
 
 

 

  
Abstract — In this paper, a two-degree-of-freedom 

mass-on-belt friction dynamical system is considered. Two 
reconstructed deterministic and stochastic discrete models have 
been established. The numerical calculations of an example have 
shown that chaos may occur in this system, and noise can change 
the non-linear behavior of the system. The example has resulted 
that the stochastic discrete model may be used in some 
applications. 
 

Index Terms—Friction system, Stick-slip Phenomenon, 
Poincaré map, Bifurcation, Chaos  
 

I. INTRODUCTION 
   In dynamical systems, there are many nonlinear effects 
caused by friction. One of the most special nonlinear effects is 
stick-slip phenomenon. Stick-slip phenomenon is firstly found 
by Den Hartog [1]. But the term “stick-slip” was firstly coined 
in 1939 by FP Boweden and LL Leben, who had built an 
apparatus at the University of Cambridge in order to study the 
phenomenon [2]. Stick-slip phenomenon may be explained that 
stick motion is in contact with the surface due to static friction; 
and slip motion is in contact with the surface due to sliding 
friction.  In oscillatory motions both of the phenomena can take 
place successively, resulting in a stick-slip mode.  

Since the friction characteristic consists of two qualitatively 
different parts with a nonsmooth transition, the resulting 
motion also has nonsmooth behaviour. Therefore, stick-slip 
systems belong to the class of nonsmooth systems. Popp and 
Stelter [3], [4] and Feeny and Moon [5], [6] observed stick-slip 
chaos in simple oscillators whose nonlinearity is only due to 
dry friction. In these systems, the motion collapses during 
stick-slip, leading to a one-dimensional map in the Poincaré 
section. Popp also pointed out that simulation time by Poincaré 
mapping model is only 1/1000 of the simulation time by 
ordinary computer method [7]. For a geophysical fault model, 
Galvanetto et al [8], [9] studied the chaotic and quasi-periodic 
behavior of the two-mass system in contact with a moving 
surface. With similar to the systems, they described a 
one-dimensional map generated by a two degree-of-freedom 
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mechanical system that undergoes self-sustained oscillations 
induced by dry friction [10]. 

Up to now, there are already a lot of papers reported the 
phenomenon for deterministic friction systems. An important 
issue which has been paid somewhat less attention in the 
literature of friction and dynamic systems is the stochastic 
nature of dynamic surface interactions. The commonly used 
static rough surface models were proposed by Greenwood and 
Williamson [11]–[14]. Their observation that friction is a 
random process is important and it can explain experimental 
data. A number of recent articles have concluded that random 
friction force fluctuations of sufficient magnitude can indeed 
alter the qualitative characteristic of the dynamic response, i.e., 
change the stability of an equilibrium configuration [15]–[18]. 
References [19], [20] derived a mean Poincaré map for random 
systems with one friction interface, and showed that random 
perturbations may break the limit cycle, leading to chaos. But to 
derive a discrete model for random systems with two or more 
friction interfaces has not been investigated.  

In this paper, the system used in Reference [10] is 
considered. Two reconstructed deterministic and stochastic 
discrete models have been established. The numerical 
calculations of an example have shown that chaos may occur in 
this system, and noise can change the non-linear behavior of the 
system. The example has shown that the stochastic discrete 
model may be used in some applications. 

 

II. THE DYNAMICAL SYSTEM 

 
Fig.1 the mechanical system 

The mechanical system investigated in the present paper, as 
shown in Fig. 1, has been the object of attention in several 
recent publications [10], [21]–[22]. The physical model 
consists of two blocks supported by a moving belt. Each block 
is connected to a fixed support by a linear spring and the two 
blocks are connected together by a third linear spring. The 
contact surfaces between the blocks and the belt are considered 
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rough with different friction coefficients so that two different 
friction forces are acting on the two slipping surfaces 
respectively.  

The dynamics of the mechanical system in Fig. 1 have been 
defined in a non-dimensional form [21]: 1X , 1V , and 2X , 2V  
are the displacements and velocities of the first and the second 
block, respectively. The limit conditions that indicate the route 
from stick-motion to slip-motion are given by  

( ) 1211 ±=−+ XXX α                          (1a) 

( ) βα ±=−+ 122 XXX                         (1b) 
When the blocks are pulled by the belt their velocities are 

constantly equal to the belt speed, while the blocks slip their 
motions are described by the equations 

( ) ( )12111 rVXXXX μα ±=−++&&            (2a) 

( ) ( )21222 rVXXXX βμα ±=−++&&         (2b) 
In which α is the ratio of the stiffness of the coupling spring 

to the stiffness of the two other springs, β  is the ratio of the 
maximum static friction forces acting on the second block to 
one acting on the first block. And  ( )driri VVV −= (i=1,2) are 
the relative velocity of the i-th block with respect to the belt. 

drV  is the  velocity of the belt, and is constant. μ indicates 
friction factor. All these quantities are dimensionless [21].  

Consider the corresponding linear homogeneous equations 

( ) 0~~~~
2111 =−++ XXXX α&&                    (3a) 

( ) 0~~~~
1222 =−++ XXXX α&&                    (3b) 

The linear system has two natural frequencies 2,1, =iiω , 
and their displacements and velocities can be expressed as 
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Assuming 2.1=α and 3.1=β , it can be obtained that 

11 =ω  and 8439.12 =ω . 
The stretch length is defined by 

12 XXd −=                                     (5) 
When the distance between the blocks is larger than the 

length of the un-stretched coupling spring, i.e. the coupling 
spring is in tension, d  is positive, whereas negative means that 
the coupling spring is in compression. 

III. POINCARÉ MAPS 
Here it is assumed that for the considered system,  stick-slip 

motion exists. In following way, the deterministic and 
stochastic discrete models will be established respectively. 

A. Approximating deterministic discrete model 
(1) At stick-mode 
By subtracting (1a) from (1b), it can be obtained that 

4,3,2,1,
21

1 =
+

±= idi α
β m

                     (6) 

 
(2) At slip-mode  
The friction factor here is considered as in [10]. 

( ) ( )driri VVV −+= γμ 1/1 ; 

γ  is the shape coefficient of the dynamic friction law. While 
γ  is small, first-order approximation of friction factor can be 
approached in the following form:  

( ) driri VVV −−= γμ 1                          (7) 

Subtraction of (2a) from (2b) gives 
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The stability equation can be obtained as 

][2 1
2 Vhcdpdnd +=++ ±&&&                   (10) 

Assuming  

( )tVV ηε 011
~ +≅                                 (11) 

where ∑ +=
2

1
21 )sin(~

iiii tCV ψωω  is the solution of the 

corresponding linear system (3), and the initial conditions for 
elections are 0,2 == iiiC ψε . )(tη  is the random 

perturbation, and considered in general as a white noise, which 
satisfies 
 ( ) ( ) ( ) ( )τδτηηη −== ttEtE ][,0][ . 

First consider the deterministic case, in which 00 =ε , then 
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The solutions of (12) are given by 
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(3) The deterministic Poincaré map 
 

 
Fig.2 A probable limit cycle of stick-slip motion 
 

When drVd ≤& , the limit cycle is shown in Fig. 2.  
At Stick-mode from B to A, it has 

1kdrBkAk tVdd Δ=−                               (15) 

drBkik Vddt /min1 −=Δ                         (16) 

1kdrBkAk tVdd Δ+=  
At transition point A, it has 
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The solutions of (17) are found to be 
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At transition point B, it has 
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In which 2ktΔ can be solved by the following equation  
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The Poincaré map for transition point B can be written in the 
following form:  
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in which 21 , kk tt ΔΔ can be obtained by (16) and (18). 

B. Approximate stochastic discrete model 
(1) During slip-mode from A to B 
Adding a random perturbation in equation (12), it becomes 
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where )(tη  is white noise; 0ε is a small parameter.  

Supposing ss dxdx &== 21 ; and the state vector 
T

ss
T ddxxx ],[],[ 21

&==  
The state equation of (12) is given by 

( )tgRAxx η++= ±&                           (23) 
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The first and the second moment equations of (23) can be 
expressed as 
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It can be seen that the first equation of (25) is similar to (12). 
It means that (23) has the same mean value as the deterministic 
equation (12).  
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Considering the second equation in (23), it has  
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[ ] [ ] 11max1max 3σ+== mxd                     (28a) 

[ ] [ ] 22max2max 3σ+== mxd&                     (28b) 
(2) During stick-mode from B to A 

drsBkik Vddt /][min max1 −=Δ                 (29) 

1maxmax ][][ kdrsBksAk tVdd Δ+=                      
  (30) 

(3) The random Poincaré map of maximal value 
For the transition point B, the map of maximal value of 

relative displacement can be obtained by 
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where 1ktΔ is obtained from (29), and 2ktΔ can be obtained 
from the following relation 
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in which  
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When the noise intensity equals to zero, the random discrete 
model (31) degenerates into the deterministic discrete model 
(19). 

IV. NUMERICAL EXAMPLES 
This section will give the numerical analysis of the 

deterministic and  stochastic models in terms of Poincaré maps 
and bifurcation diagrams, and the main aim is to explore the 
influence of noise intensity on the dynamic characteristic of the 
systems. 

A. Poincaré maps 
Taking the parameters of the mechanical system shown in Fig.1 
to be as: 2.1=α , 3.1=β , 6.0=γ , 2=drV , 7.01 =ε , 

5.02 =ε . Fig.3 shows the Poincaré maps, the abscissa is 

kBd ,  or [ ]maxsBkd and ordinate is 1, +kBd or [ ]max1+sBkd . 

When the noise intensity is in the range of  58.00 0 ≤≤ ε , 
the map appears  to be a ring structure. This means that the 
system makes a quasi-periodic vibration. Since the 
approximate model has two excitation frequencies, it can be 
understandable. Fig.3 (a) shows the case, 00 =ε . When 

59.00 =ε  in Fig. 3 (b), the ring has been broken, and the 

graph structure has two-cycles. When 6.00 =ε , the structure 

is confusing, seen in Fig.3 (c). When 0ε  increases up to 7.0 , 
Fig.3 (d) displays the same changes in the structure again. 
When 71.00 =ε  there are only a few points in Fig.3 (e). 

When 81.00 =ε , the graph structure is forming a cycle, seen 

in Fig.3 (f). When 87.00 ≥ε , the ring breaks once again, and 
chaos occurs, seeing Fig.3 (g, h).  
 

IAENG International Journal of Applied Mathematics, 38:1, IJAM_38_1_01
______________________________________________________________________________________

(Advance online publication: 19 February 2008)



 
 

 

1.4 1.5 1.6 1.7 1.8 1.9 2 2.1
1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

dBk

dBk
+1

 
Fig.3 (a) Poincaré Map 

 5.0,7.0,6.0,2 21 ==== εεγdrV , 00 =ε  
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Fig.3 (b) Poincaré Map 

5.0,7.0,6.0,2 21 ==== εεγdrV , 59.00 =ε  
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Fig.3 (c) Poincaré Map 

5.0,7.0,6.0,2 21 ==== εεγdrV , 6.00 =ε  
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Fig.3 (d) Poincaré Map 

5.0,7.0,6.0,2 21 ==== εεγdrV , 7.00 =ε  
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Fig.3 (e) Poincaré Map 

5.0,7.0,6.0,2 21 ==== εεγdrV , 71.00 =ε  
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Fig.3 (f) Poincaré Maps, 

5.0,7.0,6.0,2 21 ==== εεγdrV , 81.00 =ε  
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Fig.3 (g) Poincaré Map 

5.0,7.0,6.0,2 21 ==== εεγdrV , 87.00 =ε  
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Fig.3 (h) Poincaré Map  

5.0,7.0,6.0,2 21 ==== εεγdrV , 10 =ε  
 

B. Bifurcation diagrams 
Fig. 4-6 give the bifurcation diagrams, in order to compare 

the random and deterministic models. 
(1) Fig. 4 displays the bifurcation diagram of the relative 

displacement versus the belt-velocity. In Fig. 4, the abscissa is 

drV and ordinate is kBd ,  or [ ]maxsBkd .The parameters are as 

follows: 2.1=α , 3.1=β ， 6.0=γ , 7.01 =ε , 

5.02 =ε . Fig. 4 (a) and (b) give the deterministic case and 

random one, respectively; In Fig. 4 (a) 7.0≥drV , the structure 
comes to the alternating bifurcation. In Fig.4 (b) this situation 
will arise only when 7.1≥drV (the intensity of noise 

5.00 =ε ). 
(2) Fig. 5 shows the changes of the relative displacement 

according to the shape coefficient γ . The abscissa is γ and 

ordinate is kBd ,  or [ ]maxsBkd . The parameters are 2.1=α , 

3.1=β , 2=drV , 7.01 =ε , 5.02 =ε . Fig.5 (a) and (b) 
give the deterministic case and random one, respectively. Fig.5 
(a) shows a jump for the value of  kBd , , while 2.0=γ . When 

2.0>γ , an alternating bifurcation arises. For the random 

case, ( 10 =ε ), when 3.0=γ , the jump occurs again, and 

when 9.03.0 << γ , chaos arises, as shown in Fig.5 (b). 

When 18.19.0 << γ , the graphics becomes a single line, 
this means the motion of the system becomes periodic. 

(3) Fig.6 gives the diagram of the relative displacement with 
the change of the initial parameters 1ε .In this figure, the 

abscissa is 1ε  and ordinate is kBd ,  or [ ]maxsBkd , the 

parameters are 2.1=α , 3.1=β , 6.0=γ , 2=drV , 

5.02 =ε . Fig. 6 (a) gives the deterministic case and Fig. 6 (b) 
and (c) show the random case. Fig. 6 (a) is the alternating 
bifurcation. In Fig.6 (b) when 8.01 >ε , the  plot shows a 
single line. This means that there is a periodic motion of the 
system for these parameters. When  10 =ε , chaos arises 
again, see Fig.6 (c). 
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Fig.4 (a) Bifurcation diagram of the deterministic case 
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0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Vdr

[d
Bk

] m
ax

 
Fig.4 (b) Bifurcation diagram of the random case 

5.0,7.0,6.0 21 === εεγ , 5.00 =ε  
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Fig.5(a) Bifurcation diagram of the deterministic case 

5.0,7.0,2 21 === εεdrV , 00 =ε  
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Fig.5 (b) Bifurcation diagram of the random case 

5.0,7.0,2 21 === εεdrV , 10 =ε  
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Fig.6 (a) Bifurcation diagram of the deterministic case 

5.0,6.0,2 2 === εγdrV , 00 =ε  
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Fig.6 (b) Bifurcation diagram of the random case 

5.0,6.0,2 2 === εγdrV , 6.00 =ε  
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Fig.6 (c) Bifurcation diagram of the random case 

5.0,6.0,2 2 === εγdrV , 10 =ε  
 

V. CONCLUSION 
Based on the above analysis, some conclusions can be 

drawn: 
1) The 2-DOF friction system can be degraded, in principle, 

to a one-dimensional discrete model. 
2) Using the one-dimensional discrete model to do 

simulation, we can greatly reduce the computer time;  
3) Rich dynamic characteristics may be shown in friction 

systems.  
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