
A Novel Multi Exponentiation Method

Raveen R. Goundar ∗

Abstract—The efficiency and security of most ellip-
tic curve cryptosystems are based on multi exponenti-
ation, such as the verification process in elliptic curve
digital signature algorithm. Simultaneous methods
are considered to be the most efficient for multi ex-
ponentiation. In this paper, we propose a method to
construct an addition chain for simultaneous multi ex-
ponentiation, which has never been considered in the
literature before. We discuss the strategy for the two
dimension case, b1

eb2
f and assume that such strategy

could be generalize for arbitrary cases.

Keywords: Addition chain, Fibonacci sequence, golden

ratio, elliptic curve cryptosystems.

1 Introduction

Most elliptic curve cryptosystems [6, 8] require compu-
tations of several exponentials with distinct bases and
distinct exponents which are termed as multi exponentia-
tion. The computation of each exponentiation separately
and multiplying the result at the end could be very costly.
In such case, simultaneous methods are considered to be
more efficient for multi exponentiation. The conventional
simultaneous multi exponentiation method is known as
Shamir’s trick [1]. It is dependable on binary repre-
sentation of exponents and utilizes square-and-multiply
method, hence susceptible to simple power analysis at-
tack (SPA), recently discovered by kocher [7]. It has been
suggested by Byrne et al. [2] that the use of doubling-free
addition chain can provide resistant to SPA attack, hence
we will consider it in our case. Note that addition chain
involving one doubling that is numeral 2 is unaffected by
SPA attack since it is a necessary computation in almost
all exponentiations in elliptic curve cryptosystems. The
use of addition chain for simultaneous multi exponenti-
ation has never been considered in the literature before.
Conventionally, addition chains are not suitable for vari-
able exponents and fixed bases but only suitable for fixed
exponent and variable bases [9, 5]. In this paper, we will
propose a novel method for simultaneous multi exponen-
tiation using addition chain.

We will extend the previously proposed golden ratio
addition-subtraction chain (GRASC) method [3] to suit
the computation of multi exponentiation for our purpose.
We will term it as simultaneous golden ratio addition

∗Graduate School of Mathematics and Information Science,
Kochi University, Japan. Email: raveenrg@is.kochi-u.ac.jp
Manuscript Submitted: October 9, 2007.

chain method or SGRAC method in short. We will con-
sider computation of two dimension case, that is b1

eb2
f

where b1, b2 are element of an abelian group and e, f ∈ Z .
We assume that such strategy could be generalize for ar-
bitrary cases.

The rest of this paper is organized as follows. In sec-
tion 2, we give brief overview on addition chains and Fi-
bonacci sequence. We also review the GRASC method.
In section 3, we discuss the SGRAC method and state
its algorithm. Later we propose a multi exponentiation
algorithm based on SGRAC method. In section 4, we
discuss our experimental results.

2 Background

In this section, we briefly state some classic definitions
used in the study of addition chains and an overview on
Fibonacci sequence. More details could be cited from [1,
4].

Definition 1 An addition chain computing an integer
k is given by two sequences v = (v0, . . . , v�) and w =
(w1, . . . , w�) such that v0 = 1 , v� = k , vi = vr +
vs , for all 1 ≤ i ≤ � with respect to wi = (r, s) and 0 ≤
r, s ≤ i− 1 . The length of the addition chain is �.

Definition 2 An addition-subtraction chain is similar to
an addition chain except that the coordinate vi = vr + vs

is replaced by vi = vr + vs or vi = vr − vs.

Definition 3 The Fibonacci sequence is defined as
Fn = Fn−1 + Fn−2 for n ≥ 2 where F0 = 0 and F1 = 1.

The Fibonacci sequence has many properties [4, 10] we
recall one here, by stating the following Binet’s Formula.

Theorem 1 Binet’s Formula:

Fn =
φn − (1− φ)n

√
5

, ∀n ∈ N ,

where φ = 1+
√

5
2 is the positive root of the real polynomial

X2 −X − 1 .

IAENG International Journal of Applied Mathematics, 37:2, IJAM_37_2_04
__

(Revised online publication: 17 June 2008)

From the above theorem it is easy to deduce the following
classical result.

lim
n→∞

Fn

Fn−1
= φ , (1)

where φ is a golden ratio, also called a golden section.

2.1 Review on GRASC Method [3]

Here we review the GRASC method for finding doubling-
free short addition-subtraction chain by utilizing a precise
golden ratio.

The GRASC method considers making chain starting
from the last term, which is the input k and aims to fol-
low a Fibonacci pattern using the fact from equation (1).
Hence, it tries to maintain a near golden ratio value be-
tween two succeeding terms. It begins by letting

u0 = k ,

u1 = [u0 × φ−1] ,
ui = ui−2 − ui−1for i = 2, 3, . . . (2)

Here ui denotes the reverse of vi that is, ui = v�−i . If
continued with the procedure (2), ui will exponentially
deviate from (ui−1 × φ−1) as i increases. In order to
overcome this problem, a parameter MAXIMALGAP is
introduced, such that the above procedure (2) terminates
whenever

|ui − (ui−1 × φ−1)| > MAXIMALGAP or ui � ui−1

2
.

In such case, a new ui is defined to be the nearest in-
teger of (ui−1 × φ−1). Then procedure (2) is resumed
with ui−1 and new ui as the initial terms. The old ui

is included in the chain between ui−1 and new ui, as a
consequence there is a gap gj = |old ui−new ui|, which is
included in the storage. Note that, subtraction is involved
whenever old ui < new ui. Another parameter LOWER-
BOUND is introduced to cease the procedure (2) when
ui ≤ LOWERBOUND. The storage initially consists of
1, 2, and 3. Later gj ’s are included in the storage. Once
the execution of procedure (2) is ceased, the last two ui’s
of the chain is included in the storage. Thus, using the
storage, a short addition chain is found randomly without
using doubling, except for numeral 2. Finally, this chain
is joined to the third last ui of the previous chain result-
ing in a moderately short addition-subtraction chain for
the given input k. Note that the storage capacity is de-
pendent on the experimentally selected values of the two
parameters.

3 Simultaneous golden ratio addition
chain method (SGRAC method)

In the case of multi exponentiation, such as computa-
tion of be0

1 bf0
2 , we shall follow the GRASC method with

ui = e0x1 + f0x2 as an input. We pair the exponents
with variables x1 and x2 to distinguish between them.

We select a suitable parameters, MAXIMALGAP and
LOWERBOUND of the form eix1 + fix2. We compare
the coefficients of each variables while checking the con-
ditions given by the parameters. If either of the coef-
ficients does not satisfy the condition, we take the re-
quired actions as mentioned in GRASC method. Note
that SGRAC method will include negative numbers as
the storage, that is a gap gj =(old ui−new ui) is included
in the storage contrary to GRASC method which only in-
cludes absolute values of gj ’s. Hence, the exponentiation
based on SGRAC method involves addition (multiplica-
tion) throughout the process. The Algorithm 1 explains
the SGRAC method in detail.

Algorithm 1 SGRAC method

Input: Exponents e0 and f0.
Output: w = {w0, . . . , w�} , G = {g1, . . . , gj , s1, s2} ,
SACx1 , SACx2 and m.

1. MAXIMALGAP ← choose a suitable parameter
2. LOWERBOUND ← choose a suitable parameter

3. φ−1 ← −1+
√

5
2

4. u0 ← e0x1 + f0x2 (x1 and x2 are variables)
5. u1 ← [u0 × φ−1]
6. u2 ← u0 − u1

7. v = {u0, u1, u2}
8. S = {1x1, 1x2, 2x1, 2x2, 3x1, 3x2}
9. m = {0, 0}
10. G = ∅
11. i← 2
12. j ← 1
13. while ui > LOWERBOUND do

14. if |ui − (ui−1 × φ−1)| > MG or ui � ui−1
2

then
15. mi = 1 , mi+1 = 0
16. m← m ∪ {mi , mi+1}
17. i← i + 1
18. ui ← [ui−2 × φ−1]
19. v ← v ∪ {ui}
20. ui+1 ← ui−2 − ui

21. v ← v ∪ {ui+1}
22. gj ← (ui − ui+1)
23. G← G ∪ {gj}
24. j ← j + 1
25. i← i + 1
26. else
27. mi = 0
28. m← m ∪ { mi}
29. i← i + 1
30. ui ← ui−2 − ui−1

31. v ← v ∪ {ui}
32. S ← S ∪ {ui−1, ui}
33. mi = 2 , mi+1 = 2
34. m← m ∪ {mi, mi+1}
35. max← j
36. if ei > LOWERBOUND then
37. S ← S ∪ {fi−1x2}
38. s1 ← fix2 , s2 ← (fi−1x2 − fix2)
39. G← G ∪ {s1 , s2}
40. SACx2 ← Short addition chain using absolute

values of all x2 terms in G and S
41. j ← max + 1
42. Repeat step 13 to step 32 for the x1 terms only
43. SACx1 ← Short addition chain using absolute

values of all x1 terms in G and S
44. v ← v ∪ SACx1
45. All mi’s are zero in SACx1

IAENG International Journal of Applied Mathematics, 37:2, IJAM_37_2_04
__

(Revised online publication: 17 June 2008)

46. else
47. S ← S ∪ {ei−1x1}
48. s1 ← eix1 , s2 ← (ei−1x1 − eix1)
49. G← G ∪ {s1 , s2}
50. SACx1 ← Short addition chain using absolute

values of all x1 terms in G and S
51. j ← max + 1
52. Repeat step 13 to step 32 for the x2 terms only
53. SACx2 ← Short addition chain using absolute

values of all x2 terms in G and S
54. v ← v ∪ SACx2
55. All mi’s are zero in SACx2
56. G← reverse the elements gj ’s in G and rename it in

increasing order starting from numeral 1
57. v ← reverse the arrangements of elements in v and

rename in increasing order starting from v0 to v�

58. m← reverse the arrangements of elements in m and
rename in increasing order starting from m0 to m�

59. w ← is a set containing index for the computation of
each vi in v

60. return w = {w0, . . . , w�} , G = {g1, . . . , gj , s1, s2} ,
SACx1 , SACx2 and m

Note that in Algorithm 1, ui = eix1 + fix2 and the
symbol MG represents the MAXIMALGAP.

Example 1. Evaluate Algorithm 1 for the input
exponents e0 = 90287 and f0 = 1835008.

In order to differentiate between the two exponents
values, we introduce two variables x1 and x2. We
experimentally selected suitable values for the LOWER-
BOUND and the MAXIMALGAP to be 10x1 +10x2 and
6x1 + 6x2 , respectively. Note that we will be comparing
the coefficients of either x1 or x2 while checking the
conditions using the two parameters. In the following,
we will denote ui = eix1 + fix2 for i ≥ 0. We begin by
letting

u0 = e0x1 + f0x2 = 90287x1 + 1835008x2 , m0 = 0
u1 = [u0 × φ−1] = 55800x1 + 1134097x2 , m1 = 0
u2 = u0 − u1 = 34487x1 + 700911x2 , m2 = 0
u3 = u1 − u2 = 21313x1 + 433186x2 , m3 = 0
u4 = u2 − u3 = 13174x1 + 267725x2 , m4 = 0
u5 = u3 − u4 = 8139x1 + 165461x2 , m5 = 0
u6 = u4 − u5 = 5035x1 + 102264x2 , m6 = 0
u7 = u5 − u6 = 3104x1 + 63197x2 , m7 = 1

since u7 does not satisfy the condition |u7−(u6×φ−1)| <
6x1+6x2 , therefore we utilize an inverse of a golden ratio
to get the next ui . That is

u8 = [u6 × φ−1] = 3112x1 + 63203x2 . m8 = 0

There exist a gap, g1 = u7 − u8 = −8x1 − 6x2 , which we
include in the storage S. We continue by letting
u9 = u6 − u8 = 1923x1 + 39061x2 , m9 = 0
u10 = u8 − u9 = 1189x1 + 24142x2 , m10 = 0
u11 = u9 − u10 = 734x1 + 14919x2 , m11 = 0
u12 = u10 − u11 = 455x1 + 9223x2 , m12 = 0
u13 = u11 − u12 = 279x1 + 5696x2 , m13 = 0
u14 = u12 − u13 = 176x1 + 3527x2 , m14 = 1

since u14 does not satisfy the condition |u14 − (u13 ×
φ−1)| < 6x1 + 6x2 , therefore we utilize an inverse of a
golden ratio to get the next ui . That is
u15 = [u13 × φ−1] = 172x1 + 3520x2. m15 = 0

There exist a gap, g2 = u14 − u15 = 4x1 + 7x2 , which we
include in the storage S. We continue by letting

u16 = u13 − u15 = 107x1 + 2176x2 , m16 = 0
u17 = u15 − u16 = 65x1 + 1344x2 , m17 = 0
u18 = u16 − u17 = 42x1 + 832x2 , m18 = 0
u19 = u17 − u18 = 23x1 + 512x2 , m19 = 0
u20 = u18 − u19 = 19x1 + 320x2 , m20 = 2
u21 = u19 − u20 = 4x1 + 192x2 . m21 = 2

We stop the above continuous procedure at u21, since the
coefficient of x1 in u21 transcends the coefficient of x1 in
the LOWERBOUND. We include e20x1 = 19x1 in the
storage S .

We let s1 denote e21x1 = 4x1 and s2 denote e20x1 −
e21x1 = 15x1 . We include s1 and s2 in G . Henceforth,
we will only consider x2 terms and resume the above pro-
cess. We let
u22 = f20x2 − f21x2 = 128x2 , m22 = 1

since u22 does not satisfy the condition |f22x2−(f21x2×
φ−1)| < 6x2 , therefore we utilize an inverse of a golden
ratio to get the next ui. That is
u23 = [f21x2 × φ−1] = 119x2. m23 = 0

There exist a gap, g3 = u22−u23 = 9x2 , which we include
in the storage S. We continue by letting

u24 = f21x2 − u23 = 73x2 , m24 = 0
u25 = u23 − u24 = 46x2 , m25 = 0
u26 = u24 − u25 = 27x2 , m26 = 0
u27 = u25 − u26 = 19x2 , m27 = 0
u28 = u26 − u27 = 8x2 . m28 = 0

We stop the above process at u28, since it transcends the
given LOWERBOUND= 10x2. Hence, we include the
last two x2 terms, that is 19x2 and 8x2, in the storage S.

We have G = {g1 = −8x1−6x2, g2 = 4x1+7x2, g3 = 9x2,
s1 = 4x1, s2 = 15x1}. Now we reverse the arrange-
ments of gj ’s in G and rename it in the increasing
order starting with numeral 1. Hence, we have
G = {g1 = 9x2, g2 = 4x1 + 7x2, g3 = −8x1 − 6x2,
s1 = 4x1, s2 = 15x1} . Considering the storage S, we
have S = {1x1, 1x2, 2x1, 2x2, 3x1, 3x2, 19x1, 19x2, 8x2}.
Now, using absolute values of all elements in G and S,
we shall construct a short addition chain for x1 terms
and x2 terms, separately.

First, we shall consider constructing doubling-free
short addition chain including absolute values of all x1

terms in G and S. We will denote it as SACx1 . Hence,
we have

{1x1, 2x1, 3x1, 19x1, 4x1, 8x1, 4x1, 15x1}.

Excluding the repeated terms and rearrangement results

{1x1, 2x1, 3x1, 4x1, 8x1, 15x1, 19x1}.

It follows that 1x1 + 2x1 → 3x1 , 1x1 + 3x1 → 4x1 ,
2x1 + 3x1 → 5x1 , 3x1 + 5x1 → 8x1 , 2x1 + 8x1 → 10x1 ,

IAENG International Journal of Applied Mathematics, 37:2, IJAM_37_2_04
__

(Revised online publication: 17 June 2008)

5x1 + 10x1 → 15x1 and 4x1 + 15x1 → 19x1. Hence, the
following results the SACx1 .

1 → 2 → 3 → 4 → 5 → 8 → 10 → 15 → 19 .

Next, we shall consider constructing doubling-free short
addition chain including absolute values of all x2 terms
in G and S. We will denote it as SACx2 . Hence, we have

{1x2, 2x2, 3x2, 19x2, 8x2, 9x2, 7x2, 6x2}.

Excluding the repeated terms and rearrangement results

{1x2, 2x2, 3x2, 6x2, 7x2, 8x2, 9x2, 19x2}.

It follows that 1x2 + 2x2 → 3x2 , 2x2 + 3x2 → 5x2 ,
1x2 + 5x2 → 6x2 , 1x2 + 6x2 → 7x2 , 1x2 + 7x2 → 8x2 ,
1x2 + 8x2 → 9x2 , 2x2 + 9x2 → 11x2 and 8x2 + 11x2 →
19x2 . Hence the following results the SACx2 .

1 → 2 → 3 → 5 → 6 → 7 → 8 → 9 → 11 → 19 .

Finally, we join SACx2 at u26 to complete the overall
chain for e0x1 + f0x2 . Note that the old u27 and old u28

will be replaced with the ones in SAC2. The continuation
of the chain will be denoted as u27 = 19x2 , u28 = 11x2 ,
u29 = 9x2 , u30 = 8x2 , u31 = 7x2 , u32 = 6x2 , u33 = 5x2 ,
u34 = 3x2 , u35 = 2x2 , u36 = 1x2 . Note that mi = 0 for
i = 27, . . . , 36 .

We reverse the arrangements of mi’s and rename it
in the increasing order starting from 0 to 36. That is
m = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,

0, 1, 0, 0, 0, 0, 0, 0, 0} .

The set v contains all the ui’s of the above chain where
v = {u0, u1, . . . , u36} . We reverse the arrangements of
elements in v and rename it in the increasing order start-
ing from v0 to v36 . Hence, we have v = {v0, v1, . . . , v36}
where vi = u�−i for all i .

Next, we let either wi = (j, k) or wi = (k)
to denote the index of vi’s involved in the
computation of each vi in v . This could be
found from the above chain. Hence, we have
w = {w0 , w1 = (0, 0) , w2 = (0, 1), . . . , w36 = (34, 35)} .

Algorithm 2 Multi-exponentiation using SGRAC method

Input: b1, b2 are elements of an abelian group and e0, f0 ∈ Z.

Output: The element be0
1 bf0

2 .

Precomputation (SGRAC method)
1. w = {w0, . . . , w�} , G = {g1, . . . , gj , s1, s2} , SACx1 ,

SACx2 and m
2. b1 ← x1 , b2 ← x2

3. Compute all elements in G using SACx1
and SACx2 , store it in G

Main loop
4. if (step 44 of Alg. 1 holds) then
5. v0 ← b11
6. else
7. v0 ← b12
8. j ← 1
9. r ← 1
10. for i = 1 to �
11. if mi = 0 then
12. vi ← vj × vk [wi = (j, k)]
13. else if mi = 1 then
14. vi ← gj × vk [wi = (k)]
15. j ← j + 1
16. else
17. vi ← vj × vk × sr [wi = (j, k)]
18. r ← r + 1
19. return v�

Example 2. Evaluate Algorithm 2 for the inputs
e0 = 90287, f0 = 1835008 and b1 , b2 as elements of an
abelian group.

Precomputation: (SGRAC method)

1. We have w = {w0 , w1 = (0, 0) , w2 = (0, 1), . . . , w36 =
(34, 35)} , G , SACx1 , SACx2 and m from Example 1 .
2. We replace x1 by b1 and x2 by b2 for all elements in
G.
3.Then using SACx1 and SACx2 , we compute all the
elements in G and again store it in G.
Hence, we get G = {g1 = b9

2 , g2 = b4
1b

7
2 , g3 =

b−8
1 b−6

2 , s1 = b4
1 , s2 = b15

1 } .
The following results the evaluation stage. The step 44
of Algorithm 1 does not hold, therefore v0 = b2

1. It
follows that

m0 = 0 , w0 = (−) , v0 = b2
1 ,

m1 = 0 , w1 = (0, 0) , v1 = v0 × v0 = b2
2 ,

m2 = 0 , w2 = (0, 1) , v2 = v0 × v1 = b2
3 ,

m3 = 0 , w3 = (1, 2) , v3 = v1 × v2 = b2
5 ,

m4 = 0 , w4 = (0, 3) , v4 = v0 × v3 = b2
6 ,

m5 = 0 , w5 = (0, 4) , v5 = v0 × v4 = b2
7 ,

m6 = 0 , w6 = (0, 5) , v6 = v0 × v5 = b2
8 ,

m7 = 0 , w7 = (0, 6) , v7 = v0 × v6 = b2
9 ,

m8 = 0 , w8 = (1, 7) , v8 = v1 × v7 = b2
11 ,

m9 = 0 , w9 = (6, 8) , v9 = v6 × v8 = b2
19 ,

IAENG International Journal of Applied Mathematics, 37:2, IJAM_37_2_04
__

(Revised online publication: 17 June 2008)

m10 = 0 , w10 = (6, 9) , v10 = v6 × v9 = b2
27 ,

m11 = 0 , w11 = (9, 10) , v11 = v9 × v10 = b2
46 ,

m12 = 0 , w12 = (10, 11) , v12 = v10 × v11 = b2
73 ,

m13 = 0 , w13 = (11, 12) , v13 = v11 × v12 = b2
119 ,

m14 = 1 , w14 = (13) , v14 = g1 × v13 = b2
128 ,

m15 = 2 , w15 = (12, 13) , v15 = v12 × v13 × s1 = b1
4b2

192 ,

m16 = 2 , w16 = (14, 15) , v16 = v14 × v15 × s2 = b1
19b2

320 ,

m17 = 0 , w17 = (15, 16) , v17 = v15 × v16 = b1
23b2

512 ,

m18 = 0 , w18 = (16, 17) , v18 = v16 × v17 = b1
42b2

832 ,

m19 = 0 , w19 = (17, 18) , v19 = v17 × v18 = b1
65b2

1344 ,

m20 = 0 , w20 = (18, 19) , v20 = v18 × v19 = b1
107b2

2176 ,

m21 = 0 , w21 = (19, 20) , v21 = v19 × v20 = b1
172b2

3520 ,

m22 = 1 , w22 = (21) , v22 = g2 × v21 = b1
176b2

3527 ,

m23 = 0 , w23 = (20, 21) , v23 = v20 × v21 = b1
279b2

5696 ,

m24 = 0 , w24 = 22, 23) , v24 = v22 × v23 = b1
455b2

9223 ,

m25 = 0 , w25 = (23, 24) , v25 = v23 × v24 = b1
734b2

14919 ,

m26 = 0 , w26 = (24, 25) , v26 = v24 × v25 = b1
1189b2

24142 ,

m27 = 0 , w27 = (25, 26) , v27 = v25 × v26 = b1
1923b2

39061 ,

m28 = 0 , w28 = (26, 27) , v28 = v26 × v27 = b1
3112b2

63203 ,

m29 = 1 , w29 = (28) , v29 = g3 × v28 = b1
3104b2

63197 ,

m30 = 0 , w30 = (27, 28) , v30 = v27 × v28 = b1
5035b2

102264 ,

m31 = 0 , w31 = (29, 30) , v31 = v29 × v30 = b1
8139b2

165461 ,

m32 = 0 , w32 = (30, 31) , v32 = v30 × v31 = b1
13174b2

267725 ,

m33 = 0 , w33 = (31, 32) , v33 = v31 × v32 = b1
21313b2

433186 ,

m34 = 0 , w34 = (32, 33) , v34 = v32 × v33 = b1
34487b2

700911 ,

m35 = 0 , w35 = (33, 34) , v35 = v33 × v34 = b1
55800b2

1134097 ,

m36 = 0 , w36 = (34, 35) , v36 = v34 × v35 = b1
90287b2

1835008 .

IAENG International Journal of Applied Mathematics, 37:2, IJAM_37_2_04
__

(Revised online publication: 17 June 2008)

Table 1: The distribution of chains for 1000 randomly
selected integers e and f of 160 bit.

SGRAC length (�) # inputs k

SGRAC-291 1
SGRAC-292 1
SGRAC-293 0
SGRAC-294 3
SGRAC-295 5
SGRAC-296 13
SGRAC-297 25
SGRAC-298 66
SGRAC-299 103
SGRAC-300 139
SGRAC-301 215
SGRAC-302 177
SGRAC-303 152
SGRAC-304 70
SGRAC-305 26
SGRAC-306 4

Table 2: The distribution of MAXIMALGAP for 1000
randomly selected integers e and f of 160 bit.

MAXIMALGAP 5 6 7 8 9 10
inputs k 51 98 100 81 137 93

MAXIMALGAP 11 12 13 14 15
inputs k 103 88 75 100 74

Table 3: The distribution of LOWERBOUND for 1000
randomly selected integers e and f of 160 bit.

LOWERBOUND 4 5 6 7 8 9 10
inputs k 115 77 102 87 86 79 71

LOWERBOUND 11 12 13 14 15 16 17
inputs k 61 66 54 36 39 35 12

LOWERBOUND 18 19 20 21 22
inputs k 23 14 15 20 8

Table 4: The distribution of storage for 1000 randomly
selected integers e and f of 160 bit.

Storage capacity 16 17 18 19 20 21 22
inputs k 60 59 33 7 1 1 15

Storage capacity 23 24 25 26 27 28 29
inputs k 33 35 50 45 42 55 55

Storage capacity 30 31 32 33 34 35 36
inputs k 68 71 71 79 89 70 61

4 Experimental Results

In this section, the experimental data due to K. Shiota,
shows the factors necessitated in obtaining the best re-
sults, that is the least chain length.

We carried out an experiment to analyze the two dimen-
sion multi exponentiation based on SGRAC method us-
ing a python programming language on 1.66 GHz Intel
Core Duo processor. We randomly selected 1000 integers
e and f of 160 bits and set the searching range of the pa-
rameters, LOWERBOUND to be between 2x1 + 2x2 to
22x1+22x2 and MAXIMALGAP to be between 5x1+5x2

to 15x1 + 15x2. It took 209 trials to obtain chains of
lengths between 291 to 306 as shown on Table 1. On
average it took about 2.89 seconds to find each chain.
The Table 2 , 3 and 4 shows the distribution of MAXI-
MALGAP, LOWERBOUND and the storage that gives
the least chain length, respectively. The average chain
length is found to be 301 and the average storage capac-
ity is found to be 26. The conventional Shamir’s trick
uses 160 squaring operations and 82 multiplication oper-
ation for two dimension case, where as multi exponenti-
ation based on SGRAC method utilizes 301 multiplica-
tion (best case). Hence, in comparison to Shamir’s trick
method, the SGRAC method seems to be costly. How-
ever for further work, reducing the length of the addition
chain (SGRAC) can enhance the efficiency of the pro-
posed multi exponentiation.

5 Conclusion

In this paper we have proposed a novel method for the si-
multaneous computation of multi exponentiation, that is
by employing addition chains. The experimental results
for the two dimension case shows that SGRAC method
gives an average chain of length 301 with average storage
capacity of 26. Further work may include in reducing the
chain length and the storage capacity in order to enhance
further efficiency. We assume that SGRAC method could
be further generalize to arbitrary cases.

References

[1] Avanzi, R.M., Cohen, H., Doche, C., Frey, G.,
Lange, T., Nguyen, K., and Vercauteren, F., Hand-
book of Elliptic and Hyperelliptic Curve Cryptogra-
phy, CRC Press, 2005.

[2] Byrne, A., Meloni, N., Crowe, F., Marnane, W.P.,
Tisserand, A., and Popovici, E.M., “SPA resis-
tant Elliptic Curve Cryptosystem using Addition
Chains”, International Conference on Information
Technology-ITNG’07, pp.995-1000, 2007.

[3] Goundar, R.R., Shiota, K., and Toyonaga, M.,
“New Strategy for Doubling-free Short Addition-

IAENG International Journal of Applied Mathematics, 37:2, IJAM_37_2_04
__

(Revised online publication: 17 June 2008)

Subtraction Chain”, International Journal of Com-
putational and Applied Mathematics, To appear.

[4] Knuth, D., “Fundamental Algorithms”, The Art
of Computer Programming, volume 1, Addision-
Wesley,(1981).

[5] Kobayashi, K., Morita, H., and Hakuta, M.,
“Multi Scalar-Multiplication Algorithm over Ellip-
tic Curve”, IEICE Transactions on Information and
Systems, E84-D, No.2, pp.271-276, 2001.

[6] Koblitz, N., “Elliptic curve cryptosystems”, Mathe-
matics of Computation, 48(177):203-209, Jan. 1987.

[7] Kocher, P., Jaffe, J., and Jun, B., “Differential power
analysis”, volume 1666 of Lecture Notes in Comput-
ing Science, pages 388-397. Springer-Verlag, 1999.

[8] Miller, V.S., “Uses of elliptic curves in cryp-
tography”, In H.C. Williams, editor, Advances
in Cryptology-CRYPTO’85, volume 218 of Lec-
ture Notes in Computing Science, pages 417-428.
Springer-Verglag, 1986.

[9] Menezes, A.J., vanOorschot, P.C., and Vanstone,
S.A., Handbook of Applied Cryptography, CRC
Press, 1997.

[10] Vorobiev, N., Fibonacci Numbers. Birkhuser Verlag,
2002.

IAENG International Journal of Applied Mathematics, 37:2, IJAM_37_2_04
__

(Revised online publication: 17 June 2008)

