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A Performance Analysis of Call Centers Based on a Multi-server Queue with

Retrials, Feedbacks, and Impatience

Yi-Jun Zhu, Ren-Xiang Zhu, Zhe George Zhang, Peter Haug

Abstract— We consider a finite buffer queueing model with
several key features of call centers, such as retrials, feedbacks,
and impatience. In addition, because we do not completely
understand the customer impatience behavior, we use a general
distribution for the maximum waiting time before abandoning the
call. We develop a QBD process with infinite state space for the
queue in a call center situation. To solve for the stationary
performance measures, we introduce an effective approximation
method, and numerical examples have been presented to show

the effectiveness of our method.

Index Terms— Multi-server queues, call centers,
feedbacks, QBD process.

retrials,

|. INTRODUCTION

Queueing models are the main quantitative technique in
evaluating the operating performance of call centers. There are
three common characteristics in the customer’s (or caller’s)
behavior: (1) acustomer may try to call again if he or shegetsa
busy signal; (2) for acustomer on hold, if his or her waiting
timereaches alimit, he or she will hang up and leave; and (3) a
customer may call again if his or her problems are not solved
completely after aservice (see[1], [14]). Therefore, we present
aqueueing model with customers' retriass, feedbacks, and
impatience. In addition, to realistically model call centers, we
assume afinite buffer to hold the waiting customers. There are
many works on queueing models for call centers dueto the
recent and rapid growth of thisindustry. For retrial queueing
models, most existing studies are on queues with one or no
waiting spot (see[10]). Another class of queueing modelsisthe
multi-server queue with both customer retrials and impatience.
Most studiesin this class focus on models with only one or two
servers (see[2], [3], and [4]). Since the retrial models with
many waiting spots and/or multiple servers usualy require the
infinite state space Quasi-Birth-and-Death (QBD) processes, it
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isextremely difficult or evenimpossibleto obtain the stationary
performance measures of the systems. However, to
quantitatively evaluate the performance of practical call
centers, we need to consider these difficult models.

There are mainly three types of methods to solve the QBDs for
call center models. Type 1listoformulate aQBD processwith a
special transition probability matrix structure where the entries
become the same after a certain level (see [5]). For thiskind of
QBDs, amatrix geometric solution can be obtained in terms of
arate matrix which can be evaluated using a numerical method.
Type 2 isto use the state space truncation to convert infinite
state models to finite state ones which can be solved (see[6],
[7]). Type 3 isto approximate the original infinite QBD model
by another infinite onewhichis solvable (see[8], [9], and [10Q]).
Themodel of thispaper has not been studied via QBD approach
in the past. We formulate the QBD processfor a call center
system with al itsmain features. To solve the QBD process, we
proposed a method of Type 3 in which the original model is
approximated by a simpler and solvable QBD process. Then,
the stationary performance measures of our original model can
be obtained viathis easier-to-solve QBD process. Numerical
examples have been used to show the effectiveness and
efficiency of our method.

The rest of the paper is organized as follows. In section 2,
we formulate a QBD process model for the queueing system
with the main features of call centers. In section 3, we present
the approximation method to solve the QBD process model and
give some useful performance measures. In section 4, we
provide some computational results to discuss the effectiveness
and the efficiency of the approximation method and conclude
the paper with a summary.

II. MoDEL FORMULATION — A QBD PROCESS

Consider aqueueing system with awaiting and service areaand
aretrial area (see Figure 1). In the waiting and service area,
thereare s serversand k — s <co waiting spots (or the system
can hold a maximum of & waiting and in-service customers.)
We assume that customers arrive to the system according to a
Poisson process with rate A , and the servicetimeis
exponentially distributed with rate (£ . The servicedisciplineis
a“first-come-first-served” (FCFS) sequence. An after-service
customer may enter theretrial areaand call again for further
service. Thisbehavior is called the feedback. The feedback
probability is # <1 and the probability of leaving the system

theniS/T(/7=1_ﬂ).
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If an arriving customer finds the waiting room is full, he or she
may join theretrial group to call again. Theretria probability is
a (O<a < 1) and the probably of leaving the system without
retrid is & (o =1- ). Theretrial times are exponentially
i.i.d. random variableswithrate 1, (0<4,<eo). We aso

assume theretrial areaisinfinite. In addition, some customers
are impatient and may abandon the calls. We assume that if the

waiting time of a customer is beyond athreshold &, he or she
will abandon the call and will not call again. € isarandom
variable with ageneral distribution function 7, (7) and

F,(0) = 0. Finally, the interarrival times, the service times,

the retrial times, and the impatient limit € are mutually
independent. Therefore, the model isa multiple server queue
with retrias, feedbacks, customer impatience, and afinite
buffer, denoted by M /M [ s/ k+G. Note that this model has
captured most of the operating features of practical call centers.
Let N(¢) bethe number of customersin the service and

waiting areaat time ¢ and M (t) be the number of customers

intheretria areaat time ¢ . Thus, we can define
X (¢) =(N(2),M () asthe state of the system at time ¢ with

the state space E€ (0, ..., k) %X (0,...,e°) . To model the
customer impatience, we use the parameters introduced by
Barrer[11] and Movaghar[12] as follows: For #,£€ R and
neN, let

v, (t,€) =the probability that a customer missesits

deadlineduring [¢,¢ + €) , given there are n customersin
thesystemat time ¢ .

(D

Note that because of the independence of all random
variables and the memoryless property of exponential
distributions, the customers will miss their deadlines at rate

y,(t) andfor X (¢), thefuture state is only dependent on

Define 7, (1) = Iingm.
E— 8

the present state. Thus, X (¢) isatwo dimensional Markov
process with state space E.

Throughout the paper, we assume that the statistical
equilibrium or the steady-state of the system has been
reached (the stability condition will be given in Section 3.).

Therefore, X =1im,_,_ X (¢) isthe steady- state of the
systemand ¥, =limy,(¢) . We also define

t—>o0

U, =thetimean arriving customer with aninfinite (or no)

deadline must wait before its service commencesin the long
run, givenitfinds i customersin the system.

From Lemma 3.1 and the equations (3.19), (3.16), (3.15) in
[12], we have

PU, <0)=—H
S:u + 7/i+1

(2)

O( ) i<s
=1, O . (su ,
V= (i—s) == s i>s (3)
q)i—s(slu)
where @ () = j: g.()e“dr (4)

v i
¢ @=|[[a-F | o
The details of obtaining (2) and (3) can befoundin[12].
Based on the model description and the definition of
parameter ¥, , the state transition diagram is shown in Figure 2.

Clearly, thisis an infinite quasi-birth and death (QBD) process.
Due to the difficulty of solving such an infinite QBD process,
we utilize an approximation method similar to the onein [§].

By letting v, betheretrial rate for state (i, /) , we construct a

new Markov process X * from X inthefollowingway: X *
hasthe retrial ratesin the states with j > 7 (0< 7 <oo)as

A i=k 0<j<oo
V;‘j: / 0<i<k-1 OSjSI”- (6)

0o 0<i<k-1 j>r
Based on (6), we can transform the state transition network of X
processin Figure 2 to that of X 4 processin Figure 3 by
linking the dotted linein Figure 2. Then, for j > r +1, the
behavior of X * islikea M / M /1 queue. Obviously, X *
has the state space
E, € (0,..,k) X (0,....r) Uk X (r +1,...,00). Since X * is
transformed from X by changing some vy 'sof X into oo,

the traffic load of X * must be greater than that of X . It

follows that if under certain condition X * reachesthe
steady-state (i.e. has the stationary distribution), X must also
reach the steady state.

From Figure 3, using the lexicographical sequence for the

states, the infinitesimal generator of X 4 can be written as

A, C
B, A, C
=| P2 A © @
Bk—l 1{1{—1 9
B, A,

where Ag,.., A, ; » B.,.,B, ;> C arethe
(r+1)x(r+1) matrices, A, isthe coXoo matrix, B, is

the co X k matrix, and C isthe k X co matrix. Specificaly,
these matrices are as follows:
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i

_{ —(A+jA +iu)

0<i<s0<j<r
s<i<k0<j<r
0<i<s

~(A+jh+suty)
—(A+rA +ifu)

4 ={—(/1+rﬂ.l+sﬂ,u+;/i) s<i<k

a, oA
d, a, od
d, a; ol
dy G 04
d, ay, q.

ay =—(su+od+jot+y,) 0<j<eo
g joa, 1<j<r
Lo ja e sButy, >
q. =oA+spu

ifu

b :{ 1<i<s _{iﬂ,u 1<i<s

=
I

sBu+y, s<i<k ©
b. e

1 1

spu s<i<k

b, =spu+y,
0 bi e, =spu

¢, =jh

d, Arirvy  4e

®

(9)

(10)

(11)

(12)

¢, =jh (13)

(@}
I

I1l. COMPUTATION OF STATIONARY PERFORMANCE
MEASURES

Wefirst prove the existence of the stationary distribution.
Lemma3.1 If p = %ﬂ isfinite, X * hasthe stationary

distribution.

Proof. It followsfrom Figure 3 that X isanirreducible and
aperiodic Markov chain. Note that when the number of

customersin the retrial areais greater than », X 4 pehaves
likea M | M |1 queue with avariable service rate. From
Theorem 2 in [13], we know that if

hd J
I e R
S\ MO, + P+ 7, (1)
then the birth and death process has the stationary distribution.
Let 77,;(¢) =the probability that the system isin state (k, /)

at time ¢ and itslimiting distribution 77, = 7, (¢) . Let

[—00

spu+ ol
P =—— pu — (r < m < o). Thus, under the
mod, +spu+y,
stability condition, we have 7 v = Thy f[ o, (15)

m=r+1

Because 7, () = 0, we get

i J [ spu+ oA ]_ 2 ( spu+ o ] (16)
J=Er+lm=r+1 maﬂ'l-’-sﬂ/u-"-}/k (t) J=Er+lm=r+l maﬂl-’-sﬂﬂ
, spu+od , ,
Let o, =L. Since p,, decreasesin m , there
mad, +spu

must be apositiveinteger M such that pj'w < 1. Notethat the
condition p = %,U isfinite ensuresthat p/, isfinite.

Clearly, wehave 1> p, > p1,., > p),.,....Basedon (16) ,

we
have
A

S sﬂw} STh<S6)+ > TB<D6) 62" 3 [

Jjrlmer| WD@‘FSﬁl JHlmer jl MM j=l J=MAmEMAL

M = M
< Z (p:ﬂ)/_r + ;+1)M_r Z(p;/{)j_M = Z (:0;,-+1)J_r + ;,-+1)M_r :

Jj=r+l J=M+L Jj=rl

Pu
1-p

M

< oo
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Thus, if p = %,U isfinite, the birth and death processis

ergodic, and X 4 hasthe stationary distribution. That
completes the proof.

Under the stability condition, we define the stationary
probability distribution of X as

(= (T, ) 0SS K) Ty oy 1 By oo
Now, we present the main result.

Theorem 3.1 If p= %ﬂ isfinite, the stationary

distribution X ' is given by

T, =T0x%, n, =n,R,(1<i<k),

L oA+,
=l [
where R, = I, I istheidentity matrix,
R, = _AoBIl' R, =-(R,C+ RlAl)Bgl'
andR, =—(R,_,C+R,_A, )B'(3<i<k). T,
isabasic solution of equation T,(R, A, +R, ,C) =0,

W:To{iRl}e+ToRkel~ 3 {ﬂ M‘}

i=0 Jj=r+l (m=r+1 maﬂl + Sﬂﬂ + J/k
where e isa(r + 1) dimension column vector with all
elements 1, and e, isa (7 +1) dimension column vector

(jz2r+1),

(O 01) B, isdefinedin (10) and
a,, oA
d a, ol
o (17)
A, = d, a; ol

dia @, 04

dr akr
—(su+od+ jod +y,) 0<j<r
a,. = —
Vo ~GBurradty)  j=r

d =jok 1<jsr .

Proof. Because X * satisfies the stability condition, X has
the stationary distribution. Thus the stationary distribution
satisfies

(LIRS 7_"1k rﬂk(r+1) ez )Q =10 (18)
227+ Z’% =1

i=0 j=0
For the (k +1)(» +1) columns of the matrix (7), we have

Ty A+ Ty

(19)

YOA =T, (S + QA+ 1O + Y, ) + Ty ((r+l)aﬂ.l+sﬁ,u+7k

From (15) , weobtain

oA+ sfu
Y (r+ oA +sBu+7y,
Ty N0 (19) , we have

sy = . Substituting

Ty A+ Ty O =T, (sBu +razA,) = 0. Then, we
can replace Kk,ﬁk,é with A, ,B,,C to

obtain7,, .-, m, .

A, C
B, A, C
Let B, A, C (20)
Q= LT
B, A, C
BA Ak
Then, (n,,++,m,)Q =0 (21)
From (21), we have
T,A,+mB, =0, (22)
n,C+ nlAl +n,B, =0, (23)
n,C+ 7‘,+1A1+1 +n,.,B.,=0, (24)
n, ,C+m A, +7,B, =0, (25)
n, ,C+m, A, =0. (26)
Because B, (1< i < k) isinvertible, we get
n, =-n,AB;  =n,R,. (27)
Substituting (27) into (23), weobtain
n,=-m,(R,A, +C)B,' =n,R,. (28)
Repeating this substitution, we have t, = R, where

=—(R,,A, ,+R, ;OB *(3<i<k).

Because the order of Q" is (k +1)(r +1) —1, the equation
system matrix (21) has only one basic solution. Letting
(Ty,--+,T,) bethebasic solutionof (21) , wehave

T,C+T,A, =0,and T,(R, A, +R, ,C)=0,from
which T, isobtained. According to Lemma 3.1, we can
deduce W < e . Using

WzTo{iRl}e+ToRkel~i{ﬁ oA+ s }

J=r+1 (m=r+1 maﬂ’l + Sﬁ/’l + 7//(

k-1 r o
n, =T, xi and (15), weobtain ZZ?{U + Z]Z'k], =1
w i=0 j=0 j=0
which satiates the normalization condition. This completes the
proof.
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Under the stationary condition, the probability of missing the
deadline can be determined, and
it follows from (2) that

k-1 r k=1 r
_ _ Vin 29
P=Y3PWU >0)Yn =1 _Sg t (29
' Z{ Z(; "} ;{7i+1+sﬂjz—(; /}
According to the main theorem above, we can obtain some
useful stationary performance measures of this queueing model

asfollows.
(i) Mean number of customers in waiting and service areas

k-1 r oo
E[N]= Zi{Zﬂ'ij}+k .
i=1 | j=0 j=0

(ii) Mean number of busy servers

E[S]z{z}z{z} @

i=1 | j=0 i=s+1 | j=0

(30)

(iii) Mean number of customersin retrial area
r k-1 oo
E[M]ZZ{j'Z”z/}+Zj”k/ (32)
j=1 i=0 j=1
(iv) Probability of blocking P, :zﬂkl_ (33)

J=0

(v) Probability of losing customers P, =aP, + P, (34)

IV. A NUMERICAL EXAMPLE AND CONCLUDING REMARKS

Since the stationary distribution of X is not obtainable, we
cannot compare X * with X . However, as r — oo, itis

clear that X* — X . Another approximation method to

solving the performance measures of X isto use a state space
truncation. That isto use afinite buffer for the retrial area and

denote this finite state space process by X d .Clearly, we adso
have X" — X as r — oo. We can compare our method

based on X with the state-truncation method based on X *
in terms of some stationary performance measures such as P,

and E[M]. The convergenceratesof P, and E[M] are
shown in Figure 4 and Figure 5, respectively. It is clear that

there is an advantage of X * over X in terms of the speed of
the convergence. As 3 increases, this advantage is more
significant. Thisimplies that as the feedback probability is
going up, our method becomes more attractive for numerical
analysis. Note that in Figures 4 and 5, we assume that the
customers' impatience timeis deterministic, and equals 1
minute and 2 minutes, respectively. A numerical exampleis
presented below to show the computation of several stationary
performance measures.

50
27
(minute) > A;* =3 (minute) > @ =08 [=0.15"

{7 =5(minute),s =3+ k=8> r =5 distribution of &

Consider a system with the following parameters: At =

is _J0 7<6 Using Theorem3.1and (29) ~ (34) >
Fy@)= 1 720

we can obtain the stationary distribution, and the useful
performance measures, as follows:

7, =[0.04560653828708 » 0.01204231115849 »
0.00146863657661 * -+ + 0.00000016526970]
7, =[0.14486782750014 > 0.03629951129458 »
0.00401864390357 » --- » 0.00000030257655]
m, =[0.23106046457524 » 0.05181149560296 *
0.00483759547587 » -+ » 0.00000023391465]
7, =[0.24876151520090 » 0.04177242352595 -
0.00311475585855 + -+ 0.00000009618788]
m, =[0.11416560738966 > 0.01618501339324 »
0.00104796846634 » --- + 0.00000002460865]
7, =[0.03060603998876 > 0.00388122401624 »
0.00022882865026 * -+ + 0.00000000561211]
7, =[0.00567674922969 » 0.00066989891957 -
0.00003787383455 » --- » 0.00000000213890]
., =[0.00079371056804 > 0.00009526377084 »
0.00000616650578 » --- » 0.00000000157569]
7, =[0.00008330156668 > 0.00001637355955 »
0.00000190013823 » --- » 0.00000000144567]
g1, =0.13020608080233*€-009

g1 =0.01325860883835*€-009 » -

E[N]=2.38757286440690 : E[S, | =2.16343283759263

. E[M]=0.19485737706694 :

P, =1.017734284311805*e-004 : P, = 0.29155425430134
P, =0.29157460898702 -

We also present some performance measures of two casesin
Figures 6-9. In these figures, Cases | is a system where the

impatiencetime @ is deterministic namely

0 r<@ —
F,(7)= ,and @ =0 ; Case II asystem
1 726
where @ isexponential namely F,(7) =1-e™"", and
0=v".

From these figures, we find that the probability of losing
customers for the deterministic impatience time (casel) is
lower than the stochastic impatience time (case I1). However,
the probability of blocking isjust the opposite. This means that
the variation in the impatience time increases the probability of
losing the customers but decreases the probability of blocking.
InFigure8, itisnotedthat ¥, =limy,(¢) inCasell ishigher
t—00
than in Case | for the entire i value range. Figure 3 shows that
the feedback probability B affects al i levelswhile the retrial
probability o affectsonly i=k level. Therefore, the performance
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measures of the system are more influenced by the feedback
than by the retrial.

In this paper, we have formulated a QBD process for a
multi-server queueing system with the major features of a call
center and have devel oped a computational procedure for the
stationary performance measures based on an approximate but
solvable equivalent system to the original system.. The
procedure provides practitioners or call center managers with a
quantitative performance evaluation tool in their system design
and workforce scheduling. A direction for future research isto
conduct an empirical study on the distribution of theimpatience
time and the estimation of the feedback and retrial probabilities
for apractical call center.
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