
SPA Resistant Scalar Multiplication using
Golden Ratio Addition Chain Method

Raveen R. Goundar∗, Ken-ichi Shiota and Masahiko Toyonaga †

Abstract—In this paper we propose an efficient
and secure (SPA resistant) elliptic curve scalar mul-
tiplication algorithm over odd prime fields. For
this purpose, we propose an explicit algorithm for
short addition-subtraction chain method which uti-
lizes a golden ratio. We term it as golden ratio ad-
dition chain method or GRAC method in short. Our
proposed scalar multiplication algorithm based over
GRAC method has preceded by 3% to 18% over the
previous ones known in the literature. Hence scalar
multiplication utilizing GRAC method shows signifi-
cance in application to elliptic curve cryptosystems.

Keywords: elliptic curve cryptosystems, scalar mul-

tiplication, addition chain, Euclidean addition chain

(EAC), Fibonacci sequence.

1 Introduction

Elliptic curve cryptography was proposed independently
in 1985 by Neal Koblitz [11] and Victor Miller [14]. Since
then it is widely accepted due to its fascinating feature
of having smaller key length of 160-bit in elliptic curve
cryptosystems (ECC) to provide same level of security
as for RSA with a 1024-bit of key length. An exten-
sive amount of research has been dedicated to securing
and accelerating its implementations. The overall effi-
ciency of most ECC are dominated by computations of
the form kP which is known as a scalar multiplication,
where P is an elliptic curve point, and k is an arbitrary
integer, which plays a role of a secret scalar. Hence, an
efficient and secure scalar multiplication are essential in
ECC. Most of the scalar multiplication methods utilizes
multiple operations such as double-and-add, triple-and-
add etc. These operations when dependable on secret
scalar, are susceptible to leak secret information through
simple power analysis (SPA), which is one type of side-
channel attack discovered by Kocher et al. [12]. The SPA
monitors the power consumption of a single execution
during scalar multiplication. The fact that different op-
erations has different power consumption, helps attackers
to retrieve secret data especially when the operations are

∗R.R.Goundar is with Computing and Mathematics De-
partment, Fiji Institute of Technology, Suva, Fiji, email:
goundar rr@fit.ac.fj
†K.Shiota and M.Toyonaga is with Graduate School of Math-

ematics and Information Science, Kochi University, Japan, email:
{shiota, toyonaga}@is.kochi-u.ac.jp

dependable on secret scalars. Thus, in order to resist
SPA attack, scalar multiplication should be implemented
using fixed sequence of operations [4]. One of the solu-
tion could be the use of doubling-free addition chain for
scalar multiplication. Note that the appearance of nu-
meral 2 in the chain is ineffective for SPA attack, since
the computation of one doubling, that is 2P , is a neces-
sary computation in almost all scalar multiplication.

In this paper, we propose an explicit algorithm for
the previous [7] golden ratio addition-subtraction chain
method (GRASC method) to make it compatible in pre-
senting scalar multiplication algorithm. We term it as the
golden ratio addition chain method or GRAC method in
short. Note that the subtraction involved in the GRASC
method has been excluded in our proposed algorithm
(GRAC method), thus facilitating us in presenting an
elegant scalar multiplication algorithm. Instead of using
subtraction, we consider taking inversion of a point which
is cost negligible in elliptic curve cryptography. This re-
sults in a series of addition operation during scalar mul-
tiplication, hence resistant to SPA attack.

The rest of this paper is organized as follows. In section 2,
we give a brief overview on elliptic curve cryptography,
with some classic definitions on addition chains and Fi-
bonacci sequence. In section 3, we review the GRASC
method and propose an explicit algorithm for it, called
GRAC method. In section 4, we exploit GRAC method
by proposing a scalar multiplication algorithm. In sec-
tion 5, we discuss and compare our results with the pre-
vious ones in the literature.

2 Background

In this section, we give a brief overview on elliptic curve
cryptography, stating some classic definitions on addition
chains and Fibonacci sequence.

2.1 Elliptic Curve Cryptography

We start with a practical definition of the concept of an
elliptic curve. More details could be cited from [1, 2, 8].

Definition 2.1 An elliptic curve E over a finite field K
is defined by an equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6 (1)

IAENG International Journal of Applied Mathematics, 38:2, IJAM_38_2_02
__

(Revised online publication: 21 June 2008)

where a1, a2, a3, a4, a6 ∈ K, and Δ �= 0, where Δ is the
discriminant of E.

In practice, the Weierstrass equation (1) can be greatly
simplified by applying admissible changes of variables. If
the characteristic of K is not equal to 2 and 3, then (1)
rewrites

y2 = x3 + ax + b (2)

where a, b ∈ K, and Δ = −16(4a3 + 27b2) �= 0. When
the characteristic of K is equal to 2, we use the non-
supersingular form of an elliptic curve, given for a �= 0
by

y2 + xy = x3 + ax2 + b (3)

where a, b ∈ K and Δ = b �= 0. The set E(K) of rational
points on an elliptic curve E defined over a finite field
K is an abelian group, where the operation (generally
denoted additively) is defined by the well-known law of
chord and tangent, and the identity element is the spe-
cial point O, called the point at infinity. If the points
on the curve are represented using affine coordinates, as
P = (x, y), both the point addition and point doubling in-
volve an expensive field inversion (to compute the slope of
the chord of the tangent). To avoid these inversion, sev-
eral projective systems of coordinates have been proposed
in literature [1]. The major ones include the, affine co-
ordinate system (A), projective coordinates system (P),
Jacobian coordinates system (J), Chudnovsky Jacobian
coordinates system (J C) and modified Jacobian coordi-
nates system (Jm).

In this paper, we will consider mixed coordinates system
since it has lower computational cost compared to other
coordinate systems as proposed by Cohen et.al [5] . We
will select the best operation for calculating the cost of
GRAC based scalar multiplication algorithm. Note that
we will use [i], [s] and [m] to denote the cost of one in-
version, one squaring and one multiplication respectively.
We shall always leave out the cost of field additions. Gen-
erally, it is assumed [s] = 0.8[m] for curves over odd prime
field [6].

2.2 Review on Addition Chains and Fi-
bonacci Sequence

Here, we briefly state some classic definitions used in the
study of addition chains. More details could be cited from
[1, 16].

Definition 2.2 An addition chain computing an inte-
ger k is given by two sequences v = (v0, . . . , v�) and
w = (w1, . . . , w�) such that v0 = 1 , v� = k , vi = vr +
vs , for all 1 ≤ i ≤ � with respect to wi = (r, s) and 0 ≤
r, s ≤ i− 1 . The length of the addition chain is �.

Definition 2.3 An Euclidean addition chain (EAC) is
an addition chain which satisfies v1 = 1 , v2 = 2 , v3 =

v2 + v1 and for all 3 ≤ i ≤ � − 1, if vi = vi−1 + vj for
some j < i− 1 , then vi+1 = vi + vi−1 or vi+1 = vi + vj.

Definition 2.4 The Fibonacci sequence is defined as
Fn = Fn−1 + Fn−2 for n ≥ 2 where F0 = 0 and F1 = 1.

The Fibonacci sequence has many properties [9, 17] but
we recall only one here, by stating the following Binet’s
Formula.

Theorem 2.1 Binet’s Formula:

Fn =
φn − (1− φ)n

√
5

, ∀n ∈ N ,

where φ = 1+
√

5
2 is the positive root of the real polynomial

X2 −X − 1 .

From the above theorem, it is easy to deduce the following
classical result.

lim
n→∞

Fn

Fn−1
= φ , (4)

where φ is a golden ratio, also known as a golden section.

3 GRASC Method and Proposed Ex-
plicit Algorithm

In this section, we review the GRASC method [7] for
finding doubling-free short addition-subtraction chain for
an arbitrary positive integer and later, we propose an
explicit algorithm for it.

3.1 Review on GRASC Method [7]

Here we review the GRASC method for finding doubling-
free short addition-subtraction chain by utilizing a precise
golden ratio.

The GRASC method considers making chain starting
from the last term, which is the input k and aims to fol-
low a Fibonacci pattern using the fact from equation (4).
Hence, it tries to maintain a near golden ratio value be-
tween two succeeding terms. It begins by letting

u0 = k ,

u1 = [u0 × φ−1] ,
ui = ui−2 − ui−1for i = 2, 3, . . . (5)

Here ui denotes the reverse of vi that is, ui = v�−i . If
continued with the procedure (5), ui will exponentially
deviate from (ui−1 × φ−1) as i increases. In order to
overcome this problem, a parameter MAXIMALGAP is
introduced, such that the above procedure (5) terminates
whenever

|ui − (ui−1 × φ−1)| > MAXIMALGAP or ui � ui−1

2
.

IAENG International Journal of Applied Mathematics, 38:2, IJAM_38_2_02
__

(Revised online publication: 21 June 2008)

In such case, a new ui is defined to be the nearest in-
teger of (ui−1 × φ−1). Then procedure (5) is resumed
with ui−1 and new ui as the initial terms. The old ui

is included in the chain between ui−1 and new ui, as a
consequence there is a gap gj =(old ui−new ui), which is
included in the storage. Note that, subtraction is involved
whenever old ui < new ui. Another parameter LOWER-
BOUND is introduced to cease the procedure (5) when
ui ≤ LOWERBOUND. The storage initially consists of
1, 2, and 3. Later gj ’s are included in the storage. Once
the execution of procedure (5) is ceased, the last two ui’s
of the chain is included in the storage. Thus, using the
storage, a short addition chain is found randomly without
using doubling, except for numeral 2. Finally, this chain
is joined to the third last ui of the previous chain result-
ing in a moderately short addition-subtraction chain for
the given input k. Note that the storage capacity is de-
pendent on the experimentally selected values of the two
parameters.

3.2 Our Proposed Explicit Algorithm

Here, we propose an explicit algorithm for the GRASC
method and rename it as golden ratio addition chain
method or GRAC method in short. This explicit algo-
rithm will facilitate us in proposing a scalar multiplica-
tion algorithm in the next section.

Algorithm 1 Golden Ratio Addition Chain Method

Input: A positive integer k , MG and LB.
Output: m = {e1, . . . , en+1}GRAC ,
S = {1, 2, 3, g1, . . . , gmax, ui−2, ui−1, ui} , SAC.

1. φ−1 ← −1+
√

5
2

2. u0 ← k
3. u1 ← [u0 × φ−1]
4. u2 ← u0 − u1

5. m = {0, 0}
6. S = {1, 2, 3}
7. i← 2
8. j ← 1
9. while ui > LB do
10. ei ← 0

11. if |ui − (ui−1 × φ−1)| > MG or ui � ui−1
2

then
12. ui+1 ← [ui−1 × φ−1]
13. ei ← 1 , ei−1 ← 2 , ei+1 ← 0
14. m← m ∪ {ei , ei−1 , ei+1}
15. gj ← ui − ui+1

16. S ← S ∪ {gj}
17. j ← j + 1
18. ui+2 ← ui−1 − ui+1

19. i← i + 2
20. else
21. m← m ∪ {ei}
22. i← i + 1
23. ui ← ui−2 − ui−1

24. S ← S ∪ {ui, ui−1, ui−2}
25. max← j
26. n← i− 1
27. m← reverse the arrangements in m and rename the

elements in increasing orderstarting with numeral 1 to n + 1
28. SAC ←a short addition chain using absolute values

of gj ’s and other terms in S
29. return m = {e1, . . . , en+1}GRAC ,

S = {1, 2, 3, g1, . . . , gmax, ui−2, ui−1, ui} , SAC

In steps 14, the old ei−1 has been replaced with new ei−1

in m . Also note that the symbols MG and LB represents
MAXIMALGAP and LOWERBOUND, respectively.

Example 1. Evaluate Algorithm 1 for input k = 207062 ,
LOWERBOUND= 5 and MAXIMALGAP= 6.

First, we will find the GRAC representation m,
during which we will obtain the elements for the storage
S. Later, we will use all the storage elements to search
for a short addition chain.

We begin by letting,

u0 = k = 207062 , e0 = 0
u1 = [u0 × φ−1] = 127971 , e1 = 0
u2 = u0 − u1 = 79091 , e2 = 0
u3 = u1 − u2 = 48880 , e3 = 0
u4 = u2 − u3 = 30211 , e4 = 0
u5 = u3 − u4 = 18669 , e5 = 0
u6 = u4 − u5 = 11542 , e6 = 0
u7 = u5 − u6 = 7127 , e7 = 2
u8 = u6 − u7 = 4415 , e8 = 1

since u8 exceeds the MAXIMALGAP, that is |4415 −
(7127× φ−1)| > 6 , we let

u9 = [u7 × φ−1] = 4405 . e9 = 0

There exist a gap, g1 = 4415 − 4405 = 10 , which we
include in the storage. Let

u10 = u7 − u9 = 2722 , e10 = 0
u11 = u9 − u10 = 1683 , e11 = 0
u12 = u10 − u11 = 1039 , e12 = 0
u13 = u11 − u12 = 644 , e13 = 0
u14 = u12 − u13 = 395 , e14 = 0
u15 = u13 − u14 = 249 , e15 = 2
u16 = u14 − u15 = 146 , e16 = 1

since u16 exceeds MAXIMALGAP, that is |146− (249×
φ−1)| > 6 , we let

u17 = [u15 × φ−1] = 154. e17 = 0

There exist a gap, g2 = 146−154 = −8 , which we include
in the storage. Let

u18 = u15 − u17 = 95 , e18 = 0
u19 = u17 − u18 = 59 , e19 = 0
u20 = u18 − u19 = 36 , e20 = 0
u21 = u19 − u20 = 23 , e21 = 0
u22 = u20 − u21 = 13 , e22 = 0
u23 = u21 − u22 = 10 . e23 = 0

We stop the above continuous procedure at u23, since
the next term, u24 = u22−u23 = 3 , transcends the given
LOWERBOUND. We obtained the following storage.

S = {1 , 2 , 3 , g1 = 10 , g2 = −8 , u22 = 13 , u23 = 10 , u24 = 3} .

IAENG International Journal of Applied Mathematics, 38:2, IJAM_38_2_02
__

(Revised online publication: 21 June 2008)

We list e0, . . . , e23 as elements of set m.
m = {0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0} .

Then we reverse the arrangements of the elements in the
set m and rename it in increasing order starting from e1.
Thus, it results in the following GRAC representation.
m = {0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0}GRAC .

Next, we randomly search for a doubling-free short ad-
dition chain (SAC) for absolute values of gj ’s and other
terms in storage S obtained before. That is

S = {1 , 2 , 3 , 10 , 8 , 13 , 10 , 3}
Excluding the repeated numbers and rearranging results

S = {1 , 2 , 3 , 8 , 10 , 13}
It follows that 1 + 2 → 3. We need to insert 5 so that
3 + 5 → 8. Next, we have 2 + 8 → 10 and 3 + 10 → 13 .
Hence, following is the doubling-free short addition chain.

1 → 2 → 3 → 5 → 8 → 10 → 13 .

4 Application to Elliptic Curve Cryp-
tosystems

In this section, we propose a SPA resistant scalar mul-
tiplication algorithm by utilizing the proposed GRAC
method.

Algorithm 2 Scalar multiplication using GRAC method

Input: An integer k and P ∈ E(Fqk) .

Output: kP .
Precomputation (GRAC method)
1. m = {e1, . . . , en+1}GRAC

2. S = {1, 2, 3, g1, . . . , gmax, ui−2, ui−1, ui}
3. SAC
Main loop
4. G← ∅
5. for j=1 to max
6. Gj ← gjP (using SAC)
7. G← G ∪ {Gj}
8. G← reverse the arrangements in G and rename the

elements in increasing order starting with numeral
1 to max

9. T0 ← uiP (using SAC)
10. T1 ← ui−1P (using SAC)
11. T2 ← ui−2P (using SAC)
12. j ← 1
13. for i = 2 to n do
14. if ei+1 = 0 then
15. Ti+1 ← Ti + Ti−1

16. if ei+1 = 1 then
17. Ti+1 ← Ti + Gj

18. j ← j + 1
19. if ei+1 = 2 then
20. Ti+1 ← Ti−1 + Ti−2

21. return Tn+1

Hence the required output kP = Tn+1. Note that
Algorithm 2 involves storage of the preceding two points
during scalar multiplication. Also, a temporary storage
G containing max number of points gj ’s, which are

discarded during the scalar multiplication after being
used, hence having less constraint on memory containing
devices. The proposed algorithm uses a fixed sequence
of addition operation therefore it is SPA resistant.

Example 2. Compute 207062P using Algorithm 2.

Precomputation. (Example 1)

1. m = {0 ,0 , 0 , 0 , 0 , 0 , 0 , 1 , 2 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 2 , 0 , 0 ,
0 , 0 , 0 , 0 , 0}GRAC .

2. S = {1 , 2 , 3 , g1 = 10 , g2 = −8 , u22 = 13 ,
u23 = 10 , u24 = 3}.

3. SAC : 1→ 2 → 3 → 5 → 8 → 10 → 13.

Evaluation Stage.
For an input P ∈ E(Fqk), we utilize the above
short addition chain (SAC) to compute the following:
2P , P +2P = 3P , 2P +3P = 5P , 3P +5P = 8P , taking
it’s inverse gives −8P , followed by 2P + 8P = 10P and
3P + 10P = 13P . Hence, we have G1 = g1P = 10P
and G2 = g2P = −8P , which we store in G resulting as
G = {10P ,−8P} . Now, we reverse the arrangements in
G and rename the terms in increasing order starting with
numeral 1. Thus, G = {−8P , 10P} where G1 = −8P
and G2 = 10P . Also, we have T0 = 3P , T1 = 10P ,
T2 = 13P . Henceforth, we use the GRAC representation
m, to compute Ti for i = 2 to i = 23 as follows.

i = 2 , e3 = 0 , T3 = T2 + T1 = 23P ,
i = 3 , e4 = 0 , T4 = T3 + T2 = 36P ,
i = 4 , e5 = 0 , T5 = T4 + T3 = 59P ,
i = 5 , e6 = 0 , T6 = T5 + T4 = 95P ,
i = 6, , e7 = 0 , T7 = T6 + T5 = 154P ,
i = 7 , e8 = 1 , T8 = T7 + G1 = 146P ,
i = 8 , e9 = 2 , T9 = T7 + T6 = 249P ,
i = 9 , e10 = 0 , T10 = T9 + T8 = 395P ,
i = 10 , e11 = 0 , T11 = T10 + T9 = 644P ,
i = 11 , e12 = 0 , T12 = T11 + T10 = 1039P ,
i = 12 , e13 = 0 , T13 = T12 + T11 = 1683P ,
i = 13 , e14 = 0 , T14 = T13 + T12 = 2722P ,
i = 14 , e15 = 0 , T15 = T14 + T13 = 4405P ,
i = 15 , e16 = 1 , T16 = T15 + G2 = 4415P ,
i = 16 , e17 = 2 , T17 = T15 + T14 = 7127P ,
i = 17 , e18 = 0 , T18 = T17 + T16 = 11542P ,
i = 18 , e19 = 0 , T19 = T18 + T17 = 18669P ,
i = 19 , e20 = 0 , T20 = T19 + T18 = 30211P ,
i = 20 , e21 = 0 , T21 = T20 + T19 = 48880P ,
i = 21 , e22 = 0 , T22 = T21 + T20 = 79091P ,
i = 22 , e23 = 0 , T23 = T22 + T21 = 127971P ,
i = 23 , e24 = 0 , T24 = T23 + T22 = 207062P .

5 Discussion

In this section, we discuss our results and make compar-
ison with some previous methods in the literature.

In an experiment carried out in [7] showed that the best
case of GRASC method was chain of length 258, hence
similar result holds for the GRAC method. Note that
GRASC method is renamed as GRAC method. This is

IAENG International Journal of Applied Mathematics, 38:2, IJAM_38_2_02
__

(Revised online publication: 21 June 2008)

Table 1: Computational costs using mixed coordinates

Addition Doubling

Operation A+A = JC 2A = J
Costs 5[m] + 3[s] 2[m] + 4[s]

Table 2: Average cost of doubling-free scalar multiplica-
tion algorithms for 160 bit integers.

Algorithm Coordinate # [m]

Fibonacci-and-add [15] NewADD 2311
Signed Fib-and-add [15] NewADD 2088

Window Fib-and-add [15] NewADD 1960
EAC-320 [15] NewADD 2112
GRAC-258 Mixed 1907

because we avoided the use of subtraction operation in
the scalar multiplication; rather, we took inversion of a
point where ever subtraction was involved. This facil-
itated us in proposing an elegant scalar multiplication
algorithm. Note that the worst case of GRAC method
includes 26 points in the storage, details shown in the
appendix. These points are discarded once being used
during the scalar multiplication process.

The new point addition formula (NewADD) proposed
by Meloni [15] is applicable to addition chains which
involves Fibonacci type of additions. The GRAC method
lacks the continues Fibonacci pattern, hence we choose
mixed coordinates to compute the cost for the proposed
scalar multiplication algorithm. We have selected the
best case of mixed coordinates [5] for addition and
doubling operations to compute the cost of GRAC based
algorithm as shown in Table 1. The total computational
cost for GRAC based scalar multiplication algorithm
involves (� − 1) additions and one doubling, which is
given by the following formula.

#[m] = (5[m] + 3[s])(�− 1) + (2[m] + 4[s]) .

In Table 2, we compare the efficiency of GRAC based al-
gorithm with other doubling-free algorithms proposed in
[15]. Considering the best case of GRAC-258, it is evident
from Table 2 that our proposed algorithm has outper-
formed Fibonacci-and-add by 18%, signed Fib-and-add
by 9%, Window Fib-and-add by 3% and EAC-320 by
10%.

6 Conclusion

In this paper we have proposed a SPA resistant scalar
multiplication algorithm. Thus, we have proposed an
explicit algorithm (GRAC method) for the previously
proposed GRASC method to facilitate in presenting an
elegant scalar multiplication algorithm. Our proposed
GRAC based scalar multiplication algorithm has pre-

ceded other scalar multiplication algorithm by 3% to
18%. Further work may include finding chains of much
shorter lengths in order to improve the computational
cost of the GRAC based scalar multiplication algorithm.
Also, if one could reduce the storage content, then GRAC
based algorithm could be more applicable to elliptic curve
cryptosystems where constraint memory devices such as
smart cards needs to be implemented.

References

[1] Avanzi, R.M., Cohen, H., Doche, C., Frey, G.,
Lange, T., Nguyen, K., and Vercauteren, F., “Hand-
book of Elliptic and Hyperelliptic Curve Cryptogra-
phy”. CRC Press, 2005.

[2] Blake, I.F., Seroussi, G., and Smart, N.P., “Ellip-
tic Curves in Cryptography”. Number 256 in Lon-
don Mathematical Society Lecture Note Series. Cam-
bridge University Press, 1999.

[3] Bos, J., and Coster, M., “Addition chain heuristics”.
Advances in Cryptology-CRYPTO’89, volume 435 of
Lecture Notes in Computing Science, pages 400-407.
Springer-Verlag, 1989.

[4] Byrne, A., Meloni, N., Crowe, F., Marnane, W.P.,
Tisserand, A., and Popovici, E.M., “SPA reisi-
tant Elliptic Curve Cryptosystem using Addition
Chains”. International Conference on Information
Technology-ITNG’07, pp.995-1000, 2007.

[5] Cohen, H., Miyaji, A., and Ono, T., “Efficient ellip-
tic curve exponentiation using mixed coordinates”.
Advances in Cryptology-ASIACRYPT’98, volume
1514 of Lecture Notes in Computing Science, pages
51-65. Springer-Verlag, 1998.

[6] Fong, K., Hankerson, D., Lòpez, J., and Menezes,
A., “Field inversion and point halving revisited”.
IEEE Transactions on Computers, 53(8):1047-1059,
Aug.2004.

[7] Goundar, R.R., Shiota, K., and Toyonaga, M.,
“New Strategy for Doubling-free Short Addition-
Subtraction Chain”. International Journal of Ap-
plied Mathematics, volume 2, number 3, Dec. 2007.

[8] Hankerson, D., Menezes, A., and Vanstone, S.,
“Guide to Elliptic Curve Cryptography”. Springer-
Verlag, 2004.

[9] Knuth, D., “Fundamental Algorithms”. The Art
of Computer Programming, volume 1, Addision-
Wesley,(1981).

[10] Knuth, D., “Seminumerical Algorithm (arith-
metic)”. The Art of Computer Programming, volume
2, Addision-Wesley,(1981).

IAENG International Journal of Applied Mathematics, 38:2, IJAM_38_2_02
__

(Revised online publication: 21 June 2008)

[11] Koblitz, N., “Elliptic curve cryptosystems”. Mathe-
matics of Computation, 48(177):203-209, Jan. 1987.

[12] Kocher, P., Jaffe, J., and Jun, B., “Differential power
analysis”. volume 1666 of Lecture Notes in Comput-
ing Science, pages 388-397. Springer-Verlag, 1999.

[13] Lou, D.C., and Chang, C.C., “An adaptive exponen-
tiation method”. The Journal of Systems and Soft-
ware, volume 42, pp.59-69, 1998.

[14] Miller, V.S., “Uses of elliptic curves in cryp-
tography”. In H.C. Williams, editor, Advances
in Cryptology-CRYPTO’85, volume 218 of Lec-
ture Notes in Computing Science, pages 417-428.
Springer-Verglag, 1986.

[15] Nicolas, M., “New Point Addition Formulae for ECC
Applications”. Arithmetic of Finite Fields, volume
4547 of Lecture Notes in Computing Science, pages
189-201. Springer-Verlag, 2007.

[16] Menezes, A.J., vanOorschot, P.C., and Vanstone,
S.A., “Handbook of Applied Cryptography”. CRC
Press, 1997.

[17] Vorobiev, N., “Fibonacci Numbers”. Birkhuser Ver-
lag, 2002.

[18] Yacobi, Y., “Exponentiating faster with addition
chains”. Advances in Cryptology-EUROCRYPT’90,
volume 473 of Lecture Notes in Computing Science,
pages 222-229. Springer-Verglag, 1990.

Appendix

Here, we give an estimation of the storage capac-
ity. That is the number of gj ’s required in GRAC
method for a 160 bit integer. Note that the number
of gj ’s are same as the number of new ui being computed.

We have
{

u0 = k , u1 = [k
φ
] , u2 = u0 − u1 , u3 = u1 − u2 , . . .

}
.

Note that Fibonacci sequence gives the optimum
result, therefore we have a desire to maintain such
pattern for the GRAC method. Thus, we will check
at every step to maintain the property of a Fibonacci
sequence given by equation (4).

For i = 1
∣∣∣∣u1 − k

φ

∣∣∣∣ ≤ 1
2

.

For i = 2
∣∣∣∣u2 − k

φ2

∣∣∣∣ =
∣∣∣∣u0 − u1 − k

φ2

∣∣∣∣

=
∣∣∣∣k − u1 − k

φ2

∣∣∣∣

=
∣∣∣∣k −

k

φ
− k

φ2
+

k

φ
− u1

∣∣∣∣

=
∣∣∣∣

k

φ2
(φ2 − φ− 1) +

k

φ
− u1

∣∣∣∣ ,

=
∣∣∣∣
k

φ
− u1

∣∣∣∣ (by Theorem 2.1)

≤ 1
2

.

For i = 3
∣∣∣∣u3 − k

φ3

∣∣∣∣ =
∣∣∣∣u1 − u2 − k

φ3

∣∣∣∣

=
∣∣∣∣u1 − k

φ
+

k

φ2
− u2 − k

φ3
+

k

φ
− k

φ2

∣∣∣∣

=
∣∣∣∣(u1 − k

φ
) + (

k

φ2
− u2)− k

φ3
(1− φ2 + φ)

∣∣∣∣ ,

=
∣∣∣∣u1 − k

φ

∣∣∣∣ +
∣∣∣∣

k

φ2
− u2

∣∣∣∣ (by Theorem 2.1)

≤ 1
2

+
1
2

= 1 .

Hence, in general we have
∣∣∣∣ui − k

φi

∣∣∣∣ ≤
∣∣∣∣ui−2 − k

φi−2

∣∣∣∣ +
∣∣∣∣ui−1 − k

φi−1

∣∣∣∣ .

Assuming MAXIMALGAP to be 11, we will check the
number of terms exist before MAXIMALGAP is ex-
ceeded. It follows that

i = 4 : 1
2 + 1 = 3

2 ,

i = 5 : 1 + 3
2 = 5

2 ,

i = 6 : 3
2 + 5

2 = 4 ,

i = 7 : 5
2 + 4 = 13

2 ,

i = 8 : 4 + 13
2 = 21

2 ,

i = 9 : 13
2 + 21

2 = 17 .

The MAXIMALGAP is exceeded at i = 9 , therefore at
i = 10, a new ui is computed. Hence, we could infer
that in worst case, a new ui is computed once in every
10th term for GRAC method. Therefore, the maximum
number of points in the storage for an average chain of
length 258 will be 26 .

IAENG International Journal of Applied Mathematics, 38:2, IJAM_38_2_02
__

(Revised online publication: 21 June 2008)

