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Abstract—A unified technique for generating lin-
ear operations on homogeneous/non-homogeneous,
Gaussian/non-Gaussian random fields defined on any
subset of the multidimensional Euclidean space is pro-
vided. This is based on an approximate series repre-
sentation valid for spatial random fields with arbi-
trary covariance function which can be readily real-
ized. Furthermore, its applicability as a simulation
tool is examined numerically by considering an ex-
ample that illustrates its feasibility and accuracy.
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1 Introduction

In several fields of engineering, such as soil mechanics,
hydrological engineering, mechanical engineering, earth-
quake engineering, structural engineering and many oth-
ers, it is usual to model uncertainties in physical phe-
nomena through spatial random fields (SRF) reflecting
the spatial variation of the natural process [1]-[2]. In this
sense the availability of a suitable procedure for generat-
ing realizations of the particular random model can be a
key question for the analysis of the structural properties
of the natural phenomenon under study. In fact, the sim-
ulation of SRF is a widely used tool and different methods
have already been proposed, often based on the spectral
representation of the random process, with, usually, as-
sumptions of homogeneity or Gaussianity [3]-[6]. How-
ever, a number of important physical phenomena shows
a clear deviation from the above assumptions. Therefore,
the simulation of non-Gaussian and non-homogeneous
SRF is of great importance. To accomplish this the
Karhunen-Love (KL) expansion-based simulation proce-
dure can be applied for generating both homogeneous and
non-homogeneous, Gaussian and non-Gaussian SRF [1].
This technique presents two drawbacks to being used as
a general simulation tool. For instance, its range of ap-
plication is restricted to SRF defined on compact subsets
and it also requires the computation of eigenfunctions and
eigenvalues of the correlation function which is generally
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a difficult task.

This paper presents a general simulation technique based
on an approximate series representation valid for linear
operations on SRF defined on any subset of the multidi-
mensional Euclidean space and is easily implementable in
real situations. In Section 2 we introduce a suitable tool
to represent approximately SRF and its extension to the
more usual linear operations on the random field and de-
scribe the steps involved in implementing the simulation
algorithm proposed. In Section 3 a numerical example il-
lustrating the application of the proposed method to sim-
ulate a classical random model that has great relevance
in applications is performed. Finally, Section 4 includes
some final conclusions.

2 Numerical Representation of Linear
Operations on Random Fields

Let T be any subset of the d−dimensional Euclidean
space Rd and X(t), t ∈ T , t = (t1, t2, . . . , td) ∈ T ,
be a second-order SRF defined on the probability space
(Ω,A,P). Without loss of generality, we will assume
X(t) has zero mean. Moreover, the correlation function
R(t, s), t, s ∈ T , is continuous. Let µ be a measure on
(T,Bd

T ) (Bd
T is the σ-algebra of d−dimensional Lebesgue

measurable subsets of T ) such that
∫

T

R(t, t)dµ(t) < ∞

Moreover, µ can be chosen to be absolutely continuous
with respect to the d−dimensional Lebesgue measure λ
of the form

dµ(t)/dλ(t) = F (t) (1)

with F a non-zero a.e. [Leb], non-negative and Lebesgue
integrable function over T [7].

Let Rµ be the Hilbert-Schmidt integral-type operator
with kernel R(t, s) defined from L2(µ) = L2(T,Bd

T , µ)
on L2(µ) by

(Rµφ) (t) =
∫

T

R(t, s)φ(s)dµ(s), t ∈ T (2)

Let λi and φi be its corresponding eigenvalues and or-
thonormal eigenfunctions in L2(µ).
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Then we can state the following representation for X(t),

X(t) =
∞∑

i=1

biφi(t), t ∈ T (3)

where the series converges in the mean square sense. The
random coefficients are given by

bi =
∫

T

X(t)φi(t)dµ(t) a.s.

with E[bibj ] = λiδij . As a consequence of (3), we obtain
a generalization of Mercer’s expansion as follows

R(t, s) =
∞∑

i=1

λiφi(t)φi(s)

for all (t, s) ∈ T × T .

The representation (3) is optimal in the sense that the
mean-square error resulting from a finite representation
of the SRF is minimized [8]. Thus, this series represen-
tation synthesizes optimally the available information.
However, from an experimental standpoint, the expan-
sion (3) presents the drawback of its explicit dependence
on eigenvalues and eigenfunctions of the operator Rµ.
In most cases, closed-form eigenfunctions and eigenval-
ues are not available. We avoid this difficulty by us-
ing approximate eigenvalues and eigenfunctions obtained
by means of a Galerkin-type numerical method to solve
the operator equation (2). Specifically, we apply the
Rayleigh-Ritz method (RR) [9] which is a projection ap-
proximation algorithm providing approximate solutions
of the operator equation.

The RR method starts from a complete orthonormal set
of functions {ϕi}i on L2(µ). By selecting k functions
{ϕi}k

i=1, the true eigenfunctions are approximated by
means of the RR eigenfunctions

φ̃i(t) =
k∑

j=1

aijϕj(t), i = 1, 2, . . . , k

where the coefficients aij and the approximate eigenval-
ues

{
λ̃i

}k

i=1
are obtained from the eigenvalue problem

Aai = λ̃iai, i = 1, 2, . . . , k

with the elements of the matrix A = (Aij), i, j =
1, . . . , k, given by

Aij = 〈Rµϕi, ϕj〉2 =
∫

T

∫

T

R(t, s)ϕi(t)ϕj(s)dµ(t)dµ(s)

where 〈·, ·〉2 denotes the usual inner product in L2(µ) and
‖ · ‖2 the corresponding norm. The coefficients aij are
the coordinates of the eigenvectors ai = (ai1, . . . , aik)′,
i = 1, . . . , k. The convergence of the RR eigenfunctions

and eigenvalues to the true ones is guaranteed by the RR
method [9]

λ̃i
k↑∞−−−→ λi

∥∥φ̃i(t)− φi(t)
∥∥

2

k↑∞−−−→ 0

Furthermore, 0 ≤ λ̃i ≤ λi,
〈
φ̃i, φ̃j

〉
2

= δij (by assum-
ing that the eigenvectors ai and aj are normalized) and〈Rµφ̃i, φ̃j

〉
2

= λ̃iδij .

The main objection to the RR eigenfunctions is that they
do not necessarily converge pointwise to the true ones.
For this reason we introduce a new class of approximate
eigenfunctions with a stronger type of convergence toward
the true ones, given by

φ̂i(t) = λ̃−1
i Rµφ̃i(t), t ∈ T

with the following convergence properties
∣∣φi(t)− φ̂i(t)

∣∣ k↑∞−−−→ 0, t ∈ T
∥∥φi(t)− φ̂i(t)

∥∥
2

k↑∞−−−→ 0, t ∈ T

Note that the sets of approximate and RR eigenfunctions,{
φ̂i

}k

i=1
and

{
φ̃i

}k

i=1
, are biorthogonal systems in L2(µ),

i.e.,
〈
φ̂i, φ̃j

〉
2

= δij .

The new approximate eigenfunctions allow us to obtain
an approximate series representation of X(t) as follows

X̂n(t) =
n∑

i=1

b̃iφ̂i(t), t ∈ T (4)

where n ≤ k and the random variables
{
b̃i

}n

i=1
are given

by

b̃i =
∫

T

X(t)φ̃i(t)dµ(t) a.s. (5)

It can be shown that these random variables are uncorre-
lated, i.e. E

[
b̃ib̃j

]
= λ̃iδij . Furthermore, the correlation

function of the approximate expansion X̂n(t) is of the
form

R̂n(t, s) =
n∑

i=1

λ̃iφ̂i(t)φ̂i(s), t, s ∈ T (6)

Both series expansions (4) and (6) converge towards X(t)
and R(t, s), respectively, as the length of the series rep-
resentations goes to infinity.

An important property of this approximate expansion (4)
is the possibility of its extension to the more usual linear
operations in quadratic mean of the SRF1, Y (t), t ∈ T1 ⊆

1A random variable Y is said to be derived from a linear op-
eration on a SRF, X(t), t ∈ T , if either Y =

∑m
i=1 ciX(ti), for

any constants c1, c2, . . . , cm, or Y is the limit of a sequence of such
finite linear combinations in the quadratic mean sense. Examples
of linear operations on SRF are quadratic mean derivatives and
integral of X(t), t ∈ T .
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T . In fact, we can obtain the following approximate series
representation

Ŷn(t) =
n∑

i=1

b̃iγ̂i(t), t ∈ T1 (7)

where
γ̂i(t) = λ̃−1

i

∫

T

RY X(t, s)φ̃i(s)dµ(s)

with RY X(t, s) = E [Y (t)X(s)]. The finite series expan-
sion (7) converges to Y (t), for all t ∈ T1, in the mean
square sense.

Remark 1 Note that it is also possible to define an ap-
proximate expansion of the SRF and, as a consequence,
for linear operations on the SRF, by using the RR eigen-
functions,

{
φ̃i

}n

i=1
, instead of

{
φ̂i

}n

i=1
as follows

X̃n(t) =
n∑

i=1

b̃iφ̃i(t), t ∈ T (8)

with b̃i the random variables in (5). However, this fi-
nite expansion provides a less accurate approximation of
the SRF, X(t), with a worse convergence than the one
obtained with (4). Actually, X̂n(t) is the projection of
X(t) onto the subspace of L2(Ω,A,P) spanned by the ran-
dom variables

{
b̃i/λ̃

1/2
i

}n

i=1
. Hence, (4) provides the best

approximation of the SRF onto such a subspace. As a
consequence, the simulation results achieved with the ap-
proximate series expansion (4) perform better than those
obtained by applying the representation (8).

Finally, the following steps are involved in implementing
the simulation technique proposed to obtain numerical
realizations of a linear operation Y (t) on a SRF X(t):

1. Determine the correlation model R(t, s) of the SRF,
X(t), that characterizes the spatial variability of the
natural process of interest. In some practical appli-
cations the correlation model is initially known. In
fact, it may be derived from experimental measure-
ments or mathematical models [1].

2. Obtain the approximate eigenvalues and eigenfunc-
tions corresponding to R(t, s), λ̃i and φ̃i, by means
of the RR method.

3. Generate approximate sample functions of Y (t), us-
ing the approximate expansion (7). Note that the
precision of the simulated field clearly depends on
the number of terms n in the expansion (7). This fi-
nite representation involves the n random coefficients
{b̃i}i whose variances λ̃i approach the n largest ex-
act eigenvalues λi of Rµ. An appropriate criterion
for determining an adequate level of truncation n
without an unnecessary excess of computation can
be the following: select n in such a way that

∑n
i=1 λ̃i

represents at least 90% of the trace of Rµ,
∑∞

i=1 λi.

3 Simulation Results

Computer simulations have been conducted to investigate
the performance of the proposed algorithm. The exam-
ple considered corresponds to the two-parameter Wiener
field which is a well known example of non-homogeneous
SRF and illustrates the implementation and the effec-
tiveness of the approach proposed. It has been used as a
benchmark model in a wide number of applications and is
also called Brownian sheet [10] or Cameron-Yeh process
in engineering applications [11]. Specifically, to assess the
validity of the results obtained with the procedure pro-
vided and to test their convergence properties, we per-
form a numerical simulation of the Riemann integral of
the two-parameter Wiener field. In fact, the correlation
function of the linear operation target, RY (t, s), is com-
pared with that of the simulated function, R̂Ŷn

(t, s). It
is important to point out that the examples of SRF for
which the exact eigenvalues and eigenfunctions are known
are limited.

The standard two-parameter Wiener process W (t), t =
(t1, t2), defined on the domain [0,∞) × [0,∞) has the
following correlation function

R(t, s) = min(t1, s1) min(t2, s2), t1, t2, s1, s2 ∈ [0,∞)
(9)

Moreover, by (1) let µ be a measure such that

F (t1, t2) =
1

(1 + t1)4(1 + t2)4

Computation of eigenvalues and eigenfunctions corre-
sponding to the Wiener field is of the form [8]

λi = νjνl

φi(t1, t2) = γj(t1)γl(t2), t1, t2 ∈ [0,∞)

with j, l = 1, 2, . . . and i = (j, l) a two-index, νj and
γj the eigenvalues and eigenfunctions of the standard
Wiener process.

To apply the RR method we select k functions in the
following set of trigonometric functions

{
2(1 + t1)(1 + t2) cos

(
(2i− 1)πt1
2(1 + t1)

)
cos

(
(2j − 1)πt2
2(1 + t2)

)}

(i,j)

with i, j = 1, 2, . . . .

As we have indicated in the previous section, an appro-
priate guideline for selecting a suitable level of trunca-
tion is the examination of the percentage of the trace of
the operator involved that is explained by the finite ex-
pansion. For instance, the approximate expansion X̂n(t)
for n = 100 and n = 225 can explain over 88.23% and
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92.06%, respectively, of the trace of the operator corre-
sponding to (9) on the interval [0,∞) which is given by

∞∑

i=1

λi =
∫ ∞

0

∫ ∞

0

R(t, t)dµ(t) =
1
36

Then, the approximate eigenvalues and eigenfunctions
of (9) computed are used to simulate W (t) and∫ t1
0

∫ t2
0

W (u)du, with t1, t2 > 0. Simulation results using
n = 100 and n = 225 are shown in Figures 1-2 which are
cross-sectional plots (obtained at s1 = s2 = t2 = 10)
of the correlation function of the Riemann integral of
the Wiener field, RY (t, s), and the simulated correlation
function corresponding to (7)

R̂Ŷn
(t, s) =

n∑

i=1

λ̃i

∫ t1

0

∫ t2

0

φ̂i(u)du
∫ s1

0

∫ s2

0

φ̂i(v)dv

It can be confirmed that the approximate function
R̂Ŷn

(t, s) shows good agreement with the theoretical one
RY (t, s). Finally, note that the random field is defined on
[0,∞), but we plot the functions in the interval [0, 30] be-
cause it is sufficient to assess the accuracy achieved with
the proposed approach.

4 Conclusions

A simulation technique for generating realizations of the
more usual linear operations in quadratic mean on SRF
defined on any subset of the multidimensional Euclidean
space has been provided. This is based on an approx-
imate series representation valid for homogeneous/non-
homogeneous, Gaussian/non-Gaussian random fields
with arbitrary covariance function and which can be ex-
tended to linear operations on SRF. Some important
characteristics of this extension which imply a consider-
able computational reduction are the following: it is eas-
ily implementable in real situations, it does not require
the recomputation of the eigenvalues and eigenfunctions,
it uses the same random coefficients as the series expan-
sion of the SRF and the type of convergence is similar to
the one in the original series. Finally, the application of
the proposed method has been illustrated by means of a
numerical example.
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Figure 1: Comparison of RY (t, s) (solid line) and R̂Ŷ100
(t, s) (dashed line).
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Figure 2: Comparison of RY (t, s) (solid line) and R̂Ŷ225
(t, s) (dashed line).
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