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Abstract—We present an Altered Jacobian New-
ton Iterative Method for solving nonlinear elliptic
problems. Effectiveness of the proposed method is
demonstrated through numerical experiments. Com-
parison of our method with Newton Iterative Method
is also presented. Convergence of the Newton Itera-
tive Method is highly sensitive to the initialization
or initial guess. Reported numerical work shows the
robustness of the Altered Jacobian Newton Iterative
Method with respect to initialization.
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1 Introduction

The past fifty to sixty years have seen a considerable ad-

vancement in methods for solving linear systems. Krylov

subspace method is the result of the huge effort by the re-

searchers during the last century. It is one among the top

ten algorithms of the 20th century. There exists optimal

linear solvers [5]. But, still there is no optimal nonlinear

solver or the one that we know of. Our research is in the

field of optimal solution of nonlinear equations generated

by the discretization of the nonlinear partial differential

equation [1; 2; 3; 4]. Let us consider the following non-

linear elliptic partial differential equation [4]

div(−Kgrad p) + f(p) = s(x, y) in Ω (1)

p(x, y) = pD on ∂ΩD (2)

g(x, y) = (−K∇p) · n̂ on ∂ΩN (3)

Here, Ω is a polyhedral domain in Rd
(d = 2, 3), the

source function s(x, y) is assumed to be in L2
(Ω), and

the medium property K is uniformly positive. In the

equations (2) and (3), ∂ΩD and ∂ΩN represent Dirichlet

and Neumann part of the boundary, respectively. f(p)

represents nonlinear part of the equation. p is the un-

known function. The equations (1), (2) and (3) models a

wide variety of processes with practical applications. For

example, pattern formation in biology, viscous fluid flow

phenomena, chemical reactions, biomolecule electrostat-

ics and crystal growth [6; 7; 8; 9; 10; 11].

There are various methods for discretizing the equations

(1), (2) and (3). To mention a few: Finite Volume, Finite
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Figure 1: A 5 × 5 mesh.

Element and Finite Difference methods [1]. These meth-

ods converts nonlinear partial differential equations into

a system of algebraic equations.

Let discretization of the nonlinear partial differential

equations result in a system of nonlinear algebraic equa-

tions A(p) = 0. Each cell in the mesh produces a nonlin-

ear algebraic equation [1; 4]. Thus, discretization of the

equations (1), (2) and (3) on a mesh with n cells result in

n nonlinear equations, and let these equations are given

as

A(p) =


A1(p)

A2(p)

.

.

.

An(p)

 . (4)

Figure 1 depicts a 5×5 mesh with the unknown p. Since,

the mesh contains 25 cells. Thus, the vector A(p) for

this mesh will consist of 25 nonlinear algebraic equations

[see 4]. In the next section, Altered Jacobian Newton

Iterative Method is presented.

2 Altered Jacobian Newton Iterative
Method

We are interested in finding the vector p for which the

operator A(p) vanish. Let us first formulate the Newton

Iterative Method. The Taylors expansion of nonlinear
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operator A(p) around some initial guess p0 is

A(p) = A(p0) + J(p0)∆p + hot, (5)

where hot stands for higher order terms. That is, terms

involving higher than the first power of ∆p. Here, dif-

ference vector ∆p = p − p0. The Jacobian J is a n × n
linear system evaluated at the p0. The Jacobian J in the

equation (5) is given as follows

J =

[
∂Ai

∂pj

]
=



∂A1

∂p1

∂A1

∂p2
· · · ∂A1

∂pn

∂A2

∂p1

∂A2

∂p2
· · · ∂A2

∂pn
.
.
.

.

.

.
. . .

.

.

.

∂An

∂p1

∂An

∂p2
· · · ∂An

∂pn


. (6)

Since, we are interested in the zeroth of the non-linear

vector function A(p). Thus, setting the equation (5)

equals to zero and neglecting higher order terms will re-

sult in the following well known Newton Iteration Method

(NIM)

J(pk)∆pk+1 = −A(pk),

pk+1 = pk + ∆pk+1, k = 0, . . . , n.
(7)

Newton Iterative Method may not always converge, and

it’s convergence depends on the initialization p0. If the

initial guess if far from the exact solution, the Newton’s

method may not converge.

Let us modify the Jacobian (6) as follows

Jf def
=

∂A1

∂p1
+ A1(p1)

∂A1

∂p2
· · · ∂A1

∂pn

∂A2

∂p1

∂A2

∂p2
+ A2(p2) · · · ∂A2

∂pn
.
.
.

.

.

.
. . .

.

.

.

∂An

∂p1

∂An

∂p2
· · · ∂An

∂pn
+ An(pn)


.

(8)

Here, Ai(pj) is the ith element of the vector A evaluated

at pj . Based on the above definition of the Altered Jaco-

bian, we propose the following Alterned Jacobian Newton

Iterative Method (AJNIM)

Jf
(pk)∆pk+1 = −A(pk),

pk+1 = pk + ∆pk+1, k = 0, . . . , n.
(9)

In the next section, we compare methods (7) and (9).

Dependence of the convergence of the Newton Iterative

Method (7) on initialization is notoriously well docu-

mented. Numerical work shows the robustness of the

Altered Jacobian Newton Iterative Method for different

initial guesses.

3 Numerical Experimentation

Without loss of generality let us assume that K is unity,

and the boundary is of Dirichlet type. Let f(p) be

10
4 p exp(p). Thus, the equations (1), (2) and (3) are

written as

−∇2p + 10
4 p exp(p) = f in Ω, (10)

p(x, y) = pD on ∂ΩD. (11)

For computing the true error and convergence behavior of

the methods, let us further assume that the exact solution

of the equations (10) and (11) is the following bubble

function

p = x (x − 1) y (y − 1).

Let our domain be a unit square. Thus, Ω = [0, 1] ×
[0, 1]. We are discretizing equations (10) and (11) on a

20×20 mesh by the method of Finite Volumes [1; 2; 4; 12].

Discretization results in a nonlinear algebraic vector (4)

with 400 nonlinear equations.

If the method is convergent, L2 norm of the difference

vector, ∆p, and the residual vector, A(p), converge to

zero [see 12]. We are reporting convergence of both of

these vectors. For better understanding the error re-

ducing property of these methods, we report variation of

∥A(pk)∥L2/∥A(p0)∥L2 and ∥∆(pk)∥L2/∥∆(p0)∥L2 with

iterations (k).

We performed three experiments with different initializa-

tion in the algorithms (7) and (9). In the first test, let the

initial vector be zero for both the algorithms. Figure 2 re-

ports the result. Figure 2(a) presents convergence of the

residual vector while the Figure 2(b) presents convergence

of the difference vector. In these figures, NIM stands for

Newton Iterative Method while AJNIM stands for Al-

terted Newton Iterative Method. These figures show that

both the methods converges at the same rate (quadrat-

ically), but still the Altered Jacobian Newton Iterative

Method is better in reducing the error.

In the second case, let us select initial vector whose ele-

ments 10. Figure 3 presents comparison of the two meth-

ods for an initial vector whose elements are 10. It can be

seen in the Figures 3(a) and 3(b) that the Altered Jaco-

bian Newton Iterative Method converges faster than the

Newton Iterative Method. Let us finally take an initial

vector with elements equal to 100. Figure 4 presents com-

parison of the two methods for an initial vector whose el-

ements are 100. The Figures 4(a) and 4(b) show that the

Newton Iterative Method is not converging while the Al-

tered Jacobian Newton Iterative Method still converges.

The table 1 presents error after 10 iterations of the two

methods. These experiments does show the independence

of the convergence of the Altered Jacobian Newton Iter-

ative Method with respect to initialization. We saw that

the Newton Iterative Method converges quadratically for
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Figure 2: Initial guess is the zero vector. Here, NIM

stands for Newton Iterative Method while AJNIM stands

for Altered Jacobian Newton Iterative Method.
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Figure 3: Initial vector is of size 400 with each elements

equal to 10.
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Figure 4: Here, each elements of the initial vector consists

of 100.

the first case (initial guess is zero vector) but its conver-

gence rate decreases as we selected other initial guesses.

On the other hand, for all the initial guesses the Altered

Jacobian Newton Iterative Method converges quadrati-

cally.

Table 1: Error by Altered Jacobian Newton Iterative

Method (ALT NIM) and Newton Iterative Method (NIM)

after 10 iterations. Here, initial guess vector is 100.

Method ∥∆p∥L2 ∥A(p)∥L2

NIM 19.7828 1.658 × 10
44

AJNIM 5.058 × 10
−17

1.573 × 10
−15

4 Conclusions

We have developed a nonlinear algorithm named Altered

Jacobian Newton Iterative Method for solving system

nonlinear equations formed from discretization of non-

linear elliptic problems. Presented numerical work shows

that the Altered Jacobian Newton Iterative Method is

robust with respect to the initialization.
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