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Approximating Discrete Models for a
Two-degree-of-freedom Friction System

Q. Feng

Abstract — In this paper, a two-degree-of-freedom
mass-on-belt friction dynamical system is considered. Two
reconstructed deterministic and stochastic discrete models have
been established. The numerical calculations of an example have
shown that chaos may occur in this system, and noise can change
the non-linear behavior of the system. The example has resulted
that the stochastic discrete model may be used in some
applications.
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|I. INTRODUCTION

In dynamical systems, there are many nonlinear effects
caused by friction. One of the most specia nonlinear effectsis
stick-slip phenomenon. Stick-slip phenomenon is firstly found
by Den Hartog [1]. But the term “stick-slip” was firstly coined
in 1939 by FP Boweden and LL Leben, who had built an
apparatus at the University of Cambridge in order to study the
phenomenon [2]. Stick-slip phenomenon may be explained that
stick motion isin contact with the surface due to static friction;
and slip motion is in contact with the surface due to dliding
friction. In oscillatory motions both of the phenomena can take
place successively, resulting in a stick-slip mode.

Since the friction characteristic consists of two qualitatively
different parts with a nonsmooth transition, the resulting
motion also has nonsmooth behaviour. Therefore, stick-dip
systems belong to the class of nonsmooth systems. Popp and
Stelter [3], [4] and Feeny and Maoon [5], [6] observed stick-slip
chaos in simple oscillators whose nonlinearity is only due to
dry friction. In these systems, the motion collapses during
stick-dlip, leading to a one-dimensional map in the Poincaré
section. Popp also pointed out that simulation time by Poincaré
mapping model is only 1/1000 of the simulation time by
ordinary computer method !, For a geophysical fault model,
Galvanetto et a [8], [9] studied the chaotic and quasi-periodic
behavior of the two-mass system in contact with a moving
surface. With similar to the systems, they described a
one-dimensional map generated by a two degree-of-freedom
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mechanical system that undergoes self-sustained oscillations
induced by dry friction [10].

Up to now, there are already a lot of papers reported the
phenomenon for deterministic friction systems. An important
issue which has been paid somewhat less attention in the
literature of friction and dynamic systems is the stochastic
nature of dynamic surface interactions. The commonly used
static rough surface models were proposed by Greenwood and
Williamson [11]-{14]. Their observation that friction is a
random process is important and it can explain experimental
data. A number of recent articles have concluded that random
friction force fluctuations of sufficient magnitude can indeed
alter the qualitative characteristic of the dynamic response, i.e.,
change the stability of an equilibrium configuration [15]-{18].
References[19], [20] derived amean Poincaré map for random
systems with one friction interface, and showed that random
perturbations may break thelimit cycle, leading to chaos. But to
derive a discrete model for random systems with two or more
friction interfaces has not been investigated.

In this paper, the system used in Reference [10] is
considered. Two reconstructed deterministic and stochastic
discrete models have been established. The numerical
calculations of an example have shown that chaos may occur in
this system, and noise can change the non-linear behavior of the
system. The example has shown that the stochastic discrete
model may be used in some applications.

Il. THEDYNAMICAL SYSTEM

Fig.1 the mechanical system

The mechanical system investigated in the present paper, as
shown in Fig. 1, has been the object of attention in several
recent publications [10], [21]-{22]. The physica model
consists of two blocks supported by a moving belt. Each block
is connected to a fixed support by a linear spring and the two
blocks are connected together by a third linear spring. The
contact surfaces between the blocks and the belt are considered
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rough with different friction coefficients so that two different
friction forces are acting on the two dlipping surfaces
respectively.

The dynamics of the mechanical systemin Fig. 1 have been
defined in anon-dimensional form [21]: X,,V,,and X, .V,
are the displacements and velocities of the first and the second
block, respectively. The limit conditions that indicate the route
from stick-motion to slip-motion are given by

X, +a(X, - X,)==*1 (1a)
X, +a(X, = X,)=1p (1)
When the blocks are pulled by the belt their velocities are

constantly equal to the belt speed, while the blocks dlip their
motions are described by the equations

X, + X +o(X, = X,)=+ulV,,) (2a)
X, + X, +o(X, = X, )=+pulV,,) (2b)

Inwhich ¢ istheratio of the stiffness of the coupling spring
to the stiffness of the two other springs, /3 is the ratio of the
maximum static friction forces acting on the second block to
oneacting on thefirst block. And V., = (V, =V, ) (i=1,2) are
the relative velocity of the i-th block with respect to the belt.
V, isthe velocity of the belt, and is constant. 4 indicates

friction factor. All these quantities are dimensionless [21].
Consider the corresponding linear homogeneous equations

>'*<'l+>21+a(>21->22)=o (3a)
X, +X,+a(X,~X,)=0 (3b)
The linear system has two natural frequencies @, ,i =12,
and their displacements and velocities can be expressed as
X; =C;, cos(w, —y,)
+C,, cos(w, ;)
Vi =-{C @, sin(@, -y,)
+C,0, SiN(@, —,)]
Assuming @ =1.2and =13, it can be obtained that
w, =1and w, =1.8439.
The stretch length is defined by
d=X,-X, (5

When the distance between the blocks is larger than the
length of the un-stretched coupling spring, i.e. the coupling

springisintension, d is positive, whereas negative means that
the coupling spring isin compression.

(42)

(4b)

I1l. POINCARE MAPS

Hereit is assumed that for the considered system, stick-slip
motion exists. In following way, the deterministic and
stochastic discrete models will be established respectively.

A. Approximating deterministic discrete model

(2) At stick-mode
By subtracting (1a) from (1b), it can be obtained that

+BF1 .
d = , 1=1234 6
' 1+ 2o . ©

(2) At dip-mode

Thefriction factor hereis considered asin [10].

:u(vri ): 1/(1+ 7|\/| _Vdr |)'

¥ isthe shape coefficient of the dynamic friction law. While
¥ is small, first-order approximation of friction factor can be
approached in the following form:
;U(Vri ):1_ 7|Vi _Vdr| (7)

Subtraction of (2a) from (2b) gives
d+(1+2a)d = H(BFL(1+ NV, )

i _ 8
Fopd+(BF V]
Let
WB=2n p°=1+2c ©
¢t =(BFD, h=1+WN,
The stability equation can be obtained as
d+2nd + p?d =c*[h+V,] (10)
Assuming
V, =V, +gn(t) (11)

_ 2
where V, = Z:CZia)I sin(wt+y,) is the solution of the
1

corresponding linear system (3), and the initia conditions for
dections ae C, =¢ w, =0 . n(t) is the random

perturbation, and considered in general as awhite noise, which
satisfies
E[n(t) =0, Eln(t)(z)] = 6t - 7).

First consider the deterministic case, inwhich £, = 0, then

d+2nd + p2d=c*[h+zzlgia)I sina);tj (12
The solutions of (12) are given by
d = Aexp(-nt)sin(p,t + )
2
+> B sin(wt-¢)+B;
1
d = Aexp(-nt)[-nsin(p,t + 6) 3

+ p, cos(p,t + 6)]
2

+ z B w, cos(ot—¢,)
1

where
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. C'h
B_ =
' (1+2a)
+ c'ew
B; = 2
(p? - @2 +an’ar
2nw
@ =arctg——-
P -

pn:\/pz_n2

(3) The deterministic Poincaré map

2
Ve _ZBiiw. cos(ot,, —¢.)/ p,
6, =arcctg| — + L

2
Pr da _ZBiiSin(w.tkl_(Pi)_ By
1

(18)
(14) — Poliy

2
d _ZBiign(@tkl_¢i)_ B,
1

A= .
s n( pntkl + ek)
At transition point B, it has
t., =t TAL, =t, +At,, +At,

dga = AceXp(=nAt,, ) SiIn(p,ty,; +6) (19)

2
+ Z B sn(at,,,—¢)+B;
1

Inwhich At,, can be solved by the following equation

Fig.2 A probable limit cycle of stick-slip motion

When d <V, , thelimit cycleis shown in Fig. 2.

At Stick-modefrom B to A, it has
dAk _dBk :VdrAtkl
Aty =minld, —dg|/V,

dAk = dBk +VdrAtkl

At transition point A, it has

dac = AcSIN(Potyg +6,)
3B Sn@t, - 0) + B
Vdr i Ak[_nsm( pntkl + ek)
+ P, cos(p,t,, +6,)]
+ ZZ: B o, cos(@t,, — ¢,)
1

t, =t +At,

The solutions of (17) are found to be

o A exp(=nAt,, ){-ns n[pn (t +Aty, )+ ek]

+ P, o p, (t, + AL, )+ 6, } (20)
2

+ Z Bui cos[a), (tkl + Atk2)+ o, ]:Vdr
T

The Poincaré map for transition point B can be writtenin the
following form:

2
dges =[dgy + Vg Aty _Z B sin(at,, —¢,) - B;]
(15) '

(16)

exp(—nAt,,)xsin(p,t,., +8,)/sin(p,t,, +6,) (21)
Y B SN0, - 0) B

' e, =t AL, AL,
inwhich At,,, At,, can be obtained by (16) and (18).

B. Approximate stochastic discrete model

(1) During slip-mode from A to B
Adding arandom perturbation in equation (12), it becomes

d, +2nd, + p?d,

‘ (22)
= Ci(h+25ia), sina),tj+8077(t)
1

where 77(t) iswhite noise; &,isasmall parameter.

(17)

Supposing X, =d.; X, =d, and the state vector
X= [Xl’ XZ]T = [ds’ d.S]T

The state equation of (12) is given by
X = Ax+R* +gnlt) (23)
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{0 1}
A= 5
-p° —-2n

R* = ZleiSi: +
- Sinat + B,

1

0=le)

o m =E[x];
Ky = E[(¢ —m)(x; —my)]; i,j=12
The first and the second moment equations of (23) can be
expressed as

m= Am+ R"
K =AK +KA+gg"

It can be seen that the first equation of (25) issimilar to (12).
It means that (23) has the same mean value as the deterministic
equation (12).

(24)

(25)

E[d.]=m =d
[ .s] m =d 2
E[d,]=m, =d
Considering the second equation in (23), it has
£
O, =+ Ku = 0
2pVn
’ @)
0,=Ky = ﬁ
(A = ¥, )yoe = My + 30, (289)
[d] e =[] =M, +30, (28h)
(2) During stick-mode from B to A
At =mi n|di —[dsBk]mx|/Vdr (29)

[dsAk] max [dsBk] max +Vdr Atkl

(30)

(3) The random Poincaré map of maximal value

For the transition point B, the map of maxima value of
relative displacement can be obtained by

(Ao ] max =[Aegic]ma +Var At

- Zj: B* sin(wt,, — ) — By —30,]exp(—nAt,,) x

SNty +6,)/SN(P,t +6,) (31)

+ 22: B sin(@t,., —¢)+B; +30,
' e, =t + AL, +At,,

where At is obtained from (29), and At,, can be obtained
from the following relation

A, exp(-nAt,, {-ns n[ Pn (tkl +At,, )+ O, ]

+ P, COS[pn (tk1+Atk2)+6k]} (32)
2
+Z B o, Cos[wi (tis +Atk2)+¢i ]+302 =Vy4
T
in which
2
Ve - z B* cos(at,, — @) + 30,1/ p,
@, = arcctg L (33)

1
2

P dAk_z " sin(ot, - @) - By - 30,
T

- pntkl

When the noise intensity equals to zero, the random discrete
model (31) degenerates into the deterministic discrete model
(19).

IV. NUMERICAL EXAMPLES

This section will give the numerical analysis of the
deterministic and stochastic modelsin terms of Poincaré maps
and hifurcation diagrams, and the main aim is to explore the
influence of noiseintensity on the dynamic characteristic of the
systems.

A. Poincaré maps
Taking the parameters of the mechanical system showninFig.1
tobeasa=12,8=13, y=06,V, =2, ¢ =07,
£, =0.5. Fig.3 shows the Poincaré maps, the abscissa is

dg, or [dg. ] . and ordinate is dg O [d gy ]

max *
When the noise intensity is in the range of 0< £, <0.58,

the map appears to be a ring structure. This means that the
system makes a quasi-periodic vibration. Since the
approximate model has two excitation frequencies, it can be

understandable. Fig.3 (a) shows the case, €, =0. When
&, =0.59 in Fig. 3 (b), the ring has been broken, and the
graph structure has two-cycles. When &, = 0.6, the structure

is confusing, seen in Fig.3 (c). When g, increases up t00.7,
Fig.3 (d) displays the same changes in the structure again.
When £, = 0.71 there are only a few points in Fig.3 (e).

Wheng, = 0.81, the graph structure is forming a cycle, seen

inFig.3 (f). When &, = 0.87 , thering breaks once again, and
chaos occurs, seeing Fig.3 (g, h).
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Fig.3 (a) Poincaré Map
V, =2,7=06,¢=0.7,¢6,=05,¢,=0

T A

Fig.3 (b) Poincaré Map
V, =2,7=0.6,¢=0.7,¢,=05, £,=0.59

T

Fig.3 (c) Poincaré Map
V, =2,7=0.6,¢=0.7,¢,=05, ¢,=0.6
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V, =2,7=06,¢=0.7,¢,=05,¢,=0.71
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Fig.3 (f) Poincaré Maps,
V, =2,7=0.6,¢=0.7,¢6,=05, g,=0.81
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3
w

Fig.3 (g) Poincaré Map
=2,7=0.6,¢=0.7,¢,=05, ¢g,=0.87

3

Fig.3 (h) Poincaré Map
V,=2,7=06,¢=0.7,¢,=05, ¢ =1

B. Bifurcation diagrams

Fig. 4-6 give the bifurcation diagrams, in order to compare
the random and deterministic models.

(1) Fig. 4 displays the bifurcation diagram of the relative
displacement versus the belt-velocity. In Fig. 4, the abscissais

V, and ordinate is dg  or [dg, ]max .The parameters are as
folows =12, =13 » y=06, &=07,
&, =0.5. Fig. 4 (a) and (b) give the deterministic case and
random one, respectively; InFig. 4 (8) V,, = 0.7, the structure

comes to the aternating bifurcation. In Fig.4 (b) this situation
will arise only when V, =1.7 (the intensity of noise

&, =0.5).

(2) Fig. 5 shows the changes of the relative displacement
according to the shape coefficient 7 . The abscissa is ¥ and

ordinate isdg  or [d g, ]max . The parameters are ¢ =1.2,
p=13,V, =2,¢ =07, e,=05. Fig5 (a) and (b)
give the deterministic case and random one, respectively. Fig.5
(a) showsajump for thevalueof dg, , whiley =0.2. When

y > 0.2, an dternating bifurcation arises. For the random
case, (&, =1), wheny = 0.3, the jump occurs again, and
when 0.3< ¥ < 0.9, chaos arises, as shown in Fig.5 (b).

When 0.9 < ¥ <1.18, the graphics becomes a single line,

this means the motion of the system becomes periodic.
(3) Fig.6 givesthe diagram of the relative displacement with

the change of the initidl parameters &, .In this figure, the
abscissa is & and ordinate is dg, or [dsBk]max , the
parameters are ¢ =12, f=13, y=06, V, =2,
&, =0.5. Fig. 6 (a) givesthe deterministic case and Fig. 6 (b)
and (c) show the random case. Fig. 6 (a) is the aternating
bifurcation. In Fig.6 (b) wheng; > 0.8, the plot shows a
single line. This means that there is a periodic motion of the
system for these parameters. When &, =1, chaos arises
again, see Fig.6 ().
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Fig.4 (a) Bifurcation diagram of the deterministic case
y=06,6=0.7,¢,=05,£,=0

R
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Fig.4 (b) Bifurcation diagram of the random case
y=06,¢=0.7,¢,=05, =05
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Fig.5(a) Bifurcation diagram of the deterministic case
V,=2¢6=07¢6,=05,6=0
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Fig.5 (b) Bifurcation diagram of the random case
V,=26=07¢,=05,¢=1
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Fig.6 () Bifurcation diagram of the deterministic case
V,=2,7=0.6,6=05,¢,=0
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Fig.6 (b) Bifurcation diagram of the random case
V,=2,7=06,¢,=05, £,=0.6
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Fig.6 (c) Bifurcation diagram of the random case
V,=2,7=06,6=05,¢ =1

V. CONCLUSION

Based on the above analysis, some conclusions can be

drawn:

1) The 2-DOF friction system can be degraded, in principle,
to aone-dimensional discrete model.

2) Using the one-dimensional discrete model to do
simulation, we can greatly reduce the computer time;

3) Rich dynamic characteristics may be shown in friction
systems.
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