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Abstract—This paper considers parameter esti-
mation for state-space models (SSMs). We pro-
pose quasi-likelihood (QL) and asymptotic quasi-
likelihood (AQL) approaches for the estimation of
state-space models. The asymptotic quasi-likelihood
(AQL) utilises a nonparametric kernel estimator of
the conditional variance covariances matrix Σt to re-
place the true Σt in the standard quasi-likelihood.
The kernel estimation avoids the risk of potential
miss-specification of Σt and thus make the parameter
estimator more robust. This has been further verified
by empirical studies carried out in this paper.
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1 Introduction

The class of state space models (SSM) provides a flexible
framework for describing a wide range of time series in
a variety of disciplines. For extensive discussion on SSM
and their applications see Harvey [11] and Durbin and
Koopman [9]. A state-space model can be written as

yt = f1(αt, θ) + h1(yt−1, θ)εt, t = 1, 2, · · · , T (1)

where y1, . . . , yT represent the time series of observations;
θ is an unknown parameter that needs to be estimated;
f1(.) is a known function of state variable αt and θ; and
{εt} are uncorrelated disturbances with Et−1(εt) = 0,
V art−1(εt) = σ2

ε ; in which Et−1, and V art−1 denote con-
ditional mean and conditional variance associated with
past information updated to time t-1 respectively. State
variables α1, . . . , αT are unobserved and satisfy the fol-
lowing model

αt = f2(αt−1, θ) + h2(αt−1, θ)ηt, t = 1, 2 · · · , T, (2)

where f2(.) is a function of past state variables and θ;
{ηt} are uncorrelated disturbances with Et−1(ηt) = 0,
V art−1(ηt) = σ2

η. h1(.) and h2(.) are unknown functions.

One special application that we will consider in detail is
the case where the time series y1, . . . , yT consist of counts.
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Here, it might be plausible to model yt by a Poisson dis-
tribution. Models of this type have been used for rare
diseases, ( Zeger [27]; Chan and Ledolter [6]; Davis, Dun-
smuir and Wang [7]).

Another noteworthy application of the SSM that we will
consider is Stochastic Volatility Model (SVM), a fre-
quently used model for returns of financial assets. Appli-
cations, together with estimation for SVM, can be found
in Jacquier, et al [18]; Briedt and Carriquiry [5]; Harvey
and Streible [12]; Sandmann and Koopman [25]; Pitt and
Shepard [23].

There are several approaches in the literature for esti-
mating the parameters in SSMs by using the maximum
likelihood method when the probability structure of un-
derlying model is normal or conditional normal. Durbin
and Koopman ([10], [9]) obtained accurate approximation
of the log-likelihood for Non-Gaussian state space mod-
els by using Monte Carlo simulation. The log-likelihood
function is maximised numerically to obtain estimates of
unknown parameters. Kuk [19] suggested an alternative
class of estimate models based on conjugate latent pro-
cess and applied it to approximate the likelihood of a
time series model for count data. To overcome the com-
plex likelihoods of a time series model with count data,
Chan and Ledolter [6] proposed the Monte Carlo EM al-
gorithm that uses a Markov chain sampling technique in
the calculation of the expectation in the the E-step of
the EM algorithm. Davis and Rodriguez-Yam [8] pro-
posed an alternative estimation procedure which is based
on an approximation to the likelihood function. In this
paper, we consider the quasi-likelihood (QL) method and
apply it to SSM. The QL method relaxes the distribu-
tional assumptions and only assumes the knowledge on
the first two conditional moments of yt and αt associated
past information. This weaker assumption makes the QL
method widely applicable and become a popular method
of estimation. A comprehensive review on the QL method
is available in Heyde [17]. A limitation of the QL is that
in practice, the conditional second moments of of yt and
αt might not available. In this paper, we further sug-
gest an alternative approach, AQL approach, combining
with kernel method treatment for estimating the param-
eter in SSM. This AQL approach provides an alternative
method of parameter estimation when unknown form of
heteroscedasticity is presented.
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This paper is structured as follows. In Section (2),
the quasi-likelihood and the asymptotic quasi-likelihood
based on kernel smoothing are introduced. we apply QL
and AQL approaches to SSMs in Section (3). Section (4)
report simulation results and covers numerical implemen-
tation. An analysis on a real data set by QL and AQL
methods are given in Section (5). A summary is given in
Section (6).

2 Quasi-likelihood and Asymptotic
Quasi-likelihood approaches

Consider the following qth-order markovian process
model,

yt = mt(yt−1, . . . , yt−q; θ) + δt, t = 1, 2, · · · , (3)

where yt, mt(θ), and δt are m-dimension random vec-
tors; mt is Ft−1 measurable; δt is a martingale difference
associated with Ft, i.e. E(δt|Ft−1)= Et−1(δt) = 0; Ft is
a σ-field generated by {ys}s≤t; and θ is the parameter of
interest defined in an open parameter space Θ ∈ Rd.

Given a sample {yt}t≤T drawn from (3), if the expres-
sion of E(δtδ′t|Ft−1)=Et−1(δtδ′t) = Σt is known, the stan-
dard quasi-score estimating function in estimating func-
tion space

GT = {
T∑

t=1

At(yt −mt(θ));At is Ft−1-measureable}

is

G∗
T (θ) =

T∑
t=1

ṁt(θ)Σ−1
t (yt −mt(θ)) (4)

where ṁt(θ) = ∂mt(θ)/∂θ. Then the quasi-score normal
equation is G∗

T (θ) = 0, whose root is the quasi-likelihood
estimate of θ. For a special scenario, if we only consider
sub estimating function spaces of GT , for example when
t < T ,

G(t) = {At(yt −mt);At is Ft−1-measureable} ⊂ GT ,

then, the standard quasi-score estimating function in this
space is

G∗
t (θ) = ṁt(θ)Σ−1

t (yt −mt(θ)) (5)

and G∗
t (θ) = 0 will give the quasi-likelihood estimator

based on the information provided by G(t). Under cer-
tain regularity conditions, the quasi-likelihood estima-
tor is consistency and achieves optimal efficiency within
space GT (Heyde, [17]). In particular, under Fisher in-
formation criterion, the volume of the confidence region
for θ produced by the quasi-score estimating function is
smaller than that of any other confidence regions derived
from any other estimating functions within the same es-
timating function space (Lin and Heyde, [20]).

The quasi-score estimating functions (4) and (5) rely on
the knowledge of Et−1(δtδ′t). Such knowledge is not al-
ways available in practice considering there is only one
sample path of the process being observed. To facilitate
QL in a situation where Et−1(δtδ′t) is unknown, Lin [22]
introduced a new concept of asymptotic quasi-score es-
timation function and suggested an approach, called the
asymptotic quasi-likelihood (AQL) approach, replacing
the exact quasi-likelihood approach. Let Σt,n be a se-
quence of Ft−1-measurable random matrices converging
to Et−1(δtδ′t) in probability. Then,

G∗
T,n(θ) =

T∑
t=1

ṁt(θ)Σ−1
t,n(yt −mt(θ))

forms a sequence of asymptotic quasi-score estimating
functions. The corresponding roots of G∗

T,n(θ) = 0
forms a sequence of asymptotic quasi-likelihood estimates
{θ∗T,n} which converges to θ under certain conditions.
Since G∗

T,n has the following property (Lin, [22])

‖(EĠ
∗
T )−1(EG∗

T G∗′
T )(EĠ

∗′
T )−1

−(EĠ
∗
T,n)−1(EG∗

T,nG∗′
T )(EĠ

∗′
T,n)−1‖ → 0,

as n → ∞, this means that the amount of Fisher Infor-
mation provided by G∗

T,n will be close to what provided
by the standard QL estimating function G∗

T . Thus, G∗
T,n

will be able to provide asymptotic efficient estimation for
θ through {θ∗T,n}. Thus, using asymptotic quasi-score es-
timating function to obtain asymptotic efficient estima-
tion for θ is an alternative approach to the QL approach
when QL estimating function is not available. The main
issue in asymptotic quasi-score approach is about the
structure of appropriate asymptotic quasi-score sequence
of estimating functions. In this paper, we consider using
the kernel smoothing estimator of Σt=: V ar(yt|Ft−1) to
replace Σt in the AQL formulation (4) and (5).

Under (3), let xt = (yt−1, . . . ,yt−q) be the lagged value
of yt = (y1t, y2t, . . . , ymt)′. Given an initial estimator of
θ, say θ̂(0), the Nadaraya-Watson (NW) estimator of Σt

is Σ̂t,n with elements

σ̂n(yit) =

∑n
s=q+1Dits(yis −mis(xis, θ̂

(0)))2∑n
s=q+1Dits

(6)

σ̂n(yit, yjt) =

∑n
s=q+1DitsDjts(yis −mis)(yjs −mjs)∑n

s=q+1DitsDjts
,

(7)
where i �= j and i, j = 1, 2, . . . ,m, Dits = K

(xit−xis

h

)
,

xit = (yi,t−1, . . . , yi,t−q), xis = (yi,s−1, . . . , yi,s−q) and
K(u) = 0.75q

∏q
l=1[(1 − u2

l )I(−1,1)ul] is a q-dimensional
kernel function of order 2 and h is a smoothing bandwidth
such that h→ 0 and nhq →∞ as n→∞.
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A comprehensive review of the above NW type kernel
estimator including the construction of K and the choice
of h is available in (Härdle, [14]; Wand and Jones, [26]).
Härdle et al. [15], Härdle and Tsybakov [16] consider the
local linear estimator for volatility function for data from
a first order Markov process.

The estimating functions (4) and (5) based on the kernel
estimators (6) and (7) become

G∗
T,n(θ) =

T∑
t=1

ṁt(θ)Σ̂−1
t,n(yt −mt(θ)) (8)

G∗
t,n(θ) = ṁt(θ)Σ̂−1

t,n(yt −mt(θ)) (9)

and the asymptotic quasi-score normal equation are

G∗
T,n(θ) =

T∑
t=1

ṁt(θ)Σ̂−1
t,n(yt −mt(xt; θ)) = 0. (10)

G∗
t,n(θ) = ṁt(θ)Σ̂−1

t,n(yt −mt(xt; θ)) = 0. (11)

where

Σ̂t,n(θ̂(0)) =

⎡
⎢⎢⎢⎣

σ̂n(y1t) . . . σ̂n(y1t, ymt)
σ̂n(y2t, y1t) . . . σ̂n(y2t, ymt)

...
. . .

...
σ̂n(ymt, y1t) . . . σ̂n(ymt)

⎤
⎥⎥⎥⎦ .

To solve the above asymptotic quasi-score normal equa-
tion, say (10) for example, an iterative procedure can be
adapted. It can start from the OLS estimator θ̂(0) and
use Σ̂t,n(θ̂(0)) in equation (10) to obtain an AQL estima-
tor θ̂(1). Then update (10) by employing Σ̂t,n(θ̂(1)) and
solve for θ̂(2). Iterate this several time until it converges.

For more detail in AQL approach based on kernel smooth-
ing for multivariate heteroskedastic models with correla-
tion see Alzghool, et al. [3]. Alzghool and Lin [4] apply
the AQL approach for the estimation of nonlinear and
non-Gaussian state-space models with correlation.

3 Parameter Estimation

3.1 Parameter Estimation QL Approach

In this section we introduce how to use the QL approach
to estimate parameters in SSM. Consider the following
state-space model

yt = f1(αt, θ) + εt, t = 1, 2, · · · , T (12)

αt = f2(αt−1, θ) + ηt, t = 1, 2 · · · , T, (13)

where {yt} represents the time series of observations,
{αt} the state variables, θ unknown parameter taking
value in an open subset Θ of d-dimensional Euclidean
space. Both f1 and f2 are functions satisfying certain
regularity conditions, and the error terms εt and ηt

are independent. Denote δt = (εt, ηt)′. Then δt is a

martingale difference with

Et−1(δt) =
[

0
0

]

and

V art−1(δt) =
[
σ2

εt
0

0 σ2
η

]
.

Traditionally, normality or conditional normality condi-
tion is assumed and the estimation of parameters are ob-
tained by the ML approach. However, in many appli-
cations the normality assumption is not realistic. Fur-
ther more, the probability structure of the model may
not be known. Thus the maximum likelihood method is
not applicable or it is too complex to estimate parame-
ters through the ML method as the calculation involved
is complex sometimes. In the following the QL approach
for estimating the parameters in SSM is introduced. This
approach can be carried out without full knowledge of the
system probability structure. It involves in making deci-
sion about the initial values of θ and iterative procedure.
Each iterative procedure consists of two steps. The first
step is to use the QL method to obtain the optimal esti-
mation for each αt, say α̂t. The second step is to combine
the information of {yt} and {α̂t} to adjust the estimate
of θ through the QL method.

In Step 1, assign an initial value to θ and consider the
following martingale difference

δt =
[
εt
ηt

]
=

[
yt −E(yt|Ft−1)
αt −E(αt|Ft−1)

]

and estimating function space

G(t)
T = {Atδt | At is Ft−1 measurable},

where αt is considered as an unknown parameter. A stan-
dardized optimal estimating function in this estimating
function space is

G∗(t)(αt) = Et−1(
∂δt
∂αt

)[V art−1(δt)]−1δt.

To obtain the QL estimate α̂t of αt, we let G∗(t)(αt) = 0
and solve the equation for αt. This estimation is as same
as the estimation given by Kalman filter approach when
the underlying system has a normal probability structure.
(For detailed discussion see Lin, [21]).

In Step 2, θ is considered as an unknown parameter and
the estimating function space

GT = {
T∑

t=1

Atδt | At is Ft−1 measurable}
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is considered. Then the standardized optimal estimating
function in this estimating function space is

G∗T (θ) =
T∑

t=1

Et−1(
∂δt
∂θ

)[V art−1(δt)]−1δt.

To obtain the QL estimate θ̂ for θ we let G∗T (θ) = 0
and solve the equation while replacing αt by α̂t obtained
from Step 1. The θ̂ obtained from Step 2 will be used as
a new initial value for the θ in Step 1 in the next iterative
procedure. These two steps will be alternatively repeated
till certain criterion is met.

When σ2
εt

and σ2
η are unknown, a procedure for estimating

σ2
εt

and σ2
η will be involved. In Step 1, initial value for

σ2
εt

and σ2
η need to be provided. By the end of Step 2,

the estimations of σ2
εt

and σ2
η will be made and will be

the new initial value for σ2
εt

and σ2
η respectively in the

next step. For details, see the simulation studies in next
sections. Alzghool and Lin [2] apply the QL approach for
the estimation of SSMs when σ2

η is known.

3.2 Parameter Estimation AQL approach

In this section we introduce how to apply the AQL ap-
proach to SSM. Consider the following state-space model

yt = f1(αt, θ) + h1(yt−1, θ)εt, t = 1, 2, · · · , T (14)

αt = f2(αt−1, θ) + h2(αt−1, θ)ηt, t = 1, 2 · · · , T, (15)

where {yt} represents the time series of observations,
{αt} the state variables, θ unknown parameter taking
value in an open subset Θ of d-dimensional Euclidean
space, f1 and f2 are known functions of the past
information, h1 and h2 are unknown functions. Denote
δt = (h1(yt−1, θ)εt, h2(αt−1, θ)ηt)′. Then δt is a martin-
gale difference with

Et−1(δt) =
[

0
0

]

and

Et−1(δtδ′t) = Σt =
[

σ(yt; θ) σ((yt, αt); θ)
σ((yt, αt); θ) σ(αt; θ)

]
.

In the following the AQL approach for estimating the
parameters in SSM is introduced. This approach can be
carried out without full knowledge of the system prob-
ability structure and Σt. It involves in making decision
about the initial values of θ, Σt and iterative procedure.
Each iterative procedure consists of three steps. The first
step is to use the AQL method to obtain the optimal esti-
mation for each αt, say α̂t. The second step is to estimate
Σt by kernel estimator. The third step is to combine the

information of {yt} and {α̂t} to adjust the estimate of θ
through the AQL method.

In Step 1, assign an initial value to θ, Σt and consider
the following martingale difference

δt =
[
h1(yt−1, θ)εt
h2(αt−1, θ)ηt

]
=

[
yt −E(yt|Ft−1)
αt −E(αt|Ft−1)

]

and estimating function space

G(t)
T = {Atδt | At is Ft−1 measurable},

where αt is considered as an unknown parameter. A se-
quence of asymptotic quasi-score estimating functions in
this estimating function space is

G∗t (αt) = Et−1(
∂δt
∂αt

)Σ̂−1
t,nδt.

To obtain the AQL estimate α̂t of αt, we let G∗t (αt) = 0
and solve the equation for αt.

In Step 2, using kernel estimator (6) and (7) to obtain
Σ̂t,n(θ(0))

In Step 3, θ is considered as an unknown parameter and
the estimating function space

GT = {
T∑

t=1

Atδt | At is Ft−1 measurable}

is considered. Then a sequence of asymptotic quasi-score
estimating functions in this estimating function space is

G∗T (θ) =
T∑

t=1

Et−1(
∂δt
∂θ

)Σ̂−1
t,n(θ(0))δt.

To obtain the AQL estimate θ̂ for θ we let G∗T (θ) = 0
and solve the equation while replacing αt by α̂t obtained
from Step 1. The Σ̂t,n(θ(0)) and θ̂ obtained from Step 2
and 3 respectively will be used as a new initial value for
the θ and Σt in Step 1 in the next iterative procedure.
These three steps will be alternatively repeated until it
converges.

In determining the NW type kernel estimate for Σ̂t,n, the
bandwidths are determined by quick and simple band-
width selectors i.e. (oversmoothed bandwidth selection
rules). The oversmoothed principle relies on the fact that
there is a simple upper bound for the asymptotic mean
integrated squared error (AMISE-optimal bandwidth).
The oversmoothed bandwidth selector is

ĥos = (
243R(K)

35μ2(K)2n
)1/5s (16)
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where s is the sample standard deviation, R(K) =∫ 1

−1
K(u)2du, and μ2(K) =

∫ 1

−1
u2K(u)du (see Wand and

Jones, [26]).

In the following we demonstrate the application of the QL
and AQL approaches. Two simulation studies are pre-
sented below. One is based on Poisson Model (PM) and
other is based on the basic Stochastic Volatility Model
(SVM).

4 Simulations studies

4.1 Poisson model (PM)

Let y1, y2, · · · , yT be observations and α1, α2, · · · , αT be
states. The state-space model is given by

yt ∼ Poisson distribution with parameter eβ+αt ,

αt = φαt−1 + ηt, (17)

where ηt are i.i.d with mean 0 and variance σ2
η. The study

on the generalized form of the above model can be found
from Durbin and Koopman [10], Kuk [19], and Davis and
Rodriguez-Yam [8]. Here the information on ηt is only
given by the first two moments. Consider the situation of
the above model by assuming that {yt−eβ+αt} and ηt are
mutually independent; β, φ and σ2

η are unknown. Based
on this situation, we consider the following martingale
difference

[
εt
ηt

]
=

[
yt − eβ+αt

αt − φαt−1

]
.

4.1.1 QL for PM

Our estimation consists of two steps. In Step 1, let αt

act as an unknown parameter. The standard quasi-score
estimating function in the estimating function space de-
termined by

G = {At

[
εt
ηt

]
| At is Ft−1 measurable }

is

G(t)(αt) = [−eβ+αt , 1]
[
eβ+αt 0

0 σ2
η

]−1

×
[
yt − eβ+αt

αt − φαt−1

]

= −yt + eβ+αt +
1
σ2

η

(αt − φαt−1). (18)

To carry out the two-step estimation procedure described
in Section 3.1, the starting value ψ0 = (β0, φ0, σ

2
η0), and

the initial value for state process αt are required. Impact
of the starting value of ψ0 and the initial value of αt on
parameter estimation is discussed in Section 2.4. Initially
we assign α0 = α̂0 = 0. Once the optimal estimation of
αt−1 is obtained, say α̂t−1, the quasi-likelihood estima-
tion of αt, will be given by solving equation G(t)(αt) = 0
through Newton-Raphson algorithm. It gives

α
(k+1)
t = α

(k)
t −

−yt + eβ+α
(k)
t + 1

σ2
η0

(α(k)
t − φα̂t−1)

eβ+α
(k)
t + 1

σ2
η0

.

(19)
It starts with α

(1)
t = α̂t−1 and will be iterative till it is

convergent. Then move to Step 2.

In Step 2, let β and φ act as unknown parameters. We
apply the QL method to estimate β and φ. In this step,
the estimating function space is

G = {
T∑

t=1

At

[
εt
ηt

]
| At is Ft−1 measurable }.

The standard quasi-score estimating function related to
G is

GT (β, φ) =
T∑

t=1

[ −eβ+αt 0
0 −αt−1

] [
eβ+αt 0

0 σ2
η0

]−1

×

[
yt − eβ+αt

αt − φαt−1

]
.

Replace αt by α̂t, t = 1, 2, · · · , T , and the QL estimate of
β and φ will be given by solving

GT (β, φ) = 0. Therefore

β̂ = ln(
T∑

t=1

yt)− ln(
T∑

t=1

eα̂t), t = 1, 2, · · · , T, (20)

φ̂ =
∑T

t=1 α̂tα̂t−1∑T
t=1 α̂

2
t−1

, t = 1, 2, · · · , T. (21)

and let

σ̂2
η =

∑T
t=1(η̂t − ¯̂η)2

T − 1
(22)

where η̂t = α̂t − φ̂α̂t−1, t = 1, 2, · · · , T , and ¯̂η =
∑T

t=1
η̂t

T .
The above two steps will be iteratively repeated till cer-
tain criterion is meet. The ψ̂ = (β̂, φ̂, σ̂2

η) obtained from
previous step will be used as an initial value for next
iterative.
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4.1.2 AQL for PM

Let y1, y2, · · · , yT be observations and α1, α2, · · · , αT be
states. The state-space model is given by

yt ∼ Poisson distribution with parameter eβ+αt ,

αt = φαt−1 + h(αt−1, θ)ηt, (23)

where ηt are i.i.d with mean 0 and variance σ2
η. Here the

information on ηt is only given by the first two moments.
β, φ and σ2

η are unknown. Based on this situation, we
consider the following martingale difference

δt =
[

εt
h(αt−1, θ)ηt

]
=

[
yt − eβ+αt

αt − φαt−1

]
.

Our estimation consists of three steps. In Step 1, let αt

act as an unknown parameter. A sequence of asymptotic
quasi-score estimating functions in the estimating func-
tion space determined by

Gt = {Atδt| At is Ft−1 measurable }

is

G∗t (αt) = (−eβ+αt , 1)Σ−1
t,n

[
yt − eβ+αt

αt − φαt−1

]

To carry out the three steps estimation procedure de-
scribed in Section 3.2, the starting value θ0 = (β0, φ0),
Σt = I2 identity matrix, and the initial value for state
process αt are required. For detail dissection about the
impact of the starting value of θ0 and the issue of the
initial value of αt on parameter estimation see Alzghool
and Lin [21]. Initially we assign α0 = α̂0 = 0. Once
the optimal estimate of αt−1 is obtained, say α̂t−1, the
AQL estimate of αt, will be given by solving equation
G∗t (αt) = 0 through Newton-Raphson algorithm. It gives

α
(k+1)
t = α

(k)
t −−yte

β+α
(k)
t + e2(β+α

(k)
t ) + (α(k)

t − φα̂t−1)

−yteβ+α
(k)
t + 2e2(β+α

(k)
t ) + 1

.

(24)
It starts with α

(1)
t = α̂t−1 and will be iterative till it is

convergent. Then move to Step 2. In Step 2, using kernel
estimator (6) and (7) to obtain

Σ̂t,n(θ(0)) =
[

σ̂n(yt) σ̂n(yt, αt)
σ̂n(αt, yt) σ̂n(αt)

]

In Step 3, let θ = (β, φ) act as unknown parameters. We
apply the AQL method to estimate θ. In this step, the
estimating function space

GT = {
T∑

t=1

Atδt| At is Ft−1 measurable }

is considered. The asymptotic quasi-score estimating
function related to GT is

G∗T (β, φ) =
T∑

t=1

[ −eβ+αt 0
0 −αt−1

]
Σ̂−1

t,n

[
yt − eβ+αt

αt − φαt−1

]
.

Replace αt by α̂t, t = 1, 2, · · · , T , and the AQL estimate
of θ = (β, φ) will be given by solving G∗T (β, φ) = 0. The
above three steps will be iteratively repeated until it con-
verges. The Σ̂t,n(θ(0)) and θ = (β, φ) obtained from pre-
vious Step 2 and 3 will be used as an initial value for
Step 1 in next iteration. Our experience showed that the
algorithm converged after three iterations.

To demonstrate the above estimation procedures we car-
ried out a simulation study on model (23). In our simula-
tion study, h(αt−1, θ) is assigned as 1. The main reason
for doing is that, given h(αt−1, θ) = 1, Σt can be eas-
ily evaluated. Thus, the QL method can be applied to
simulated data, and it is possible to compare the QL esti-
mation with the estimations given by the AQL approach,
in which Σt is pretended to be unknown. Our simulation
was carried as follows: Firstly, independently simulate
1000 samples with size 500 from (23) based on a true pa-
rameter θ = (β, φ). After series {yt}, {αt} are generated,
we pretend that αt are unobserved and φ and β are un-
known. Then apply the above estimation procedure to yt

only to obtain the estimation of αt, φ and β. We consider
different parameter settings for θ = (φ, β) which are the
same as the layout considered in Rodriguez-Yam [24]. For
the simulation, we compute mean and root mean squared
errors for β̂ and φ̂ based on N=1000 independent samples.
Result are shown in Table 1. In Table 1, AQL denotes
the asymptotic quasi-likelihood estimate, QL denotes the
quasi-likelihood estimate. The result in Table (1) show
that AQL performed as well as QL in the state space
model parameters estimation. In some cases the AQL
more efficient than QL with smaller root mean square er-
ror, because true Σt is not a diagonal matrix. But, for
simplicity purpose assumed to be a diagonal matrix when
the QL method is applied.

4.2 Stochastic Volatility Models (SVM)

For the second simulation example, we consider the
stochastic volatility process, which is often used for mod-
elling log-returns of financial assets, defined by

yt = σtξt = eαt/2ξt, t = 1, 2, · · · , T, (25)

and

αt = γ + φαt−1 + ηt, t = 1, 2, · · · , T, (26)

where both ξt and ηt i.i.d respectively; ηt has mean 0
and variance σ2

η. A key feature of the SVM in (25) is
that it can be transformed into a linear model by taking
the logarithm of the square of observations

IAENG International Journal of Applied Mathematics, 38:1, IJAM_38_1_07
______________________________________________________________________________________

(Advance online publication: 19 February 2008)



Table 1: Comarison of AQL and QL estimates for PM
based on 1000 replication. Root mean square error of
estimates are reported below each estimate.

ση = 0.675 ση = 0.484 ση = 0.308
γ φ γ φ γ φ

true -0.613 0.90 -0.613 0.95 -0.613 0.98
AQL -0.620 0.990 -0.615 0.990 -0.616 0.990

0.046 0.090 0.031 0.040 0.048 0.011
QL -0.610 0.890 -0.611 0.939 -0.616 0.969

0.004 0.025 0.007 0.021 0.023 0.017
ση = 0.312 ση = 0.223 ση = 0.142

true 0.15 0.90 0.15 0.95 0.15 0.98
AQL 0.155 0.939 0.153 0.957 0.153 0.968

0.008 0.057 0.007 0.037 0.009 0.035
QL 0.149 0.898 0.149 0.945 0.147 0.974

0.005 0.021 0.009 0.017 0.021 0.012
ση = 0.111 ση = 0.079 ση = 0.051

true 0.373 0.90 0.373 0.95 0.373 0.98
AQL 0.374 0.872 0.374 0.901 0.373 0.941

0.002 0.067 0.004 0.079 0.002 0.061
QL 0.372 0.898 0.345 0.946 0.345 0.973

0.011 0.019 0.030 0.015 0.033 0.013

ln(y2
t ) = αt + ln ξt2, t = 1, 2, · · · , T. (27)

If ξt were standard normal, then E(ln ξ2t ) = −1.2704
and V ar(ln ξ2t ) = π2/2 (see Abramowitz and Stegun [1],
p943). Let εt = ln ξ2 + 1.2704. The disturbance εt is
defined so as to have zero mean. Based on this situation,
we consider the following martingale difference

[
εt
ηt

]
=

[
ln(y2

t )− αt + 1.2704
αt − γ − φαt−1

]
.

4.2.1 QL for SVM

In Step 1, let αt act as an unknown parameter. The
standard quasi-score estimating function determined by
the estimating function space

G = {At

[
εt
ηt

]
| At is Ft−1 measurable }

is

G(t)(αt) = [−1, 1]
[

π2

2 0
0 σ2

η

]−1

×

[
ln(y2

t )− αt + 1.2704
αt − γ − φαt−1

]

=
−2
π2

(ln(y2
t )−αt +1.2704)+σ−2

η (αt−γ−φαt−1). (28)

Let α̂0 = 0 and initial values ψ0 = (γ0, φ0, σ
2
η0

). Given
α̂t−1 the optimal estimation of αt−1, the quasi-likelihood
estimation of αt, i.e. the optimal estimation of αt, will
be given by solving G(t)(αt) = 0, i.e.

α̂t =
2σ2

η0
(ln(y2

t ) + 1.2704) + π2(φα̂t−1 + γ)
2σ2

η0
+ π2

. (29)

In Step 2, based on {α̂t} and {yt}, let γ and φ act as un-
known parameters, and use the QL approach to estimate
them. The standard quasi-score estimating function re-
lated to the estimating function space

G = {
T∑

t=1

At

[
εt
ηt

]
| At is Ft−1 measurable }

is

GT (γ, φ) =
T∑

t=1

[
0 −1
0 −αt−1

] [
π2

2 0
0 σ2

η0

]−1

×

[
ln(y2

t )− αt + 1.2704
αt − γ − φαt−1

]
.

Replace αt by α̂t,, t = 1, 2, · · · , T , the QL estimate of γ
and φ will be given by solving GT (γ, φ) = 0. Therefore

φ̂ =
∑T

t=1 α̂t

∑T
t=1 α̂t−1 − T

∑T
t=1 α̂t−1α̂t

(
∑T

t=1 α̂t−1)2 − T
∑T

t=1 α̂
2
t−1

, t = 1, 2, . . . , T,

(30)

γ̂ =
∑T

t=1 α̂t − φ̂
∑T

t=1 α̂t−1

T
, t = 1, 2, . . . , T. (31)

and let

σ̂2
η =

∑T
t=1(η̂t − ¯̂η)2

T − 1
(32)

where η̂t = α̂t − γ̂ − φ̂α̂t−1, t = 1, 2, · · · , T . The above
two steps will be iteratively repeated till certain criterion
is meet. The ψ̂ = (γ̂, φ̂, σ̂2

η) obtained from previous step
will be used as an initial value for next iterative.

4.2.2 AQL for SVM

Consider the stochastic volatility process, defined by

yt = σtξt = eαt/2ξt, t = 1, 2, · · · , T, (33)
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and

αt = γ + φαt−1 + h(αt−1, θ)ηt, t = 1, 2, · · · , T, (34)

where both ξt and ηt i.i.d respectively; ηt has mean 0
and variance σ2

η. A key feature of the SVM in (33) is
that it can be transformed into a linear model by taking
the logarithm of the square of observations

ln(y2
t ) = αt + ln ξt2, t = 1, 2, · · · , T. (35)

If ξt were standard normal, then E(ln ξ2t ) = −1.2704
and V ar(ln ξ2t ) = π2/2 (see Abramowitz and Stegun [1],
p943). Let εt = ln ξ2 + 1.2704. The disturbance εt is
defined so as to have zero mean. Based on this situation,
we consider the following martingale difference

δt =
[

εt
h(αt−1, θ)ηt

]
=

[
ln(y2

t )− αt + 1.2704
αt − γ − φαt−1

]
.

In Step 1, let αt act as an unknown parameter. A se-
quence of asymptotic quasi-score estimating function de-
termined by the estimating function space

Gt = {Atδt| At is Ft−1 measurable }

is

G∗(t)(αt) = (−1, 1)Σ−1
t,n

[
ln(y2

t )− αt + 1.2704
αt − γ − φαt−1

]

Let α̂0 = 0 and starting values θ0 = (γ0, φ0), Σ(0)
t,n =

I2. Given α̂t−1 the optimal estimation of αt−1, the AQL
estimate of αt, i.e. the optimal estimation of αt, will be
given by solving G∗(t)(αt) = 0, i.e.

α̂t =
ln(y2

t ) + 1.2704 + φα̂t−1 + γ

2
, t = 1, 2, · · · , T.

(36)
In Step 2, using kernel estimator (6) and (7) to obtain

Σ̂t,n(θ(0)) =
[

σ̂n(yt) σ̂n(yt, αt)
σ̂n(αt, yt) σ̂n(αt)

]

In Step 3, based on {α̂t} and {yt}, let θ = (γ, φ) act
as unknown parameters, and use the AQL approach to
estimate them. A sequence of asymptotic quasi-score es-
timating function related to the estimating function space

G = {
T∑

t=1

At

[
εt
ηt

]
| At is Ft−1 measurable }

is

GT (γ, φ) =
T∑

t=1

[
0 −1
0 −αt−1

]
Σ̂−1

t,n×
[

ln(y2
t )− αt + 1.2704
αt − γ − φαt−1

]
.

Replace αt by α̂t,, t = 1, 2, · · · , T , the AQL estimate of γ
and φ will be given by solving GT (γ, φ) = 0.

The above three steps will be iteratively repeated until
it converges. The Σ̂t,n and θ = (γ, φ) obtained from
previous step will be used as an initial value for next
iterative.

The format for this simulation study is the same as the
layout considered by Rodriguez-Yam [24]. From empir-
ical studies (e.g Harvey and Shepard [13]; Jacquier et,
al. [18]) the values of φ between 0.9 and 0.98 are of
primary interest. For this simulation study, 1000 inde-
pendent samples with size 1000 simulated from (33) and
(34) where h(αt−1, θ) = 1, we compute mean and root
mean squared errors for φ̂, γ̂. The results are shown in
Table (2). AQL denotes the asymptotic quasi-likelihood
estimate, QL denotes the quasi-likelihood estimate. The

Table 2: Comarison of AQL and QL estimates for SVM
based on 1000 replication. Root mean square error of
estimates are reported below each estimate.

ση = 0.675 ση = 0.484 ση = 0.308
γ φ γ φ γ φ

true -0.821 0.90 -0.411 0.95 -0.6134 0.98
AQL -0.716 0.988 -0.369 0.978 -0.161 0.98

0.155 0.091 0.047 0.028 1.356 0.173
QL -0.989 0.867 -0.563 0.921 -0.213 0.95

0.254 0.039 0.202 0.035 0.075 0.031
ση = 0.363 ση = 0.260 ση = 0.166

true -0.736 0.90 -0.368 0.95 -0.147 0.98
AQL -0.696 0.968 -0.318 0.950 -0.096 0.948

0.047 0.068 0.052 0.010 0.086 0.221
QL -0.835 0.898 -0.416 0.931 -0.155 0.970

0.153 0.015 0.083 0.022 0.030 0.012
ση = 0.135 ση = 0.096 ση = 0.061

true -0.706 0.90 -0.353 0.95 -0.141 0.98
AQL -0.639 0.895 -0.386 0.988 -0.122 0.989

0.405 0.548 0.034 0.038 0.020 0.010
QL -0.721 0.891 -0.353 0.946 -0.143 0.979

0.070 0.014 0.037 0.007 0.012 0.002

results in Table (2) farther confirm that AQL performed
as well as QL in the state space model parameters esti-
mation.

5 Application to real data

The data set consists of the observed time series
y1, . . . , y168 of monthly number of U.S. cases of po-
liomyelitis for 1970 to 1983 that was first considered by
Zeger [27]. We adopt the same model used by Zeger in
which the distribution of Yt, given the state αt, is Poisson
with rate λ = ex

′
tβ+αt . Where β = (β1, β2, β3, β4, β5, β6),

and xt is the vector of covariates given by x′t =
(1, t

1000 , cos( 2πt
12 ), sin( 2πt

12 ), cos( 2πt
6 ), sin( 2πt

6 )), and the
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Figure 1: The plot of yt and ŷt by QL in the right and the plot of yt and ŷt by AQL in the left.

state process is assumed to follow the AR(1) model given
by αt = φαt−1 + εt, t = 1, . . . , T .

Table (3) contains the AQL and QL estimates. The re-
sults in (3) are slightly different. In the AQL approach,
we assume there is correlation between series, but in
the QL approach, we do not assume that. The second
and third columns in table (3) give the mean of residu-
als squares and the standard deviation of the residuals
squares. Both values indicate that the AQL approach
catches more information from data than the QL ap-
proach does.

Table 3: Parameter estimates for polio data by AQL (sec-
ond row) and QL (third row) approaches

β̂1 β̂2 β̂3 β̂4 β̂5 β̂6 φ̂ mean S.d
0.18 -4.38 -0.12 -0.42 0.20 -0.44 0.76 2.18 3.94
0.20 -3.22 0.08 -0.51 0.39 -0.11 0.75 2.46 4.86

6 Conclusion

In this paper an alternative approach, the QL and AQL
methods, for estimating the parameters in nonlinear and
non-Gaussian State-Space Models with unspecific corre-
lation are given. Results from the simulation study indi-
cates that the AQL method is an efficient estimation pro-
cedure. The study also shows that the QL and AQL esti-
mating procedure is easy to implement, especially when
the system probability structure can not be fully spec-
ified. By utilising the nonparametric kernel estimator
of conditional variance covariances matrix Σt to replace
the true Σt in the standard quasi-likelihood, the AQL
method avoids the risk of potential miss-specification of
Σt and thus make the parameter estimator more efficient.
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