
 
 

 

  
Abstract—To suit the normal cavity expansion of concrete 

target penetrated by a projectile, a Normal Curve Surface 
(NCS) coordinate system is constructed. By considering the 
dynamic behavior of material under high-velocity and 
high-pressure shock and assuming that the particle velocity, the 
wave propagation and the pressure are all in the normal 
direction of outer surface of the projectile nose, a set of 
dominating equations are established. The analytical solution of 
resistant forces on the projectile-nose is obtained. Some 
calculations and comparisons with tests are made. 
 

Keywords—Coordinate system, concrete target, shock wave, 
cavity expansion.  
 

I. INTRODUCTION 
    Much effort has been directed at predicting the penetration 
of a projectile against concrete targets. In the past century, 
most of the achievements are on the penetration depth, 
perforation thickness and ballistic limit. Recently, a lot of 
interests have been focused on the analytical model of the 
resistant force of target on the projectile. Typical work has 
been done by Forrestal, et al[1]-[5]. Based on the 
cavity-expansion theory, they derived a series of analytical 
penetration formulas of resistant force for soil, rock, and 
concrete material. Li, et al[6]-[8] summarized and developed 
some work of analytical formula. All these theoretical 
achievements are based on the cylindrical cavity and 
spherical cavity analysis. In the Forrestal’s dynamic 
cavity-expansion theory, a constant propagation velocity of 
the interface between plastic and elastic response regions, a 
constant expanding velocity of the cavity and a spherically 
symmetric shape of cavity were assumed. Assuming that the 
propagation of stress wave, the displacements of medium and 
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the particle velocities are all in the normal direction of outer 
surface of projectile, Gao et al[9]-[12] presented an idea of 
normal expansion theory (NET). In this NET model, the 
propagation velocity of stress wave may be not constant, the 
expanding velocity of cavity may be not constant and the 
shape of cavity may be not spherical. To describe the normal 
expansion theory more accurately, it is necessary to establish 
a more perfect theory system. To suit the analysis of normal 
expansion, it is necessary to construct a Normal Curve 
Surface (NCS) coordinate system. 
    For high-velocity and high-pressure impact, the amplitude 
of stress waves will greatly exceed the dynamic flow strength 
of a material. In this case, in comparison with the 
compressive hydrostatic component of the stress, one can 
effectively neglect the shear stresses. During impact, a shock 
wave occurs. It has a steep front. At the shock front, there is a 
discontinuity in particle velocity, pressure, and density. 
Based on some phenomenon of experiments and tests, the 
following assumptions are presented. 1). A shock front is a 
steep discontinuous surface. 2). The shear modulus of the 
material is assumed to be zero. 3). In comparison with the 
compressive strength, the tensile strength can be neglected. 
4). Body forces (such as gravitational) and heat conduction at 
the shock front are negligible. 5). Material does not undergo 
phase transformations. 6). During impact, the responding 
medium of concrete expands in the external normal direction 
of the outer surface of the projectile. The particle velocity and 
the wave velocity of responding medium are parallel. Their 
direction is the same as the external normal direction of the 
projectile surface. 7). During impact against concrete target, 
the projectile is rigid (is no-deformable). 
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Fig.1 The scheme of penetrating procedure of a projectile 
against concrete target 
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Fig.2 The Cartesian coordinates and NCS coordinates 
 

II. THE NORMAL CURVE SURFACE COORDINATE SYSTEM AND 
THE EXPRESSION OF FIELD THEORY  

    To suit the normal expansion of particles and stress wave 
of the responding medium of target material, a Normal Curve 
Surface coordinate system (NCS) is chosen and constructed, 
which is shown in Fig.2. Similar to the spherical coordinate 
system, this normal curve surface coordinate system has two 
angle coordinates and one line coordinate. The difference is 
in line coordinate. These two angle coordinates are 
circumferential angle coordinate θ and meridian angle 
coordinate ϕ  respectively. The line coordinate is normal 
coordinate nx , which is in the external normal direction of the 
outer surface of projectile, that is, in the direction of 
curvature radius. In Fig.2, 1x - 2x - 3x  is the Cartesian 

coordinate system and 1e ， 2e and 3e are corresponding unit 
vectors. 'A  is a point lied in the surface of projectile. A  is a 
point of target. R  is the curvature radius. R  is a part of 
curvature radius cut by 3x  axis.ubmit your manuscript 
electronically for review. 
    To obtain some total derivative, gradient, divergence of 
scalars, vectors and tensors, the following derivations are 
made by converting the Cartesian coordinate into the normal 
curve surface coordinate.  

    Taking ne , ϕe  and θe as the unit vectors in the directions 
nx , ϕ  and θ  respectively, there are the following 

transformation relations between them and 1e , 2e  and 3e . 
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Making the differential of equation (1), leads to 

⎪
⎩

⎪
⎨

⎧

−−=

+−=

+=

θϕθϕ
θϕϕ

θϕϕ

ϕθ

θϕ

θϕ

ddd
ddd

ddd

n

n

n

cossin
cos

sin

eee
eee

eee

                                   （2
） 
From the analysis of spatial geometry, we can obtain the 
differential of radius vector as 

θϕϕ θϕ dxRdxRdxd nnnn sin)()( ++++= eeer
（ 3

） 

It can be seen that, the components of rd  are 
)sin)(  ,)(  ,( θϕϕ dxRdxRdx nnn ++  respectively. 
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The total derivative for a vector v  can be written by 

Dt
D

v
Dt

Dv
Dt

D
v

Dt
Dv

Dt
D

v
Dt

Dv
Dt
D n

n
n

n
θ

θ
θ

θ
ϕ

ϕ
ϕ

ϕ
e

e
e

e
e

ev +++++=
(6) 

  Noting that ne  and ϕe  are independant of nx  and θe  is 

independent of nx  or ϕ , there are 
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Substituting equation (7) into equation(6)，leads to 
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  The gradient of a vector v , that is v∇ , is a second-order 
tensor. By means of the relation 

θθθθϕϕϕϕ eeeeeev dvdvdvdvdvdvd nnnn +++++= )()()(
 and equation (2), we can obtain the following 
relations.
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    By means of the relation jiji dd )()()( rvrv ∇=⋅∇  and 
substituting equation (3) into it, leads to 
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  Because d d= ∇ ⋅v v r ，comparing equation (9) and (10), 
we can obtain the following relations. 
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    To obtain the divergence of a vector v , that is vdiv , the 

relation )tr(div vvv ∇=⋅∇=  is used. In term of the 

characteristic of )tr(N , we can obtain the following result 
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  To obtain a divergence of the second-order tensor A , which 
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where a  is a vector. 
    As a vector, the components of divergence of the 
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    Substituting θϕ eee ,,n  into equation (11), leads to 
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  Substituting equation (15) and (16) into equation (13) and 
using equation (12), leads to 
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III. THE GOVERNING EQUATIONS FOR CONTINUUM 
MECHANICS  

As a region of responding medium, behind the shock front, 
all the physical variables of the material in this region are 
continuous. There is no discontinuity. By means of the theory 
of continuum mechanics, for the case of no-shear stress and 
no-shear strain, the relations of conservation of mass, 
conservation of momentum and conservation of energy in 
general Cartesian coordinate system can be respectively 
written as 
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 denote the total derivative symbol in Lagrangian 
coordinate, ρ  is the density of material, div( ) stands for 
divergence of a tensor field, u  and p  are particle velocity 
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    At the shock front, there is a discontinuous surface at 
which there is a discontinuity in variables p , ρ  and u . The 
former equations are not appropriate. But by means of further 
analysis based on the conservation of mass, momentum and 
energy, the following leaping equations can be obtained. 
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Where Δ  is the difference of some physical variables 
(scalar, vector or tensor) between ahead of and behind the 
shock front surface, ⋅ denotes the dot product of two tensors, 

nn uc −=ν , ne  is unit vector in normal direction of shock 

front surface, nc  is the wave velocity, nu  is the particle 
velocity. 
 

IV. THE NORMAL EXPANDING THEORY  
In terms of the assumptions mentioned above. During impact, 
the responding medium of concrete expands in the external 
normal direction of the surface of the projectile (especially 
including the nose part). The particle velocity, the velocity of 
expanding wave and the pressure have the same direction as 
the normal direction of projectile-nose surface, hence there 
are 
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where c  is wave velocity vector. 
    In this case, the total derivative of density (as a scale) and 
velocity (as a vector) can be written by 
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The divergence of velocity (as a vector) and pressure (as a 
tensor) can be written by 
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where nx  is the coordinate in direction ne . 
    For the medium behind the shock front, substituting 
equation (27) and (28) into equations (20), (21) and (22), 
leads to 
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At the shock front, equations (23), (24) and (25) can be 

written as 
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                              (34) 
where sfρ  is density of compressed medium near the shock 

front, 0ρ  is the original density of the material, 
l
nu  and 

l
np  

are the particle velocity of responding medium and the 
pressure near the shock front. 

 

V. EQUATIONS OF STATE AND SOLUTIONS  
To obtain further solutions about equation (32), (33) and 

(34) and to solve the equation (29), (30) and (31) effectively, 
an additional equation of state (EOS) is required. For the 
concrete material concerned in this study, a constitutive 
relationships about the ultimate density model[9,10] 
(Rankine-Hugoniot equations) is suggested. In ultimate 
density model, the density of concrete is constant. In free 
region of medium, 0ρρ = , in compressive region of medium 
undergoing high-pressure impact, 

*ρρ =  where 
*ρ  is the 

ultimate density, whose Hugoniot curve is shown in Fig.3. 

 
Fig.3. Hugoniot curve of concrete 

  By means of this model, at the shock front, substituting 
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*ρρ =sf  into equations (32), (33) and (34), leads to 
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Behind the shock front, substituting 
*ρρ =sf  into equations 

(29), (30) and (31), one can obtain the solutions as 
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where l  is the propagating distance of the wave front surface 
relevant to the surface of projectile. 
    On the surface of projectile-nose, that is for 0=nx , there 
are 

),0( tuu nn =                                                                     (41) 
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VI. DYNAMIC EQUATIONS OF THE PROJECTILE DURING 
PENETRATION  

By use of the pressure acting on the surface of the 
projectile in equation (42), the dynamic penetration equation 
of the projectile can be written as 

dsuAJmm dnp
S

addfp

A

ϕσαξ cos)()( 2 +−=−+ ∫∫&&&&

                (44) 
dsrzuAmJJ dn

S
paddfp

A

βϕϕσξα cos)cossin()()( **2 −⋅+=−+ ∫∫&&&&

 
                                                                                         (45) 

where pm  is the mass of projectile, dσ  is dynamic 
compressive limit stress which is expressed by Holmquist et 

al[13] as )]1.0ln(007.01][)/(6.11[ 0
61.0 vp clockcd ++= σσσ  in 

which cσ  is static compressive limit stress, lockp  is locked 

pressure of concrete material and 0v  is striking velocity of 

projectile, pJ  is the moment of inertia of the projectile 

relative to axes *r . The variable ξ
&&

 is tangent acceleration of 
the centroid trajectory of the projectile and its direction is 
identical with the projectile axes *z , α&  is angular velocity 

of the projectile relative to axes *r , AS  is the interface curve 

surface between projectile and target. 
∫∫=

AS
pf dsBm ϕ2cos

 
dsrzBJ

AS
pf βϕϕ 22** cos)cossin( −= ∫∫

,
dsrzBJ

AS
padd βϕϕϕ cos)cossin(cos ** −= ∫∫

,
dsrzBm

AS
padd βϕϕϕ cos)cossin(cos ** −= ∫∫

, the others 
parameters were shown in Fig1. 
    The relationship among the normal velocity

nu , axial 
velocity ξu  and angular velocity α&  and the relationship 

among their acceleration are as follows 
βϕϕαϕξ cos)cossin(cos ** rzuun −−= &                       (46) 

βϕϕαϕξ cos)cossin(cos ** rz
dt

dun −−= &&&&                              (47) 

 

VII. CALCULATION AND COMPARISON WITH EXPERIMENTS  
By means of the method, the calculation and comparison 

with the experiments are made on the deceleration and depth 
of penetration characteristics of ogive-nose projectile shown 
in Fig.4 perpendicularly penetrating into thick concrete 
target, where R  is curvative radius of the meridian arc of 
nose, r2 is the calibre diameter of projectile shank, 

)2/( rR=ψ  is the caliber-radius-head (CRH). We conducted 
the deceleration and depth of penetration experiments with 
the ogive-nose steel projectile. In the experiments, two kinds 
of projectiles were used, one has short nose and the other has 
long nose. 

 
Fig.4 The projectile nose used in experiments    

 
Fig.5 Curves of deceleration from experiment           

                                and analytical calculation 
The density of concrete target is 3/2400 mkg=ρ  and the 

compressive strength of it is 27 /100.3 mNc ×=σ . Referring 
Reference [13], the locked pressure is token as 

7.16/ =clockp σ . The limit density of concrete target is 
3* /2640 mkg=ρ  which was obtained from experiments[12]. 

Table 1 summarizes results from 6 experiments for striking 
velocities range from 538m/s to 763m/s and the lists 
corresponding calculating results. 
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Table 1  Data summary for projectiles and results from experiments 
and calculation 

Shot 
Number 

Proje
ctile 
mass 
(kg) 

R 
(m) 

r 
(m) 

ψ  
 

Strik
ing 
velo
city 
(m/s

) 
 

Pen
etrat
ion 
dept
h(m

) 
fro
m 

exp
erim
ent 

Pene
tratio

n 
dept
h(m) 
from 
calcu
latio

n 

02-0001 3.777 0.17679 0.031 2.85 763 0.83 0.82 
02-0002 3.034 0.09453 0.031 1.53 577 0.34 0.38 
02-0003 3.747 0.09453 0.031 1.53 666 0.56 0.57 
02-0004 3.022 0.09453 0.031 1.53 538 0.37 0.37 
02-0005 3.154 0.09453 0.031 1.53 630 0.46 0.41 
02-0006 3.133 0.09453 0.031 1.53 __ 0.48 __ 

The deceleration curves vs time from experiments and 
analytical calculation for number 02-0003 are shown in 
Fig.5. From the results, it can be seen that, the results from 
the analytical calculation by the method in this paper are in 
good agreement with those from the experiments. 
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