
 
 

 

  
Abstract— We consider a finite buffer queueing model with 

several key features of call centers, such as retrials, feedbacks, 

and impatience. In addition, because we do not completely 

understand the customer impatience behavior, we use a general 

distribution for the maximum waiting time before abandoning the 

call. We develop a QBD process with infinite state space for the 

queue in a call center situation. To solve for the stationary 

performance measures, we introduce an effective approximation 

method, and  numerical examples have been presented to show 

the effectiveness of our method.  

 
Index Terms— Multi-server queues, call centers,    retrials,    

feedbacks,    QBD process.  

I. INTRODUCTION 
Queueing models are the main quantitative technique in 
evaluating the operating performance of call centers. There are 
three common characteristics in the customer’s (or caller’s) 
behavior: (1) a customer may try to call again if he or she gets a 
busy signal; (2) for a customer on hold, if his or her waiting 
time reaches a limit, he or she will hang up and leave; and (3) a 
customer may call again if his or her problems are not solved 
completely after a service (see [1], [14]). Therefore, we present 
a queueing model with customers’ retrials, feedbacks, and 
impatience. In addition, to realistically model call centers, we 
assume a finite buffer to hold the waiting customers. There are 
many works on queueing models for call centers due to the 
recent and rapid growth of this industry. For retrial queueing 
models, most existing studies are on queues with one or no 
waiting spot (see [10]). Another class of queueing models is the 
multi-server queue with both customer retrials and impatience. 
Most studies in this class focus on models with only one or two 
servers (see [2], [3], and [4]). Since the retrial models with 
many waiting spots and/or multiple servers usually require the 
infinite state space Quasi-Birth-and-Death (QBD) processes, it 
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is extremely difficult or even impossible to obtain the stationary 
performance measures of  the systems. However, to 
quantitatively evaluate the performance of practical call 
centers, we need to consider these difficult models.  
There are mainly three types of methods to solve the QBDs for 
call center models. Type 1 is to formulate a QBD process with a 
special transition probability matrix structure where the entries 
become the same after a certain level (see [5]). For this kind of 
QBDs, a matrix geometric solution can be obtained in terms of 
a rate matrix which can be evaluated using a numerical method. 
Type 2 is to use the state space truncation to convert infinite 
state models to finite state ones which can be solved (see [6], 
[7]). Type 3 is to approximate the original infinite QBD model 
by another infinite one which is solvable (see [8], [9], and [10]). 
The model of this paper has not been studied via QBD approach 
in the past. We formulate the QBD process for a  call center 
system with all its main features. To solve the QBD process, we 
proposed a method of Type 3 in which the original model is 
approximated by a simpler and solvable QBD process. Then, 
the stationary performance measures of our original model can 
be obtained via this easier-to-solve QBD process. Numerical 
examples have been used to show the effectiveness and 
efficiency of our method.  

The rest of the paper is organized as follows. In section 2, 
we formulate a QBD process model for the queueing system 
with the main features of call centers. In section 3, we present 
the approximation method to solve the QBD process model and 
give some useful performance measures. In section 4, we 
provide some computational results to discuss the effectiveness 
and the efficiency of the approximation method and conclude 
the paper with a summary.  

II. MODEL FORMULATION – A QBD PROCESS 
Consider a queueing system with a waiting and service area and 
a retrial area (see Figure 1). In the waiting and service area, 
there are s  servers and sk − < ∞  waiting spots (or the system 
can hold a maximum of k waiting and in-service customers.)  
We assume that customers arrive to the system according to a 
Poisson process with rate λ , and the service time is 
exponentially distributed with rate μ . The service discipline is 
a “first-come-first-served” (FCFS) sequence. An after-service 
customer may enter the retrial area and call again for further 
service. This behavior is called the feedback. The feedback 
probability is β  <1 and the probability of leaving the system 
then is )1( βββ −= .  
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If an arriving customer finds the waiting room is full, he or she 
may join the retrial group to call again. The retrial probability is 
α  (0<α < 1) and the probably of leaving the system without 
retrial is α ( αα −= 1 ). The retrial times are exponentially 
i.i.d. random variables with rate 1λ , (0< 1λ < ∞ ). We also 
assume the retrial area is infinite. In addition, some customers 
are impatient and may abandon the calls. We assume that if the 
waiting time of a customer is beyond a threshold θ , he or she 
will abandon the call and will not call again. θ  is a random 
variable with a general distribution function )(τθF  and 

0)0( =θF . Finally, the interarrival times, the service times, 

the retrial times, and the impatient limit θ  are mutually 
independent. Therefore, the model is a multiple server queue 
with retrials, feedbacks, customer impatience, and a finite 
buffer, denoted by GksMM +/// . Note that this model has 
captured most of the operating features of practical call centers. 

Let )(tN be the number of customers in the service and 
waiting area at time t  and )(tM be the number of customers 
in the retrial area at time t . Thus, we can define 

))(),(()( tMtNtX =  as the state of the system at time t  with 
the state space ),...,0(),...,0( ∞×∈ kE . To model the 
customer impatience, we use the parameters introduced by 
Barrer[11] and Movaghar[12] as follows: For +∈ Rt ε, and 

∈n N,  let 
 ),( εψ tn ≡ the probability that a customer misses its 

deadline during ),[ ε+tt , given there are n  customers in 
the system at time t . 

Define 
ε

εψγ
ε

),(
lim)(

0

t
t n

n →
= .                        （1） 

Note that because of the independence of all random 
variables and the memoryless property of exponential 
distributions, the customers will miss their deadlines at rate 

)(tnγ  and for )(tX , the future state is only dependent on 

the present state. Thus, )(tX  is a two dimensional Markov 
process with state space E. 

Throughout the paper, we assume that the statistical 
equilibrium or the steady-state of the system has been 
reached (the stability condition will be given in Section 3.). 
Therefore, )(lim tXX t ∞→=  is the steady- state of the 

system and 
∞→

=
t

ii t)(limγγ . We also define 

 iU ≡ the time an arriving customer with an infinite (or no) 
deadline must wait before its service commences in the long 
run, given it finds i  customers in the system.  

From Lemma 3.1 and the equations (3.19), (3.16), (3.15) in 
[12], we have 
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The details of obtaining (2) and (3) can be found in [12]. 
Based on the model description and the definition of 
parameter iγ , the state transition diagram is shown in Figure 2. 
Clearly, this is an infinite quasi-birth and death (QBD) process. 
Due to the difficulty of solving such an infinite QBD process, 
we utilize an approximation method similar to the one in [8]. 
By letting ijv  be the retrial rate for state ),( ji , we construct a 

new Markov process AX  from X  in the following way: AX  
has the retrial rates in the states  with rj >  )0( ∞<≤ r as 
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Based on (6), we can transform the state transition network of X 
process in Figure 2 to that of AX  process in Figure 3 by 
linking the dotted line in Figure 2. Then, for 1+≥ rj , the 

behavior of AX  is like a 1// MM  queue. Obviously, AX  
has the state space 

),...,1(),...,0(),...,0(1 ∞+×∪×∈ rkrkE . Since AX  is 

transformed from X  by changing some ijv ’s of X  into ∞ , 

the traffic load of AX  must be greater than that of X . It 
follows that if under certain condition AX  reaches the 
steady-state (i.e. has the stationary distribution), X  must also 
reach the steady state. 

From Figure 3, using the lexicographical sequence for the 
states, the infinitesimal generator of AX can be written as 
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where 10 ... −kA,,A ， 1B,,B −k...1 ，C  are the 

)1()1( +×+ rr  matrices, kA~  is the ∞×∞  matrix,  kB~  is 

the k×∞  matrix, and C~  is the ∞×k  matrix. Specifically, 
these matrices are as follows: 
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III. COMPUTATION OF STATIONARY PERFORMANCE 
MEASURES 

We first prove the existence of the stationary distribution. 

Lemma 3.1  If μ
λρ s=  is finite, AX  has the stationary 

distribution. 
Proof.  It follows from Figure 3 that AX  is an irreducible and 
aperiodic Markov chain. Note that when the number of 
customers in the retrial area is greater than r , AX  behaves 
like a 1// MM  queue  with a variable service rate. From 
Theorem 2 in [13], we know that if 
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then the birth and death process has the stationary distribution. 
Let )(tkjπ ≡ the probability that the system is in state ),( jk  

at time t  and its limiting distribution 
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Thus, if μ
λρ s=  is finite, the birth and death process is 

ergodic, and AX  has the stationary distribution. That 
completes the proof. 
 
Under the stability condition, we define the stationary 
probability distribution of AX  as 

,...,),0),,...,(( )2()1(0 ++≤≤= rkrkiriii kiππ ππππ  
Now, we present the main result. 

Theorem 3.1 If μ
λρ s=  is finite, the stationary 

distribution AX is given by 
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where e  is a ( 1+r ) dimension column vector with all 
elements 1, and 1e  is a ( 1+r ) dimension column vector 
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Proof. Because AX  satisfies the stability condition, AX  has 
the stationary distribution. Thus the stationary distribution 
satisfies 
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For the )1)(1( ++ rk  columns of the matrix (7), we have 
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Then, 0Qππ =*
0 ),,( kL                                         （21） 

From (21),  we have   
           0BπAπ =+ 110.0 ,                                        （22） 

0BπAπCπ =++ 22110 ,                                (23) 

M   
    0BπAπCπ =++ ++++ 2211 iiiii ,                      （24） 

            M   
0BπAπCπ =++ −−− kkkkk 112 ,                   （25） 

0AπCπ =+− kkk 1 .                                       （26） 

Because )1( kii ≤≤B  is invertible, we get  
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which satiates the normalization condition. This completes the 
proof.  
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Under the stationary condition, the probability of missing the 
deadline can be determined, and  
it follows from (2) that  
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According to the main theorem above, we can obtain some 
useful stationary performance measures of this queueing model 
as follows. 
（i） Mean number of customers in waiting and service areas  
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（ii） Mean number of busy servers 
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（iii） Mean number of customers in retrial area     
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（iv） Probability of blocking   ∑
∞

=

=
0j

kjBP π    （33） 

（v） Probability of losing customers  IBL PPP += α （34） 

IV. A NUMERICAL EXAMPLE AND CONCLUDING REMARKS 

    Since the stationary distribution of X is not obtainable, we 
cannot compare AX  with X . However, as ∞→r , it is 
clear that AX → X . Another approximation method to 
solving the performance measures of X is to use a state space 
truncation. That is to use a finite buffer for the retrial area and 
denote this finite state space process by FX .Clearly, we also 
have FX → X as ∞→r . We can compare our method 
based on AX  with the state-truncation method based on FX  
in terms of some stationary performance measures such as LP  

and ][ME . The convergence rates of LP  and ][ME  are 
shown in Figure 4 and Figure 5, respectively. It is clear that 
there is an advantage of AX over X in terms of the speed of 
the convergence. As β  increases, this advantage is more 
significant. This implies that as the feedback probability is 
going up, our method becomes more attractive for numerical 
analysis. Note that in Figures 4 and 5, we assume that the 
customers’ impatience time is deterministic, and equals 1 
minute and 2 minutes, respectively. A numerical example is 
presented below to show the computation of several stationary 
performance measures. 

Consider a system with the following parameters: 
27
501 =−λ

（minute）， =−1
1λ 3（minute）， =α 0.8， β =0.15，

=−1μ 5（minute）, =s 3， =k 8， =r 5，distribution of θ  

is 
⎩
⎨
⎧

≥
<

=
θτ
θτ

τθ 1
0

)(F . Using Theorem 3.1 and（29）~（34)，

we can obtain the stationary distribution, and the useful 
performance measures, as follows: 

=0π [0.04560653828708，0.01204231115849，
0.00146863657661，…，0.00000016526970] 

=1π [0.14486782750014，0.03629951129458，
0.00401864390357，…，0.00000030257655] 

=2π [0.23106046457524，0.05181149560296，
0.00483759547587，…，0.00000023391465] 

=3π [0.24876151520090，0.04177242352595，
0.00311475585855，…，0.00000009618788] 

=4π [0.11416560738966，0.01618501339324，
0.00104796846634，…，0.00000002460865] 

=5π [0.03060603998876，0.00388122401624，
0.00022882865026，…，0.00000000561211] 

=6π [0.00567674922969，0.00066989891957，
0.00003787383455，…，0.00000000213890] 

=7π [0.00079371056804，0.00009526377084，
0.00000616650578，…，0.00000000157569] 

=8π [0.00008330156668，0.00001637355955，
0.00000190013823，…，0.00000000144567] 

=12,8π 0.13929608080233*e-009 ，

=13,8π 0.01325860883835*e-009， …  

[ ] =NE 2.38757286440690； [ ] =NSE 2.16343283759263

； [ ] =ME 0.19485737706694；  

=BP 1.017734284311805*e-004；  IP = 0.29155425430134

；     LP = 0.29157460898702 。   
 
We also present some performance measures of two cases in 

Figures 6-9. In these figures, Cases I is a system where the 
impatience time θ  is deterministic namely 

⎩
⎨
⎧

≥
<

=
θτ
θτ

τθ 1
0

)(F , and θ =θ ；Case Ⅱ a system 

where θ  is exponential namely τ
θ τ veF −−= 1)( , and 

θ = 1−v . 
From these figures, we find that the probability of losing 
customers for the deterministic impatience time (case I) is 
lower than the stochastic impatience time (case II). However, 
the probability of blocking is just the opposite. This means that 
the variation in the impatience time increases the probability of 
losing the customers but decreases the probability of blocking. 
In Figure 8, it is noted that  

∞→
=

t
ii t)(limγγ  in Case II is higher 

than in Case I for the entire i value range. Figure 3 shows that 
the feedback probability β affects all i levels while the retrial 
probability α affects only i=k level. Therefore, the performance 
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measures of the system are more influenced by the feedback 
than by the retrial.  
 In this paper, we have formulated a QBD process for a 
multi-server queueing system with the major features of a call 
center and have developed a computational procedure for the 
stationary performance measures based on an approximate but 
solvable equivalent system to the original system.. The 
procedure provides practitioners or call center managers with a 
quantitative performance evaluation tool in their system design 
and workforce scheduling. A direction for future research is to 
conduct an empirical study on the distribution of the impatience 
time and the estimation of the feedback and retrial probabilities 
for a practical call center.    
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Figure 1: The system. 
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