
 

 

 

  
Abstract—Deposition of large particles such as colloidal or 

bio-particles on a solid surface is usually modeled by the random 

sequential adsorption (RSA). The model was previously 

described by the integral-equation theory whose validity was 

proved by Monte Carlo simulation. This research generalized 

the model to include the concentration effect of added particles 

on the surface. The fraction of particles inserted was varied by 

the number density of 0.05, 0.1, and 0.2.  It was found that the 

modified integral-equation theory yielded the results in good 

accordance with the simulation. When the fraction of particles 

added was increased, the radial distribution function has higher 

peak, due to the cooperative and entropic effects. This work 

could bridge the gap between equilibrium adsorption, where all 

particles may be considered moving and RSA, where there is no 

moving particles. 

 
Index Terms—Colloid, Deposition, Integral Equation Theory, 

Monolayer Films.  

 

I. INTRODUCTION 

To understand the onset of irreversibility, it is very useful 

to generalize the adsorption model by considering the time 

scales that characterize its various steps. Thus, the 

generalized adsorption process will depend on at least three 

distinct characteristic times, assuming that the activation 

energies for desorption are much higher than for the other 

processes. Those times are a surface relaxation or diffusion 

time (
d

τ ) measuring time for moving one step, a reaction time 

(
r

τ ) measuring the time for irreversible attachment to the 

surface, and an adsorption time (
a

τ ) measuring the separation 

between two consecutive adsorption events. The relative 

magnitude of the three times defined above lead to very 

different physical situations.   

In the equilibrium case there is no reaction with the surface 

and the adsorbed molecules equilibrate rapidly between 

successive additions such that
r a d

τ τ τ>> >> . In another 

limiting case, Random Sequential Adsorption (RSA), the 

adsorbed molecules react with the surface instantaneously but 

not diffuse, so that
d a r

τ τ τ>> >> . In the third limit, 
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Sequential Quenching, the separation in the characteristic 

times such that
a r d

τ τ τ>> >> . A similar discussion about 

relative magnitude of the characteristic times was also given 

by Schaaf and Talbot [1]. 

Usually, the adsorption of large particles such as colloidal 

particles and proteins on a surface is irreversible. Feder and 

Giaever [2] reported that the monolayer structures of 

adsorbed ferritin on carbon surface could be explained by the 

model of random sequential adsorption (RSA). Onoda and 

Liniger [3] also found that the configurations of polystyrene 

spheres on a glass surface finally reached the jamming limit of 

RSA. However, there have been many indirect and direct 

evidences showing that among the immobile particles there 

exists mobile fraction of particles. Reports of surface 

coverages significantly greater than the RSA jamming limit 

provide indirect evidence for lateral diffusion [4]. An early 

study of surface diffusion of adsorbed proteins was carried 

out by Michaeli et al. in 1980 [5]. In their experiment the 

distribution of bovine serum albumin (BSA) adsorbed on 

glass was imaged by autoradiography. They saw no evidence 

of desorption and noticed that a protein front migrated over 

distances proportional to the square root of time, as expected 

for diffusion. Later, Burghardt and Axelrod [6] published a 

quantitative study of BSA surface diffusion on quartz. They 

used an elliptical spot fluorescence recovery after 

photobleaching (FRAP) in a total internal reflection 

configuration to measure simultaneous surface diffusion and 

exchange between adsorbed and dissolved proteins in 

solution. They found that adsorbed BSA exists in three 

distinct states: irreversible, slowly reversible and rapidly 

reversible. 

Tilton et al. [7], [8] used FRAPP based on interference of 

two coherent beams in total internal reflection at a solid-liquid 

interface. In their studies, BSA was adsorbed on polymer 

surfaces: spin-cast polymethyl-methacrylate (PMMA) films 

and cross-linked spin-cast films of polydimethylsiloxane 

(PDMS). They found coexistence of a mobile and an 

immobile population of BSA. Tilton et al. [8] also found that 

the mobile fraction does not depend on surface concentration. 

The coexistence of mobile and apparently immobile proteins 

appears to result not from aggregation of adsorbed BSA but 

from a change in conformation or orientation of the adsorbed 

protein. Other experiments on protein adsorption, such as that 

of DNA oligonucleotides on APTES glass [9] and of BSA on 

silica-titania surfaces
 
[10], have also revealed surface 

diffusion in the adsorbed state. If the protein-protein 

interactions are favorable, surface diffusion will lead to 

clustering
 
[11], [12].   
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The model of sequential quenching (SQ) has been studied 

to describe the effect of surface diffusion in irreversible 

adsorption on monolayer structures [13], [14]. Nonetheless, 

only one particles moving at one time is an idealistic situation. 

In this work, the effect of mobile fraction of hard particles 

moving among the immobile ones on the surface was 

investigated in the process called fractional deposition. We 

varied the number of added particles at each time and they are 

allowed to diffuse under the effect of other previously 

adsorbed particles. In Section II, the detail of simulation 

method is provided and the simulation results together with 

the discussion are given in Section III. The article is then 

concluded in Section IV. 

 

II. AN INTEGRAL-EQUATION THEORY FOR FRACTIONAL 

DEPOSITION 

A. Adsorption within Disordered Matrices 

A fluid within in a disordered porous matrix can be viewed 

as a binary mixture of quenched particles (component 0) and 

equilibrated or annealed particles (component 1), as shown in 

Figure 1.   

 

Fig 1: Fluid particles (1) are adsorbed within a quenched 

matrix (0) 

 

Let (2)

00
( )rρ denote pair density function of the quenched 

structure, let (2) 2

00 00 0
( ) ( ) /g r rρ ρ=  be its pair correlation 

function and let 
00 00
( ) ( ) 1h r g r= −  be the residual or total 

correlation function between two particles separated by a 

fixed distance r. Similar correlations may be defined for 0-1 

and 1-1 pairs. The Replica Ornstein-Zernike equations 

according to Madden and Glandt [15] and later modified by 

Given and Stell [16] for such a system are  
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where the symbol ⊗  denotes a convolution integral. The 

( )c r  in the above equations are the direct correlation 

functions, i.e. the sums of all coefficients (“diagrams” or 

“cluster integrals”) in the density expansions of the 

corresponding total correlation functions ( )h r  which are free 

from nodal points. These cluster integrals are best represented 

in graphical form; a review of graphical notation can be found 

in classical references [17]. The sub-indices c  and b  denote 

the so-called connected and blocking parts of the 1-1 

correlations, distinguishing whether all paths between the 

roots in their graphical representation pass through a matrix 

particle or not.  

B. Binary-Mixture Approximation 

An evolving sequentially or differentially quenched system 

can be viewed as a binary mixture of the previously quenched 

particles (denoted by the index 0) and the (infinitely dilute) 

newly added particles (denoted by 1), of number densities ρ 
and dρ, respectively as shown in Fig 1. The set of equations in 

(1) becomes 
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These must be supplemented with an approximate closure 

such as the Percus-Yevick (PY) relations 
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or any alternatives, where f(r) is the Mayer function which is 

12
exp( ( ) / )u r kT− -1, ( )u r is the pair interaction which in this 

work is hard sphere potential, k is the Boltzmann constant, 

and T is the temperature. In fractional deposition, when the 

total density of the system increases from ρ  to dρ ρ+ , a 

balance of particle pairs yields the change in the pair density 

function 
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       (4) 

The first term on the right-hand side represents the 

pre-existing pairs while the second corresponds to the 

additional 0-0 pairs created upon quenching of equilibrium 

particles and the third term is from the contribution of the 

interaction among added mobile particles. Equation (4) 

together with its initial condition describes the evolution of a 

structure built through fractional deposition. As previously 

studied, for RSA the third term was negligible since dρ is 

comparatively small. The initial condition is 
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00 00
( ; 0) 1 ( ; 0) exp( ( ))g r h r u rρ ρ β= = − = = −     (5) 

Equation (5) and its PY closure, must be solved for 

01
( )g r and 

11
( )g r at each density in order to compute 

00
( )g r  

through integration of the differential equation. 

C. Numerical Integration 

The structure evolves as the density of the system increases, 

which we denote as
i

ρ . On taking the Fourier transform on 

both sides of (2) and using the fact that total correlation 

function, h(r), is composed of direct part, c(r), and indirect 

part, b(r), i.e. h(r)= c(r)+ b(r), we obtain algebraic relations, 
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We used the initial condition to obtain the first 
00
( )h r% . This 

and
11
( )

c
h r% , together with appropriate PY approximation (3) 

yielded the value of 
01
( )h r% . Subsequently,

01
( )h r% and 

11
( )

c
h r% , 

together with PY approximation yielded the value of 
11
( )h r% . 

In each calculation, Picard iteration algorithm was applied to 

convergence. The inverse Fourier transforms were then 

applied to obtain 
01
( )h r and 

11
( )h r , from which the pair 

correlations
01
( )g r and 

11
( )g r were calculated. Each set of 

01
( )g r and 

11
( )g r was then used to compute the next 

00
( )g r  

from (4), written in discretized form as (7). 
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The computation is repeated at successively larger values of 

the density, with ρ∆ =0.05, 0.10, or 0.20, i.e. 
1i i

ρ ρ ρ+ = + ∆ , 

until the required density is reached. 

III. MONTE CARLO SIMULATION 

We performed Monte Carlo simulations to verify the 

accuracy of the numerical results from the Ornstein-Zernike 

equations. The calculation of the radial distribution function 

( / 2)
i

g r r+ ∆  is, as customary, based on a histogram for small 

increments of width r∆ . The averaged distribution function is 

then trivially obtained as the ratio between number of 

pairs
i

N  collected from n configurations, at the separation 

ranging from 
i
r  and 

i
r r+ ∆  from the average particle to the 

corresponding number in a system of randomly placed 

particles.  

 

 ( )
2

i

i

i

Nr
g r

r r Nnπ ρ
∆+ =

∆
             (8) 

 

where, 
i

N  is the number of particles in the increment 
i
r r+ ∆ ,  

N is the total number of particle in the system, and ρ is the 

number density of the system. To make it dimensionless, the 

reduced number density is defined as * 2dρ ρ= . 

The details of the simulations are as the following. Particles 

are added one by one onto a 20d x 20d surface, where d is the 

hard-core diameter. The number of particles added is 20, 40, 

or 80 corresponding to *ρ∆ =0.05, 0.10, or 0.20, respectively. 

If the added particles overlap with previously quenched 

particles, they are removed and new additions are attempted 

until the insertion is successful. This step is followed by 

classical Metropolis displacement steps, allowing the 

particles to reach equilibrium under the effect of all other 

particles. The Markov generates a random walk such that the 

probability of visiting a particular point r is proportional to 

the particle’s Boltzmann factor at that location, 

exp( ( ))Uβ− r .  Thus, the move from r  to ′r  was accepted 

with probability  

 

{ }acc( ) min(1,exp ( ) ( )'r ro n U Uβ  → = − −       (9) 

 

Each particle performs a minimum of 1000 accepted moves 

with a maximum displacement of 0.5d before it is quenched in 

place. The periodic boundary condition is also applied. Our 

final results, averaged over 100 realizations, are presented in 

the following section. 

IV. RESULTS AND DISCUSSIONS 

 

The results from the integral-equation theory are compared 

with the ones from simulations. The monolayer was formed 

by fractional deposition of particles on a homogeneous 

surface. Each added fraction is equivalent to the number 

density of 0.1.  The examples are shown for the reduced 

system density, *ρ , of 0.2, 0.3, and 0.4 in Figures 2, 3, and 4, 

respectively.  As can be seen in Fig.2, at a low system density 

of 0.2, the simulation gives results in good accord with the 

theoretical ones.   

IAENG International Journal of Applied Mathematics, 38:4, IJAM_38_4_05
_______________________________________________________________________________

(Advance online publication: 20 November 2008)



 

 

 

 

 

Fig 2: The radial distribution function for the system reduced 

density of 0.2 generated by depositing a fraction of particles 

whose added density is 0.1.  The theoretical results are 

compared with the simulation ones. 

 
 

Fig 3: Similar to Fig.2, but the comparison of the results at the 

reduced number density of 0.3 is made. 

 

 
 

Fig 4: Similar to Fig.2, but the comparison of the results at the 

reduced number density of 0.4 is made. 

 
Fig 5: The radial distribution functions from the 

integral-equation theory, showing the increase of 

short-ranged order with increasing *dρ . 

 

 

More deviations are observed when the system density 

increases. This is attributable to the PY approximations, in 

which some diagrams of higher order of density are neglected.  

However, the consistency between those is acceptable. This 

proves the validity of the integral-equation theory in 

explaining the evolution of structures built through fractional 

deposition.   

Since the interaction between a pair of particles is from a 

simple hard sphere model, the structure of the radial 

distribution function shows only the short-ranged interaction, 

represented by only one prominent peak. This peak is clearly 

seen higher when the system density increases, resulting from 

the effect of particle packing on the surface, i.e. in a later 

addition, the particles will be deposited closer to one another. 

Normally, the deposition flux depends on the particle 

concentration in suspension and the available space on the 

surface. Therefore, the flux during the monolayer growth 

should not be assumed constant as has been done in this work.   

However, Tilton et al. [8] found that the self-diffusivity of 

BSA adsorbed on PMMA was strongly dependent on surface 

concentration and that between 15 min. and 7 h. it was 

independent of adsorption time.  Conversely, the mobile 

fraction does not depend on surface concentration but does 

depend on adsorption time.   The coexistence of mobile and 

apparently immobile proteins appears to result not from 

aggregation of adsorbed BSA but from a change in 

conformation or orientation of the adsorbed protein. 

The important finding in this study is shown in Fig. 5, 

where the effect of number of added particles is compared. 

The system density is kept constant at 0.4, whereas the 

fraction of particles added is 0.05, 0.10, and 0.20. It is shown 

that when the fraction of added particles is increased, even 

though there is no enthalpic effect at all in the system, the 

entropic effect together with the cooperative effect of all 

moving particles leads to higher peak of the radial distribution 

function. Thus, the system of larger *dρ  is a little more 

compact and ordered, as was previously found in [18]. The 

ordered structure contains greater free area for deposition 

than disordered structures, thereby possessing higher area 

entropy while losing configurational entropy.   
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If the deposition continues, the irreversible nature of 

adsorbed particles would lead to the jamming, where there is 

no available space on the surface to accommodate a particle. 

The jamming coverage for the adsorption for different added 

mobile fraction will be different and it could be determined 

from Monte Carlo simulations. The values should be greater 

than jamming coverage for RSA and less than the saturation 

coverage of equilibrium adsorption. Thereby, the fractional 

deposition could be a simple model for bridging the gap 

between totally irreversible as in RSA and completely 

reversible as in equilibrium. 

V. CONCLUSION 

This work proposed the integral-equation theory based on 

the Ornstein-Zernike equations to describe the growth of 

monolayer structures by fractional deposition. The theoretical 

results are in good agreement with the simulation results. 

Moreover, the theory is superior to Monte Carlo simulation 

since the calculation is faster. However, to determine the 

jamming coverage, the integral-equation theory fail to predict 

such high density as was discussed before. The Monte Carlo 

simulation would then be the helpful tool.  

The integral-equation theory is amenable to include the 

variation of *dρ  along the growing process instead of fixing 

the same number of added particle at one time as was done in 

this study. It is also flexible to use with any types of 

intermolecular potentials, either attractive or repulsive ones.  
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