
 
 

 

 

  
 Abstract— Singly diagonally implicit Runge-Kutta-Nystróm 
general (SDIRKNG) method of third-order embedded in 
fourth-order for the integration second-order IVPs is presented. 
A set of test problems are tested upon and the numerical 
comparisons with the existing embedded Runge-Kutta methods 
show the advantage of the new method.  
 
Keywords — Runge-Kutta-Nystóm, Second-order IVPs.  
 

I. INTRODUCTION 
 Systems of second order ordinary differential equations 
(ODEs) arise naturally in many physical simulation problems, 
and the general form of the second order ODEs  can be written 
as the following  

),,( yyxfy ′=′′ ,   nxxx ≤≤0                (1.1)   
 with the given initial conditions  
  00)( yxy = , 00 )( yxy ′=′ ,  

where ny ℜ∈ , and nnnf ℜ→ℜ×ℜ×ℜ: . The function f is 
assumed to have derivative of arbitrary order everywhere in 
ℜ .  Equation (1.1) can be solved numerically by reducing it to 
system of first-order equations and then use embedded 
Runge-Kutta (RK) method such method can be seen in [1] and 
[2]. Or it can be solved directly using  Runge-Kutta-Nystróm 
(RKN) pairs as can be seen in [3]-[6]. These pairs generates 
approximations 1+ny , 1+ny , 1+′ny , 1+′ny  to  
 

)( 1+nxy and )( 1+′ nxy respectively, for n=0,1,…, according to  
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where the first two formulae are of order  p, while the second 
two are of order p-1, q is the number of stages and  
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                             i = 1,…, q.                                          (1.3)   
 
We refer to (1.2) as the generalized Runge-Kutta-Nystróm 
(RKNG)  pair.  

Where the coefficients iiijij bbaa ′′ ,,,  determine the method and 

they satisfy the following equations  
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1 ,  ( ),...,1 qi = ,                                    (1.4)  

 and ∑ ′=
=

i

j
iji ac

1
,  ( ),...,1 qi = .                                         (1.5) 

The local truncation error (LTE) at the point nx  is given by         

nn yyLTE −=   

and it is the basis for choosing the stepsize for  the integration. 

 
II. DERIVATION OF THE METHOD 

Fine [5] listed the order conditions of RKNG method up to 
order 6 where the order conditions of y′  up to order p-1 can be 
generated from the order conditions of y  up to order p as 
follows:  
If the y error coefficient of order i is  

  
ς

ψτ 1),,,()( −′′= cbaai
j  ,  

then the corresponding y′ coefficient of order 1−i  can be 
expressed as  

  
ς

ψτ icbaai
j −′=′ − ),,,()1(  .  

Using this technique and Fine [4] work, we listed all the order 
conditions related to the method up to order four in Table 2.1 
where the first four equations are related to y  , the next 
equation (equation (2.5)) is related to both  y and y′  and  the 
following eight equations are related to y′ . For the (3,4), that is 
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third order four stage method, the first two equations of y  and 
the first four equations of y′  should be satisfied while for the 
(4,5), fourth order five stage method, all the 13 equations in 
Tables 2.1 should be satisfied.  

  Table 2.1: Equations of Conditions up to order 4.  

 
Equations of Conditions for 

y  
Equations of Conditions 

for y′  

∑ =
i

ib
2
1                     (2.1) ∑ =′

i
ib 1                     (2.6) 
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ii cb
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1                  (2.7) 
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Equations of Conditions for 
y and y′  
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There are 19 order conditions to be satisfied for (3,4) embedded 
in (4,5) method. To simplify the derivation, we started solving 
the order conditions which depend on a′  using the simplifying 
assumptions and once we solved the order conditions for y′ , 
the order conditions for y can be solved together with the order 
condition that depend on both a  and a′  using the following  
transformation  
  iii bcb ′−= )1( ,  iii bcb ′−= )1( , qi ,...,1= .      (2.14) 

We now give the details on how to solve  the equation for 
y′ and y using the simplifying assumption.  Equation (2.9) 

minus 
2
1  of (2.8) yields ∑ =∑ −′′
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 (i=2,3,4).                                             (2.15) 

Equation (2.15) is called the simplifying assumption. It does 
not hold for i=1, because we do not want 0111 == ac .  
Therefore 01 =′b . Thus equation (2.9) can be removed, 

equation (2.10) minus 
2
1 of (2.11) gives 

 ∑ ∑ =−′′
i ij

i
jijii

c
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2
,  

Hence, equation (2.11) can also be removed.  

Finally, equation (2.13)  minus 
2
1

 equation (2.12) gives 
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equation (2.13) is equivalent to (2.12) if  

    ∑ =′′
i

iiab 01 .                                         (2.16) 

      and (2.15) hold.  

 
For the lower order method equation (2.15) cannot be satisfied 
for i=1, therefore we need to have   
 
 01 =′b .  
 
From equation (1.5) and for i=1, we have  111 ca =′ , and for 
i=2, we get 
 
  212 ac ′=− γ .                                         (2.17) 
 
From equation (2.15) and for i=2, we obtain  
 

  
2

2
2

222121
c

caca =′+′ ,                               (2.18) 

 
substituting the value of 21a′  from equation (2.17) into 
equation (2.18) yields  
 
  ).22(2 ±= γc                                         (2.19)  
  
Now, we have 12 equations to be solved with 17 unknowns. 
Therefore, we have five free parameters which are chosen to be  
γ , 3c , 4c , 5c  and 52a′ . 
 
 Taking 9.0,75.0,5.0,25.0 543 ==== cccγ and  

25.052 =′a   together with the values of γ=1c , 

)22(2 −= γc , 01 =′b , 0
'
1 =b ,  we solved the system using 

Maple.  
 
Then solve the order conditions for y as follows:  

 
By using (2.14) , the vector weights b  of y can be calculated 
using the vector weights b′  of y′ . After we found the weights 
of y, we are left with equation (2.4) and (2.5). There are six 
unknowns in the coefficient matrix of y, so the system of two 
equations can be solved with four free parameters which are 
chosen to be 524342 ,, aaa and 53a . In  Table 2.2, we present the 
coefficients for the SDIRKNG (3,4) embedded in (4,5) method 
using the value of 25.0=γ .  
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Table 2.2: SDIRK Method (3,4) Embedded in (4,5) with 

γ =0.25 

       γ              
2

2γ
      

γ)22( −   21a    
2

2γ
     

500000.0  31a   7720525.1−     
2

2γ
 

750000.0  41a  9500000.0−   9500000.0     
2

2γ
   

  900000.0  51a  7500000.0 7000000.0−  7577296.0−    
2

2γ
  

        0  2875266.0 1506343.0 0427529.0   

0190861.0  

                   0   3333333.0  0285954.0    0.1380711      
 
 
 

γ    γ  

  γ)22( −    21a′   γ  

500000.0     31a′    6035533.0     γ  

  750000.0    41a′  2004826.0− 2080426.0−   γ  

  900000.0    51a′    2500000.0  7728468.0 2996467.0−  γ  

                0  3368584.0  3012686.0  1710116.0 1908612.0  

             0  3905249.0   0571909.0 5522847.0       

 

 Where the values of 1ia  and 1ia′ for (i=1(1)5) are given                 

by ∑
=

−=
i

j
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2
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1 2
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III. IMPLEMENTATION AND NUMERICAL RESULTS 

 

The method derived  in the previous section is used to solve the 
second order Initial value problems (IVPs). At the beginning of 
the program, the problem is considered as non stiff and 
therefore we do simple iterations, when there is a pointer of 
stiffness )( iteracc hh > , then the whole system is automatically 

changed to stiff and solve using Newton iteration. Where acch  
is the largest stepsize that could achieved the desired local 
accuracy.  
and iterh  is the largest stepsize for the iterations of  the 
solutions to converge. The simple iteration on ik  is given by 
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Expanding  using Taylor series with two variables yields  
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Thus since all the diagonal elements of A are equal ⎟
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In this paper we test a few problems consisting of stiff and 
nonstiff problems and equation (3.2) is the coefficient matrix 
for the Newton iterations. 
   
The following are some of the problems tested. Note that the 
third and fourth problems are stiff IVPs of second order while 
the first two problems are non-stiff second order IVPs.  

 Problem 3.1 21 yy ′−=′′ , 0)0(1 =y ,    11 1
1)0( −−

=′
e

y , 

                     12 yy ′−=′′ , 1)0(2 =y ,    12 1
1)0( −−

=′
e

y ,   

                     100 ≤≤ x ,  

Solution: 11 1
1)( −

−

−
−=

e
exy

x
,   

1

1

2
1

2)(
−

−−

−
−−=

e
eexy

x
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Source: Edwards Jr and Penny [7].   

Problem 3.2 : 
21

1
1

2
1

2
4

rr
y

yxy
′

+−=′′ ,      0xx ≥ , 

                       
21

2
2

2
2

2
4

rr
y

yxy
′

+−=′′ , 0xx ≥ ,  

                     105.0 ≤≤ xπ  ,0)( 01 =xy ,1)( 02 =xy     

                     2
1

01 )2()( π−=′ xy ,    0)( 02 =′ xy ,  

                     2
2

2
11 yyr ′+′=  and  2

2
2
12 yyr +=  

Solution: )cos()( 2
1 xxy = , )sin()( 2

2 xxy = .  
Source: Sharp and Fine [8]   
 
 
Problem 3.3: 08 =+′+′′ kyyy ,  100 ≤≤ x , 
                    1)0( =y ,  12)0( −=′y ,    16=k .  

Solution: xexxy 4)81()( −−= . 
 
Problem 3.4.  
 

096 =+′+′′ yyy , 1)0( =y , 3)0( −=′y ,      200 ≤≤ x  

Solution: xexy 3)( −= . 

The results obtained from the new method which was derived 
in section 2 are compared with the results when the same 
problems are solved using singly diagonally implicit 
Runge-Kutta (SDIRK) method (3,4) embedded in (4,5) which 
was derived by Hairer and Wanner [9] and SDIRK method 
(3,5) embedded in (4,6) which was derived by Butcher and 
Chen [10]. In the SDIRK method the problems are reduced to 
first-order system of differential equation twice the dimension 
by considering the vector ),( yy ′  as the new variables. All the 
methods are of the same order . 

The numerical results are given in Tables 3.1-3.4. The 
following notations are used as follows:  
 TOL ~ the chosen tolerance,  
    MTD ~ method used, 
 FCN ~ the number of functions evaluations, 
 STEP ~ the number of successful steps, 
 FSTP ~ the number of failed steps, 
    JAC ~ the number of Jacobian evaluations. 
  MAX ERR~ max ⏐y (ti) - 

it
y ⏐, (absolute value of the true  

solution minus the computed solution at the mesh point i). 

where 1.234567(-6) means 1.23456 x 610− . 

Methods used are:  

A1: SDIRKN method (3,4) embedded in (4,5) which was 
derived in this paper where the local truncation error is 

nn yy − . 

 
A2: SDIRK method (3,4) embedded in (4,5) by Hairer and  
Wanner .  
 
A3: SDIRK method (3,5) embedded in (4,6) by Butcher and 
Chen. 

        Table 3.1: Numerical Results for  Problem 3.1. 
 

TOL MTD FCN STEP FSTP MAXERR 
 

210−  A1 
A2 
A3 

358 
288 
332 

32 
52 
49 

1 
0 
0 

9.095466(-3) 
1.015307(-3) 
1.161654(-3) 

410−  A1 
A2 
A3 

424 
464 
574 

30 
84 

144 

1 
0 
0 

3.081559(-4) 
3.521043(-5) 
2.584102(-4) 

610−  
 

A1 
A2 
A3 

1062 
1267 
938 

96 
230 
144 

1 
0 
0 

1.395924(-9) 
6.260004(-9) 
1.183762(-9) 

810−  A1 
A2 
A3 

3288 
3808 
3308 

298 
692 
505 

2 
0 
3 

4.366451(-5) 
4.495573(-8) 
1.583404(-6) 

1010−  A1 
A2 
A3 

9221 
16183 
9208 

837 
2942 
1411 

3 
0 
6 

4.318437(-6) 
4.130849(-9) 
9.936897(-8) 

 
 

Table 3.2: Numerical Results for Problem 3.2 
 

TOL MTD FCN STEP FSTP MAXERR 
 

210−  
A1 
A2 
A3 

2275 
2817 
3048 

198 
506 
468 

1 
6 
1 

5.707671(-2) 
1.739446(-1) 
2.115526(-1) 

410−  A1 
A2 
A3 

7079 
8342 
7780 

643 
1516 
1196 

1 
1 
1 

5.560518(-3) 
7.176503(-3) 
1.400480(-2) 

610−  
 

A1 
A2 
A3 

22654 
26426 
19596 

2058 
1516 
3014 

2 
1 
1 

4.281767(-4) 
2.316212(-4) 
8.788254(-4) 

810−  
A1 
A2 
A3 

71310 
85122 
49289 

6481 
15476 
7582 

2 
1 
1 

8.019036(-5) 
4.845471(-5) 
7.205344(-5) 

1010−  A1 
A2 
A3 

223397 
1844388 
123896 

20307 
335342 
19060 

3 
1 
1 

1.309299(-6) 
4.846149(-5) 
4.844024(-5) 

 
Table 3.3: Numerical Results for Problem 3.3. 

 
 

TOL MTD FCN STEP FSTP JAC MAXERR 
 

210−

 

A1 
A2 
A3 

556 
634 
490 

98 
112 
64 

1 
1 
1 

Not 
stiff 

5.675743(-4) 
3.447152(-4) 
3.390885(-4) 

410−

 

A1 
A2 
A3 

1094 
1142 
1317 

124 
204 
188 

2 
2 
3 

1 
1 
1 

4.045746(-5) 
1.526613(-5) 
2.735042(-5) 

610 −

 
 

A1 
A2 
A3 

2770 
2935 
3618 

366 
530 
539 

2 
2 
3 

1 
1 
1 

3.523178(-6) 
1.668552(-7) 
1.703345(-6) 

810−

 

A1 
A2 
A3 

7943 
11207 
8220 

911 
1434 
1240 

2 
2 
3 

1 
1 
1 

4.678987(-8) 
1.594997(-8) 
1.061384(-7)  

1010−

 

A1 
A2 
A3 

17023 
40191 
20435 

2089 
7302 
3069 

4 
3 
5 

1 
1 
1 

2.345620(-9) 
4.495724(-9) 
6.663856(-9) 

 

IAENG International Journal of Applied Mathematics, 37:2, IJAM_37_2_05
______________________________________________________________________________________

(Advance online publication: 17 November 2007)



 
 

 

 

 
Table 3.4: Numerical Results for Problem 3.4  

 
 

TOL MTD FCN STEP FSTP JAC MAXERR 
 

210−

 

A1 
A2 
A3 

997 
447 
239 

87 
77 
27 

2 
1 
0 

1 
1 
1 

3.314479(-2) 
6.743232(-4) 
2.494116(-3) 

410−

 

A1 
A2 
A3 

1404 
777 
1066 

124 
137 
153 

2 
5 
2 

1 
1 
1 

4.042037(-4) 
3.837458(-5) 
3.184944(-5) 

610−

 
 

A1 
A2 
A3 

2970 
1877 
2682 

266 
337 
395 

2 
1 
3 

1 
1 
1 

3.508986(-5) 
3.837458(-5) 
2.367550(-6) 

810−

 

A1 
A2 
A3 

7865 
5445 
7439 

711 
913 

1078 

5 
1 
3 

1 
1 
1 

3.427374(-6) 
5.824995(-8) 
3.133465(-8)  

1010−

 

A1 
A2 
A3 

23023 
149596 
27877 

2089 
27195 
4224 

5 
1 
7 

1 
1 
4 

6.934120(-7) 
7.538816(-10) 
8.910569(-10) 

 
 
 

Figure 3.1: Time taken by methods A1, A2 and A3 to solve  
the problems  over all the tolerances 
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IV.  CONCLUSION 

From the numerical results, we noticed that for all the problems 
except problem 3.2, method RKNG (3,4) embedded in (4,5) 
(method A1) gives better results in terms of function 
evaluations, number of steps and total time taken to solve the 
problems compared to Hairer’s (method A2) and Butcher’s 
method ( method A3).  

Comparing A2 and A3 we observed that for most of the 
problems A3 performed better than A2 and in terms of number 
of steps, functions evaluations and total time taken over all the 
tolerances. In terms of absolute error method A3 produced the 
smallest error compared to A1 and A2.   

Here we can conclude that the new method can be used to solve 
both stiff and non-stiff general second order IVPs directly 
without having to reduce the problems to first order system 
hence less time is needed to solve the problems.  
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