error for different τ .
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Figure 1: Load frequency response by using UDE with
first order filter (a) plant and model state x1 (b) plant
and model state x2 (c) plant and model state x3 (d) plant
and model state x4(e) control (f) error
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Figure 2: Load frequency response by using UDE with
second order filter (a) plant and model state x1 (b) plant
and model state x2 (c) plant and model state x3 (d) plant
and model state x4(e) control (f) error
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Figure 3: Error when τ = 1 ms for (a) first order filter
(b) second order filter
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Figure 4: Error when τ = 2 ms for (a) first order filter
(b) second order filter
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Figure 5: Error when τ = 4 ms for (a) first order filter
(b) second order filter
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Figure 6: Error when τ = 8 ms for (a) first order filter
(b) second order filter
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Figure 7: Error when τ = 16 ms for (a) first order filter
(b) second order filter

Table 1: First and second order filter error for different τ

τ First Order Filter Second Order Filter
0.001 0.017755 0.0001812
0.002 0.03518 0.0007104
0.004 0.0686 0.002817
0.008 0.12676 0.012017
0.016 0.206 0.04908

6 Conclusion

A systematic procedure for design of robust model fol-
lowing sliding mode load frequency controller for single
area power system based on uncertainty and disturbance
estimator (UDE) has been presented. The control strat-
egy uses Ackermann’s formula for elimination of reach-
ing phase and UDE for the estimation of uncertainties
and disturbances. The control proposed does not require
the knowledge of bounds of uncertainty and disturbances.
The simulation results of the control strategy for load fre-
quency control is presented by changing all parameters
by 40% from their nominal values. One can easily ex-
tend this results up to 98% parameter variation. These
results show that system performance is robust to param-
eter variations and disturbances. The uncertainty and
disturbance estimation with second order filter is used
for sliding mode control of uncertain plant whose param-
eters are changing and can be controlled properly and
lumped uncertainty can be estimated at a best accurate
level with help of UDE with second order filter than first
order filter. The error in the estimation can be improved
to O(τ2) using second order filter.
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