
 
 

 

Abstract—In this paper, the traditional Π equivalent circuit 
used to model the transformer is replaced by an ideal model in 
discrete optimal power flow (DOPF) formulation, which 
introduces a fictitious bus to express the power and voltage 
converting relations of the tap-changing transformer, so the 
admittance matrix is fixed during iterations to reduce 
computational efforts. Furthermore, this representation of 
transformer helps DOPF problem to be decoupled into two 
subproblems, which can improve computational efficiency 
greatly. Interior point method is used to solve continuous active 
power subproblem, and interior point cutting plane method 
(IPCPM) is adopted to solve discrete reactive power subproblem. 
Unfortunately, we find that the convex combination solution 
appears with great probability when solving DOPF problem, so in 
this paper IPCPM is improved to repair this shortcoming. 
Numerical simulations on IEEE14~300 test systems show that the 
improvement of IPCPM is efficient, and the proposed method is 
suitable for solving DOPF problems for large-scale systems. 
 

Index Terms— Discrete Optimal Power Flow; Decoupled 
Optimal Power Flow; Interior Point Method; Interior Point 
Cutting Plane Method 1 

I. INTRODUCTION 
A key requirement of any modern society is the economic 

and secure operation of its electric power system. Such an 
important objective naturally demands the use of advanced 
large-scale system analysis, optimization, and control 
technologies. As a most attractive one of these technologies, 
optimal power flow (OPF) was proposed by Capentier in 1960s 
based on economic dispatch (ED) problem. Unlike ED that 
allocates load to the generating units only, the OPF integrates 
active and reactive power operation perfectly into one 
mathematical model via the AC load flow constraints around all 
buses, in which the economic and secure aspects of the 
concerned system are considered. 

In recent decades, several classes of solution algorithms 
have been proposed to overcome OPF limitations in terms of 
flexibility, reliability and performance for real-world 
applications. However, these algorithms do not deal with the 
discrete step controls satisfactorily. On the other hand, such 
discrete controls are widely used by the power industry. For 
example, transformers are used for voltage control, shunt 
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capacitors and reactors are switched on or off in order to correct 
the voltage profile and reduce transmission losses, and phase 
shifters are used to regulate the MW flow of transmission lines. 
So an efficient and effective OPF discretization procedure is 
needed to help the operators utilize these discrete controls in 
realistic and optimal manner. Exact modeling of discrete 
controls together with continuous control variables makes the 
OPF become a mixed integer nonlinear programming problem. 
The combinatorial-search approaches, branch-and-bound and 
cutting-plane method are usually used to solve this kind of 
mixed-integer programming model [1,2], but these methods are 
“nonpolynomial”, and all suffer from the so-called problem of 
“curse of dimensionality” for large-scale applications, making 
them unsuitable for larger-scale discrete OPF (DOPF) 
problems. Global optimization techniques, such as genetic 
algorithm (GA)[3,4], simulated annealing (SA)[5], tabu search 
(TS)[6], evolutionary programming and evolutionary strategy 
[7,8] have been applied to DOPF problem, which improve 
solutions but have relatively slow performance and unstable 
optima. Recently, due to the basic efficiency of interior point 
methods, which offer fast convergence and convenience in 
handling inequality constraints in comparison with other 
methods, interior point (IP) linear programming [9], quadratic 
programming [10], and nonlinear programming [11] methods 
have been widely used to solve OPF problem of large-scale 
power systems. However, up to now the interior point methods 
cannot directly solve the mixed-integer programming because 
gradient information is necessary. Liu et al. [12] extends the 
primal-dual IP algorithms to handle the discreteness of 
switchable shunt capacitors/reactors and tap-changing 
transformers in solving nonlinear reactive-power optimization 
by incorporating a positive-curvature quadratic penalty 
function in iterations. In 2004, interior point cutting plane 
method (IPCPM) was first applied to solve high-dimension 
nonlinear mixed-integer OPF problems [13]. All these 
improvements in IP algorithm encourage the successful 
implementation for rigorous solution of DOPF problem. 

The traditional Π equivalent circuit used to model the 
transformer is replaced by an ideal model in this paper. The 
limitation of Π transformer model is that the change of tap 
setting requires repeated calculation of admittance matrix in 
iterations, which can greatly increase the computational efforts 
of algorithm. In the proposed formulation, the fictitious buses 
are added to express the power and voltage converting relations 
of the tap-changing transformer. So the admittance matrix is 
fixed in iterations to reduce computational efforts. 
Furthermore, the new representation of transformer helps 
DOPF problem to be decoupled into two subproblems 
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completely. The advantages of the decoupled OPF formulation 
include: (1) decoupling greatly improves computational 
efficiency, especially for larger systems. It is because that each 
subproblem has approximately half the dimension of the 
original problem; (2) decoupling makes it possible to use 
different optimization techniques to solve the active power and 
reactive power OPF subproblems. In this paper, IP method is 
used to solve continuous active power subproblem 
(P-subproblem), and IPCPM is adopted to solve discrete 
reactive power subproblem (Q-Subprobelm). Numerical 
simulations on IEEE14~300 test systems show that the 
proposed method is efficient in solving OPF problems for 
large-scale power systems. 

IPCPM is a hybrid of cutting plane method and IP method, 
which obtain good performance from these two methods. 
Although there are some papers on IPCPM application to 
several well known combinatorial optimization problems, such 
as linear ordering problem [14], flowshop scheduling problem 
[15] etc. IPCPM is first applied to solving high-dimension 
nonlinear mixed-integer OPF problems in 2004. Numerical 
simulations on IEEE 14~300 buses test systems show that the 
IPCPM is suitable for solving discrete optimization problems 
of large-scale systems. Currently, our observation is that 
IPCPM cannot obtain the correct information to identify 
optimal basis when the linear programming relaxation of 
original integer programming is a multiple-optima problem. 
Thus ambiguous information may increase the iteration 
numbers and computational time, even makes IPCPM 
completely fail. In this paper, IPCPM used in [13] is improved, 
the optimal solution shifting helps to ensure the generation of 
effective cutting plane constraints in the solution of the 
multiple-optima problems. 

II. THE FORMULATION OF DOPF 

A. The ideal model of Tap-changing Transformer 
OPF problem is a difficult problem in mathematical 

programming area due to its large dimension, discrete and 
nonlinear characteristics when discrete controls are considered, 
such as tap-changing transformers, switchable shunt 
capacitors/ reactors, feasible AC transmission systems 
(FACTS) etc. In paper [13], an efficient integer programming 
approach, IPCPM is used to solve DOPF problems, and its 
calculation flow shows that the admittance matrix must be 
calculated with the improved tap setting in each iteration, 
which consists main computational burden of algorithm. This 
suggests that a good part of the computational work could be 
bypassed if the relationship between the transformer tap setting 
and the admittance matrix are eliminated. The best way we 
found to do so is to introduce a fictitious bus into the 
transformer model, which would be used to express the power 
and voltage converting relations of the tap-changing 
transformer. 

As an example, tap-changing transformer branch is used 
to show a mathematical interpretation of the two different 

model (see Fig.1). Where i  and j are the head and end bus of 
transformer branch separately, and non-standard voltage ratio 
side is j side. The traditional Π equivalent circuit model is 
illustrated in Fig. 1 (a), and the model we used in this paper is 
shown in Fig.1 (b), where iij ,, ′ are high voltage bus, fictitious 
bus and low voltage bus separately. 

In Fig.1 (b), for fictitious bus i′ , iiTP ′  can be described as 
flowing: 

)sincos(2
iiTiiTiiTiiiT bgVVgVP ′′′′′ +−= θθ                 (1) 

Due to iTjiiT PP ′′ = , equation (1) can be rewritten as: 

)sincos(2
iiTiiTiiTiiTj bgVVgVP ′′′′′ +−= θθ                  (2) 

In addition, we obtain the following relations as the (1) 
analogue: 

TiiiTiiTiiiTj bVgbVVQ 2)sincos( ′′′′′ −−= θθ                  (3) 

)sincos(2
iiTiiTiiTiiTi bgVVgVP ′′′′ −−= θθ                  (4) 

TiiiTiiTiiiTi bVgbVVQ 2)sincos( −+= ′′′′ θθ                  (5) 
Furthermore, we know:        

ij ′= θθ                                                        (6) 

ij VVk ′=                                                   (7) 
From the expression collected in Table 1, one can see that the 

action of transformer tap is replaced by the voltage of fictitious 
bus when using the model in Fig1 (b).  We can omit the 
computational burden for admittance matrix in iterations. 

B. The Formulation of DOPF Problem 
The DOPF problem can be decomposed into two 

subproblems, the continuous P-subproblem and discrete 
Q-subproblem with the transformer model in Fig2 (b). These 
two suproblems can be stated as follows. 

i. P-subproblem 
Objective function (operation cost minimization): 

min )( 01
2

2 iGiGi
SGi

i aPaPa ++∑
∈

                               (8) 

Equality constrains:       

∑∑
∈∈

+=−
Stij

Tij
Slij

LijDiGi PPPP                                       (9) 

ij ′= θθ                                                              (10) 
Inequality constraints:         
(a) Upper and lower bounds on the active power:  

maxmin GiGiGi PPP ≤≤ ( SGi ∈ )                                 (11) 
(b) Upper and lower bounds on the flow of transmission line: 

maxmin LijLijLij PPP ≤≤  ( Slji ∈, )                           (12) 
ii.  Q-subproblem 
Objective function (transmission losses minimization): 

∑∑
∈∈

+=Δ
Stsj

Tsj
Slsj

LsjS PPPmin                              (13) 
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Equality constrains: 

∑∑
∈∈

+=−
Stij

Tij
Slij

LijDiGi QQQQ                              (14) 

ijk VVt ′=+ γ1 （ STk ∈ ）                                    (15) 
Inequality constraints: 
(a) Upper and lower bounds on the reactive power: 

maxmin GiGiGi QQQ ≤≤ ( SGi ∈ )                             (16) 
(b) Upper and lower bounds on the magnitude of voltage in 

bus i : 
maxmin iii VVV ≤≤ ( SBi ∈ )                                      (17) 

(c) Upper and lower bounds on the tap position i : 
maxmin iii ttt ≤≤ ( STi ∈ )                                           (18) 

Where: SB : the set of all buses, Sl : the set of all branches, 
St : the set of all transformer branches, GS : the set of all active 
sources, ST : the set of all tap-changing transformers, 

ia0 , ia1 , ia2 : the fuel cost coefficients of unit i , GiP ， GiQ : 
active and reactive power generation at bus i , DiP ， DiQ : 
active and reactive demand at bus i , LijP ， LijQ : active and 
reactive flow in general branch ij , TijP ， TijQ : active and 

reactive flow in transformer branch ij ,  it : tap setting of 
tap-changing transformer i , iV , iθ : the magnitude and angle of 

voltage in bus i , jiij θθθ −= . max• ， min• : the upper and the 
lower bounds on variables. γ : the adjust step of the kth 
tap-changing transformer. The other variables are described in 
sector 2.1. 

III. THE CALCULATION FLOW OF ALGORITHM  
The active power subproblem is described as (8)~(12), 

which is a typical nonlinear programming problem. In this 
paper, it is solved by IP method  (see [16], for the algorithm 
flow and formulations). IPCPM (see [13], for the principle and 
formulations of algorithm) is applied to solve the reactive 
power subproblem, which is a mixed integer nonlinear 
programming problem.  

The proposed approach for DOPF problem is described in 
Fig 2 within the context of two optimization modules: the 
P-subproblem optimization and Q-subproblem optimization.  

IV. THE IMPROVEMENT OF IPCPM 
In cutting plane method, cutting plane constrains are 

available by the information of basis variables. An advantage of 
the conventional simple cutting plane method (SCPM) in 
getting a cut is that its optima of linear programming relaxation 
implicitly converges to the vertex of feasible region of problem 
in any cases. However, if the linear programming relaxation is 
multiple-optima problem, it is easy to prove that IPCPM cannot 
collect the correct information of optimal basis because its 

PTij+jQTij

PTi'j+jQTi'j
i j

i′
PTii'+jQTii'

1:k

gT+jbT

k
YT

PTij+jQTij PTji+jQTji

i j

TY
k

k )1( −
TY

k
k

2
)1( −

Fig.1  The equivalent circuit of transformer 
(a) The traditional Π equivalent circuit model          (b) The model used in this paper 

Power 
flow Π equivalent circuit model The ideal model 

)( iTiTij PP ′  )sincos(12
ijTijTjiTi bgVV

k
gV θθ +−  )sincos(2

iiTiiTiiTi bgVVgV ′′′ +− θθ  

)( iTiTij QQ ′  TiijTijTij bVgbVV
k

2)sincos(1 −− θθ  TiiiTiiTii bVgbVV 2)sincos( −− ′′′ θθ  

)( iTjTji PP ′  )sincos(11 2
2 ijTijTijTj bgVV

k
gV

k
θθ −−  )sincos(2

iiTiiTiiTi bgVVgV ′′′′ −− θθ  

)( iTjTji QQ ′  TjijTijTij bV
k

gbVV
k

2
2

1)sincos(1 −+ θθ  TiiiTiiTii bVgbVV 2)sincos( ′′′′ −+ θθ  

TABLE 1 THE POWER FLOW OF TRANSFORMER BRANCH IN TWO 
DIFFERENT MODELS 

Fig.2 The calculation flow of DOPF problem 
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optima of linear programming relaxation converges to an edge 
of feasible region of problem with a great probability. As a 
result, ambiguous basis information may increase the iteration 
numbers and computational time of IPCPM, even makes 
IPCPM completely fail. 

A.  The theoretic analysis  
For clarification we assume that the following linear 

programming is the relaxation problem of mixed integer 
programming.  

                   .max   21 42 xx +                                                 (19) 
..ts   82 321 =++ xxx                                 (20) 

        841 =+ xx                                          (21) 
        852 =+ xx                                          (22) 

0,,,, 54321 ≥xxxxx                                (23) 
The above linear programming is a multiple-optima 

problem, which have three kinds of solutions:  
i. Normal solution: )0,6,0,3,2(* =′x , that is to say, the number 

of non-zero elements is equal to 3. It equals to the number of 
equality constraints. 

ii. Degenerate solution: )3,0,0,0,8(* =′′x , and the number of 
non-zero elements is less than 3. 

iii. Convex combination solution: *** )1( xxx ′′−+′=′′′ αα , 

where )1,0(∈α . For example, when 
12
7=α , 

)25.1,5.3,0,75.1,5.4(* =′′′x , and the number of non-zero elements 
is more than 3. 

 The example in Fig.3 provides a geometrical 
interpretation of the three different kinds of solution when IP 
method is applied to solving problem (19)~(23). In Fig.3, the 
convex polytope ABDO is the feasible region of problem 
(19)~(23). Clearly, the constraint edge BD should parallel to 
the objective function (19). As a result, the maximum of 
objective function can be found in any point of edge BD, which 
explains the reason for the appearance of *x ′′′ . From Fig.3 we 
can see, )0,6,0,3,2(* =′x  is obtained when the algorithm 

convergences to point B, or )3,0,0,0,8(* =′′x  is obtained when 
the algorithm convergences to point D, or 

)25.1,5.3,0,75.1,5.4(* =′′′x  is obtained when the algorithm 
convergences to point P stands between the point B and the 
point D.  

For SCPM algorithm, simplex method(SM) is a 
vertex-searching method. It start at the origin, then it moves 
along the intersection of the boundary hyper-planes of the 
constraints, hopping from one vertex to the neighboring vertex, 
until an optimal vertex is reached. As a result, only two kinds of 
solution can be found, normal solution *x′  and degenerate 
solution *x ′′  (see Fig.3). *x ′′  can be transformed into *x′  by 
selecting some zero variable columns to enter the basis in 
accordance with some column selection criteria. That is to say, 
there is not much trouble of cut generation in SCPM, even in 
the presence of *x ′′ . Unlike SCPM, the IP method used in 

IPCPM crosses the interior of feasible region in search for 
optima of linear program. Clearly, the probability of optima 
standing in edge BD is always much more than the probability 
of optima standing in point B or point D (see Fig.3). In other 
words, IP method found convex combination solution *x ′′′ with 
a great probability in this case. If *x ′′′  is obtained, then IPCPM 
cannot collect the correct information of optimal basis. 
Therefore, ambiguous basis information may increase the 
iteration numbers and computational time of IPCPM, even 
makes IPCPM completely fail. Unfortunately, we observe that 
this phenomenon occures frequently when we attempted to 
solve DOPF problem with IPCPM. So addressing above issue 
is key to the successful implementation of IPCPM for solving 
DOPF problem.  

B.  The improvement of IPCPM 
The success of cut generation is dependent on the ability of 

the method to locate the normal solution *x′  correctly and 
effectively. Thus, it is obviously that transform *x ′′′  into *x′  is 
one of the important factors to solve the problem presented 
previously. When the optimum converges to an edge of feasible 
region of problem, it can be moved to the neighboring vertex by 
pivoting [17]. That is to say, the *x ′′′ can be transformed into 

*x′ with the following scheme. 
We assume that the linear program relaxation 

{ }0xbAxxc ≥= ,min T （where nR∈c ， nR∈x ， nmR ×∈A ，

mR∈b ） is solved by IP method, and x primal and sy,  dual 
optimal solutions are available. Let [ ]321 ,, AAAA = , 

[ ]321 ,, xxxx = , [ ]321 ,, ssss = , [ ]321 ,, cccc = , where index 1 
refers to the coordinates where x  is positive, index 2 refers to 
the coordinates where both of x  and s  are zero, and finally 
index 3 refers to the coordinates where s  is positive. Then we 
have: bxA =11 , 11 cyA =T , 22 cyA =T  and 33 cyA <T . 

Step1：Determine the kind of solution: 
(a) If it is *x′ , then components of *x′  corresponding to 

zero element are said to be basic variables. Stop calculation. 
(b) If it is *x ′′ , go to Step7. 
(c) If it is *x ′′′ , go to Step2. 

Fig.3 The search route of IPM and SM 
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Step2：Are the columns of 1A  linearly dependent, if the 
answer is not go to Step6. 

Step3：Pivoting: set zxx t+=′ 11 . 
To guarantee the optimization of x : There must exist one 

but not only one vector z satisfying 0zA =1  because the 
columns of 1A  are linearly dependent, so any z  is the one we 
need. (We can prove: The new objective function is 

=++′ 332211 xcxcxc TTT
11332211 )()( xcxcxczxyA TTTTT t =+++

xcxcxcxczAyxcxc TTTTTTT t =++=+++ 33221113322 , so the 
optimization of original problem solution does not be affected 
when 1x is transformed into 1x′ .) 

To guarantee the feasibility of x : Compute maxmin ttt ≤≤ by 
solving 0zxx ≥+=′ t11 . 

Step4：Eliminate zero element (say j ) from ′
1x  using 

mint or maxt . Remove ja from 1A  and add to 2A , then go to 
Step2. 

Step5: Set ],,[ 321 xxxx ′= , and then go to Step1. 
Step6: Set 1AB = , if ])([)( 21AAB rankrank >  go to Step8. 
Step7: A column ja of ][ 21AA is independent from B , add 

ja  to B . 
Step8: Go to Step11 if mrank =)(B . 
Step9: Pivoting: Set uyy v−=′ . 
To guarantee the optimization of y : There is more than one 

vector u  satisfying 0uB =T , and any u  is the one we need. 
(We can prove: The new objective function 
is uAxybubybyb TTTTTT vv −=−=′ . It is clearly that 

=uAx TT [ ] [ ] 0u
A
B

00xu
A
A
A

xxx
3

=⎥
⎦

⎤
⎢
⎣

⎡′=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
′ 1

3

2

1

321 , so the optimization 

of dual problem solution does not be affected when y  is 
transformed into y′ .). 

To guarantee the feasibility of y : Compute maxmin vvv ≤≤  

by solving 33 cyA ≤′T . 
Step10: Substitute minv  or maxv  to uyy v−=′ , and 

j
T

j ca 33 =′y  must exist. （where ja3 represents the jth column of 
matrix 3A , jc3 is the jth component of vector 3c ）. Remove 

ja3 from 3A  and add to 2A and B , then go to Step8.  

Step11: Stop, matrix B is the basis matrix that we need. 

V.  NUMERICAL SIMULATE AND ANALYSIS 
The proposed algorithm was implemented using the Visual 

C++6.0 language and the software program was executed on an 
800-MHz Pentium Pro computer. Numerical simulations on 
RTS-24 test systems have been done to test the performance of 
the presented algorithm. 

A.  The performance of proposed algorithm 
In the proposed formulation, the fictitious buses are added to 

express the power and voltage converting relations of the 
tap-changing transformer. So the admittance matrix is fixed 
during iterations to reduce computational efforts. Furthermore, 
the new representation of transformer helps DOPF problem to 
be decoupled into two subproblems. The advantages of the 
decoupled OPF formulation include: (1) decoupling greatly 
improves computational efficiency, especially for larger 
systems. This is because each subproblem has approximately 
half the dimension of the original problem; (2) decoupling 
makes it possible to use different optimization techniques to 
solve the active power and reactive power OPF subproblems. 
In this paper, IP method is used to solve continuous 
P-subproblem, and IPCPM is adopted to solve discrete 
Q-subproblem. 

 From Table2, comparing with the algorithm proposed in 
paper [13], we find that the presented algorithm has attractive 
performance because its calculation speed enhances obviously 
during the scale of system becoming larger and larger. Based 
above analysis, we can conclude that the proposed method is 
very promising for solving discrete OPF problem, especially 
for large-scale power systems.  

B.  The improvement of IPCPM 
Many numerical experiments have indicated that objective 

function of OPF has a very plain shape for the transformer tap 
control. Therefore, very similar cost values can be obtained 
with different settings of the transformer tap. So OPF becomes 
a multiple-optima problem. The same conclusion can be 
obtained form the numerical results illustrated in Table3, which 
shows that the convex combination solution appears with great 
probability when solving OPF problem (8)~(18) for 
IEEE14~300 test systems. Furthermore, It is seen in sector 3.1 
that IPCPM has bad computational performance for multiple- 
optima problem. There is a need to extend IPCPM to repair this 
shortcoming. Table4 compares the performance of the two 
IPCPM for solving OPF problem, which shows that the 
proposed method is more efficient than its old version proposed 
in paper [13]. In summary, the improvements of IPCPM meet 
the needs of practical application, and it offers a new way to 
solve complicated discrete optimization problem for 
large-scale power system, which result in dramatic property 
and human save. 

 
 

Model 
 

Test system 
II model Ideal model 

IEEE14 1359 359 
RTS-24 2703 1062 
IEEE30 5797 2578 
IEEE57 10734 2625 
IEEE118 26641 7359 
IEEE300 77609 57125 

TABLE 2  THE COMPUTATION TIME OF TWO FORMULATION (ms)
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VI. CONCLUSION 
The OPF problem becomes a nonlinear mixed integer 

programming problem when the discrete controllers are 
considered, such as tap-changers in transformers or switching 
of capacitor/reactor banks and so on. It is proposed in this paper, 
that the traditional Π equivalent circuit used to model the 
transformer be replaced by an ideal model, which provides the 
following advantages: 

(1) The admittance matrix is fixed in iterations to reduce 
computational efforts. 

(2) The new representation of transformer helps DOPF 
problem to be decoupled into two subproblems, which 
improves computational efficiency. 

On the other hand, in this paper, IPCPM is improved to meet 
the needs of practical application. Numerical simulations on 
IEEE14~300 test systems show that the proposed method is 
efficient in solving OPF problems of large-scale power 
systems. 
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system The dimension 
of matrix A 

The number 
of non-zero 

elements  

The number 
of zero 

elements 

The type 
of 

optimum 

5 24×28 25 3 *x ′′′   

14 65×74 65 9 *x′  

24 114×132 118 14 *x ′′′  

30 132×144 133 11 *x ′′′  

57 243×258 245 13 *x ′′′  

118 546×620 550 70 *x ′′′  

300 1300×1400 1314 86 *x ′′′  

 

TABLE.3  THE TYPE OF OPTIMUM OF DOPF PROBLEM 

system The number 
of cuts The value of tap 

Before improvement fail fail 
5 

After improvement 1 5 

Before improvement 1 -4,-10 
14 

After improvement 1 -4,-10 

Before improvement fail fail 
24 

After improvement 1 -2,-5,5 

Before improvement 0 -10,-10,5,-5 
30 

After improvement 0 -10,-10,5,-5 

Before improvement 0 -10,-5,-10,-5,10 
57 

After improvement 0 -10,-5,-10,-5,10 

Before improvement fail fail 
118 

After improvement 1 -5,5,-5,0,-2,-5,5 

Before improvement fail fail 
300 

After improvement 2 -6,-5,-20,10,10,-5,-5,-10, 
-10,-5,-20 

TABLE.4   THE CALCULATION RESULTS OF TWO ALGORITHM  
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