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Abstract— Consider the sequence of poles A = {α1, α2, . . .},
and suppose the rational functions ϕn with poles inA form an or-
thonormal system with respect to an Hermitian positive-definite
inner product. Further, assume the ϕn satisfy a three-term re-
currence relation. Let the rational function ϕ

(1)

n\1 with poles in
{α2, α3, . . .} represent the associated rational function of ϕn of
order 1; i.e. the ϕ

(1)

n\1 satisfy the same three-term recurrence re-
lation as the ϕn. In this paper we then give a relation between ϕn

and ϕ
(1)

n\1 in terms of the so-called rational functions of the second
kind. Next, under certain conditions on the poles in A, we prove
that the ϕ

(1)

n\1 form an orthonormal system of rational functions
with respect to an Hermitian positive-definite inner product. Fi-
nally, we give a relation between associated rational functions of
different order, independent of whether they form an orthonor-
mal system.

Keywords: Orthogonal rational functions, associated rational
functions, rational functions of the second kind, three-term recur-
rence relation, Favard theorem.

1 Introduction

Let φn denote the polynomial of degree n that is orthonor-
mal with respect to a positive measure µ on a subset S of the
real line. Further, assume the measure µ is normalized (i.e.∫

S
dµ = 1) and suppose the orthonormal polynomials (OPs)

φn satisfy a three-term recurrence relation of the form

φ−1(x) ≡ 0, φ0(x) ≡ 1,
αnφn(x) = (x− βn)φn−1(x)− αn−1φn−2(x), n ≥ 1,

where the recurrence coefficients αn and βn are real, and
αn 6= 0 for every n.

Let the polynomial φ
(k)
n−k of degree n−k denote the associated

polynomial (AP) of order k ≥ 0, with n ≥ k. By definition,
these APs are the polynomials generated by the three-term re-
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currence relation given by

φ
(k)
−1(x) ≡ 0, φ

(k)
0 (x) ≡ 1,

αnφ
(k)
n−k(x) = (x− βn)φ(k)

(n−1)−k(x)− αn−1φ
(k)
(n−2)−k(x),
n ≥ k + 1.

Note that this way the APs of order 0 and the OPs are in fact
the same.

The following relation exists between APs of different order

αm+1

[
φ

(k)
m−k(x)φ(j)

n−j(x)− φ
(j)
m−j(x)φ(k)

n−k(x)
]

= αjφ
(m+1)
n−(m+1)(x)φ(k)

(j−1)−k(x), (1)

where n + 1 ≥ m + 1 ≥ j ≥ k ≥ 0 (see e.g. [10, Eqns
(2.5)–(2.6)] for the special case in which m = j = k + 1,
respectively m = n− 1).

From the Favard theorem it follows that the APs of order k
form an orthonormal system with respect to a positive nor-
malized measure µ(k) on S. Therefore, another relation exists
between the APs of order j and k in terms of polynomials of
the second kind:

φ
(k)
n−k(x) = αk

∫

S

φ
(j)
n−j(t)− φ

(j)
n−j(x)

t− x
φ

(j)
(k−1)−j(t)dµ(j)(t),

0 ≤ j ≤ k − 1 ≤ n, (2)

and hence,

φ
(j)
n−j(t)− φ

(j)
n−j(x)

t− x
=

n∑

k=j+1

1
αk

φ
(k)
n−k(x)φ(j)

(k−1)−j(t) (3)

(see e.g. [10, Eqns (2.9) and (2.13)] for the special case in
which j = 0). For t = x, relation (3) can be rewritten as

d

dx

[
φ

(j)
n−j(x)

]
=

n∑

k=j+1

1
αk

φ
(k)
n−k(x)φ(j)

(k−1)−j(x). (4)

Orthonormal rational functions (ORFs) on a subset S of the
real line (see e.g. [2, 8, 9] and [1, Chapt. 11]) are a general-
ization of OPs on S in such a way that they are of increasing
degree with a given sequence of complex poles, and the OPs
result if all the poles are at infinity. Let ϕn denote the rational
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function with n poles outside S that is orthonormal with re-
spect to a positive normalized measure µ on S. Under certain
conditions on the poles, these ORFs satisfy a three-term recur-
rence relation too. Consequently, associated rational functions
(ARFs) can be defined based on this three-term recurrence re-
lation. Furthermore, in [1, Chapt. 11.2], the rational function
of the second kind ϕ

[1]
n of ϕn is defined similarly as in (2); i.e.

ϕ[1]
n (x) =

∫

S

ϕn(t)− ϕn(x)
t− x

dµ(t), n > 0. (5)

The aim of this paper is to generalize the relations for APs,
given by (1)–(4), to the case of ARFs. The outline of the pa-
per is as follows. After giving the necessary theoretical back-
ground in Section 2, in Section 3 we deal with the generaliza-
tion of relation (1). Next, we give a relation between ARFs of
order k − 1 and k in terms of rational functions of the second
kind in Section 4. We conclude the article with the generaliza-
tion of relation (3) and (4) in Section 5.

This paper is an updated and extended version of the confer-
ence paper [5]. First, we have proved a more general relation
between ARFs of different order in Theorem 3.3. Secondly, in
Section 5 we have given a generalization of relation (3) and (4)
to the case of ARFs. Whereas in [5], the generalization of re-
lation (2) has only been proved for k = j + 1.

2 Preliminaries

The field of complex numbers will be denoted by C and the
Riemann sphere by C = C ∪ {∞}. For the real line we use
the symbol R, while the extended real line will be denoted by
R = R ∪ {∞}. Further, we represent the positive real line by
R+ = {x ∈ R : x ≥ 0}. If the value a ∈ X is omitted in the
set X , this will be represented by Xa; e.g.

C0 = C \ {0}.

Let c = a+ ib, where a, b ∈ R, then we represent the real part
of c ∈ C by <{c} = a and the imaginary part by ={c} = b.

Given a sequence An = {α1, α2, . . . , αn} ⊂ C0, we define
the factors

Zl(x) =
x

1− x/αl
, l = 1, 2, . . . , n,

and products

b0(x) ≡ 1, bl(x) = Zl(x)bl−1(x), l = 1, 2, . . . , n,

or equivalently,

bl(x) =
xl

πl(x)
, πl(x) =

l∏

i=1

(1− x/αi), π0(x) ≡ 1.

The space of rational functions with poles in An is then given
by

Ln = span{b0(x), b1(x), . . . , bn(x)}.

We will also need the reduced sequence of poles An\k =
{αk+1, αk+2, . . . , αn}, where 0 ≤ k ≤ n, and the reduced
space of rational functions with poles in An\k given by

Ln\k = span{bk\k(x), b(k+1)\k(x), . . . , bn\k(x)},
where

bl\k(x) =
bl(x)
bk(x)

=
xl−k

πl\k(x)
,

for l ≥ k and

πl\k(x) =
l∏

i=k+1

(1− x/αi), πl\l(x) ≡ 1.

In the special case in which k = 0 or k = n, we have that
An\0 = An and Ln\0 = Ln, respectively An\n = ∅ and
Ln\n = L0 = C. We will assume that the poles in An are
arbitrary complex or infinite; hence, they do not have to appear
in pairs of complex conjugates.

We define the substar conjugate of a function f(x) ∈ L∞ by

f∗(x) = f(x).

Consider an inner product that is defined by the linear func-
tional M :

〈f, g〉 = M{fg∗}, f, g ∈ L∞.

We say that M is an Hermitian positive-definite linear func-
tional (HPDLF) if for every f, g ∈ L∞ it holds that

f 6= 0 ⇔ M{ff∗} > 0 and M{fg∗} = M{f∗g}.
Further, assume M is normalized (M{1} = 1) and suppose
there exists a sequence of rational functions {ϕn}∞n=1, with
ϕn ∈ Ln \ Ln−1, so that the ϕn form an orthonormal system
with respect to the HPDLF M .

Let α0 ∈ C0 be arbitrary but fixed in advance. Then the or-
thonormal rational functions (ORFs) ϕn = pn

πn
are said to be

regular for n ≥ 1 if pn(αn−1) 6= 0 and pn(αn−1) 6= 0. A
zero of pn at∞means that the degree of pn is less than n. We
now have the following recurrence relation for ORFs. For the
proof, we refer to [8, Sec. 2] and [3, Sec. 3].

Theorem 2.1. Let E0 ∈ C0, α−1 ∈ R0 and α0 ∈ C0 be
arbitrary but fixed in advance. Then the ORFs ϕl, l = n −
2, n−1, n, with n ≥ 1, are regular iff there exists a three-term
recurrence relation of the form

ϕn(x) = Zn(x)
{

En

[
1 +

Fn

Zn−1(x)

]
ϕn−1(x)

− Cn

Zn−2∗(x)
ϕn−2(x)

}
, En, Cn ∈ C0, Fn ∈ C, (6)

with

|En|2 − 4
={αn}
|αn|2

· = {αn−1}
|αn−1|2

=: ∆n ∈ R+
0 , (7)
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Cn =
En [1 + Fn/Zn−1(αn−1)]

En−1

, (8)

and

={Fn} =
={αn}
|αn|2

· 1
|En|2

− ={αn−2}
|αn−2|2

· 1
|En−1|2

(9)

whenever αn−1 ∈ R0, respectively

[<{Fn}]2 + [={Fn} − iZn−1(αn−1)]
2 =

[iZn−1(αn−1)]
2 |En−1|2
|En|2

· ∆n

∆n−1
(10)

whenever αn−1 /∈ R. The initial conditions are ϕ−1(x) ≡ 0
and ϕ0(x) ≡ 1.

In the remainder we will assume that the system of ORFs
{ϕn}∞n=1 is regular.

Let ϕ
(k)
n\k =

p
(k)
n−k(x)

πn\k(x) ∈ Ln\k denote the associated rational

function (ARF) of ϕn of order k; i.e. ϕ
(k)
n\k, n = k + 1, k +

2, . . ., is generated by the three-term recurrence relation

ϕ
(k)
(k−1)\k(x) ≡ 0, ϕ

(k)
k\k(x) ≡ 1,

ϕ
(k)
n\k(x) = Zn(x)

{
En

[
1 + Fn

Zn−1(x)

]
ϕ

(k)
(n−1)\k(x)

− Cn

Zn−2∗(x)ϕ
(k)
(n−2)\k(x)

}
, n ≥ k + 1.

Note that in the special case in which k = 0, we have that
ϕ

(0)
n\0 = ϕn.

As a consequence of the Favard theorem for rational functions
with complex poles (see [4, Thm. 4.1]) we then have the fol-
lowing theorem.

Theorem 2.2. Let {ϕ(k)
n\k}∞n=k+1 be a sequence of rational

functions generated by the three-term recurrence relation (6)–
(10) for n > k ≥ 0, with initial conditions ϕ

(k)
(k−1)\k(x) ≡ 0

and ϕ
(k)
k\k(x) ≡ 1. Furthermore, assume that

1. αk−1 ∈ R0,

2. ϕ
(k)
n\k ∈ Ln\k \ L(n−1)\k, n = k + 1, k + 2, . . . .

Then there exists a normalized HPDLF M (k) so that

〈f, g〉 = M (k){fg∗}

defines an Hermitian positive-definite inner product for which
the rational functions ϕ

(k)
n\k form an orthonormal system.

3 ARFs of different order

The aim of this section is to generalize relation (1) to the case
of ARFs. First we need the following two lemmas.

Lemma 3.1. The ARFs ϕ
(s)
n\s, with s = k, k + 1, k + 2 and

n ≥ k + 1, satisfy the relation given by

ϕ
(k)
n\k(x) = Zk+1(x)Ek+1

[
1 +

Fk+1

Zk(x)

]
ϕ

(k+1)
n\(k+1)(x)

− Ck+2
Zk+2(x)
Zk∗(x)

ϕ
(k+2)
n\(k+2)(x). (11)

Proof. First, consider the case in which n = k + 1. From the
three-term recurrence relation we deduce that

ϕ
(k)
(k+1)\k(x) = Zk+1(x)Ek+1

[
1 +

Fk+1

Zk(x)

]
.

We also have that ϕ
(k+1)
(k+1)\(k+1)(x) ≡ 1, while

ϕ
(k+2)
(k+1)\(k+2)(x) ≡ 0. Hence, the statement clearly

holds for n = k + 1.

Next, consider the case in which n = k + 2. From the three-
term recurrence relation we now deduce that

ϕ
(k)
(k+2)\k(x) = Zk+2(x)Ek+2

[
1 +

Fk+2

Zk+1(x)

]
ϕ

(k)
(k+1)\k(x)

− Ck+2
Zk+2(x)
Zk∗(x)

.

Also now we have that ϕ
(k+2)
(k+2)\(k+2)(x) ≡ 1. Moreover,

Zk+2(x)Ek+2

[
1 +

Fk+2

Zk+1(x)

]
ϕ

(k)
(k+1)\k(x)

= Zk+2(x)Ek+2

[
1 +

Fk+2

Zk+1(x)

]
×

Zk+1(x)Ek+1

[
1 +

Fk+1

Zk(x)

]

= Zk+1(x)Ek+1

[
1 +

Fk+1

Zk(x)

]
ϕ

(k+1)
(k+2)\(k+1)(x).

Consequently, the statement clearly holds for n = k + 2 as
well.

Finally, assume that the statement holds for n−2 and n−1. By
induction, the statement is then easily verified for n ≥ k + 3
by applying the three-term recurrence relation to the left hand
side of (11) for ϕ

(k)
n\k, as well as to the right hand side of (11)

for ϕ
(k+1)
n\(k+1) and ϕ

(k+2)
n\(k+2).

Lemma 3.2. The ARFs ϕ
(s)
n\s, with s = k, j, j + 1 and k ≤

j ≤ n, are related by

ϕ
(k)
n\k(x) = ϕ

(j)
n\j(x)ϕ(k)

j\k(x)

− Cj+1
Zj+1(x)
Zj−1∗(x)

ϕ
(j+1)
n\(j+1)(x)ϕ(k)

(j−1)\k(x). (12)
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Proof. For every l ≥ 0 we have that

ϕ
(l)
(l−1)\l(x) ≡ 0, ϕ

(l)
l\l(x) ≡ 1

and ϕ
(l)
(l+1)\l(x) = Zl+1(x)El+1

[
1 +

Fl+1

Zl(x)

]
.

Thus, the relation given by (12) clearly holds for j = n or
j = k. While for j = n − 1 or j = k + 1, (12) is nothing
more than the three-term recurrence relation, respectively the
relation given by (11).

So, suppose that the statement holds for j. From the three-
term recurrence relation it follows that

ϕ
(k)
(j+1)\k(x) = ϕ

(j)
(j+1)\j(x)ϕ(k)

j\k(x)

− Cj+1
Zj+1(x)
Zj−1∗(x)

ϕ
(k)
(j−1)\k(x),

while for j ≤ n− 1 it follows from Lemma 3.1 that

− Cj+2
Zj+2(x)
Zj∗(x)

ϕ
(j+2)
n\(j+2)(x) = ϕ

(j)
n\j(x)

− ϕ
(j+1)
n\(j+1)(x)ϕ(j)

(j+1)\j(x).

Consequently, by induction we then find for j + 1 that

ϕ
(j+1)
n\(j+1)(x)ϕ(k)

(j+1)\k(x)

− Cj+2
Zj+2(x)
Zj∗(x)

ϕ
(j+2)
n\(j+2)(x)ϕ(k)

j\k(x)

= −Cj+1
Zj+1(x)
Zj−1∗(x)

ϕ
(j+1)
n\(j+1)(x)ϕ(k)

(j−1)\k(x)

+ ϕ
(j)
n\j(x)ϕ(k)

j\k(x) = ϕ
(k)
n\k(x),

which ends the proof.

We are now able to prove our first main result.

Theorem 3.3. Let P
(j)
m+1 and Q

(k,j)
m,n , with n + 1 ≥ m + 1 ≥

j ≥ k ≥ 0, be given by

P
(j)
m+1(x) =

m+1∏

i=j+1

Ci
Zi(x)

Zi−2∗(x)
, P

(j)
j (x) ≡ 1, (13)

Q(k,j)
m,n (x) = ϕ

(k)
m\k(x)ϕ(j)

n\j(x)

−ϕ
(j)
m\j(x)ϕ(k)

n\k(x).

Then it holds that

Q(k,j)
m,n (x) = P

(j)
m+1(x)ϕ(m+1)

n\(m+1)(x)ϕ(k)
(j−1)\k(x). (14)

Proof. Since for every l ≥ 0 it holds that Q
(l,l)
m,n(x) ≡ 0 ≡

ϕ
(l)
(l−1)\l(x), the statement clearly holds for k = j. Similarly,

for every l ≥ j − 1 it holds that Q
(k,j)
l,l (x) ≡ 0 ≡ ϕ

(l+1)
l\(l+1)(x),

so that the statement clearly holds for m = n as well. Thus, it
remains to prove the statement for n+1 > m+1 ≥ j > k ≥ 0.

Let k and j be fixed. For m = j, (14) reduces to the relation
given by (12). While for m = j − 1 we have that

Q
(k,j)
j−1,n(x) = ϕ

(k)
(j−1)\k(x)ϕ(j)

n\j(x)

= P
(j)
j (x)ϕ(j)

n\j(x)ϕ(k)
(j−1)\k(x).

So, suppose that the statement holds for Q
(k,j)
m−2,n−2,

Q
(k,j)
m−1,n−2, Q

(k,j)
m−2,n−1 and Q

(k,j)
m−1,n−1, with n > m ≥ j + 1.

By induction, we then find for Q
(k,j)
m,n that (see also Figure 1

for a graphical representation of the proof by induction)

Q(k,j)
m,n (x) = ϕ

(k)
m\k(x)ϕ(j)

n\j(x)− ϕ
(j)
m\j(x)ϕ(k)

n\k(x)

=
[
ϕ

(m−1)
m\(m−1)(x)ϕ(k)

(m−1)\k(x)− P (m−1)
m (x)ϕ(k)

(m−2)\k(x)
]
×

[
ϕ

(n−1)
n\(n−1)(x)ϕ(j)

(n−1)\j(x)− P (n−1)
n (x)ϕ(j)

(n−2)\j(x)
]
−

[
ϕ

(m−1)
m\(m−1)(x)ϕ(j)

(m−1)\j(x)− P (m−1)
m (x)ϕ(j)

(m−2)\j(x)
]
×

[
ϕ

(n−1)
n\(n−1)(x)ϕ(k)

(n−1)\k(x)− P (n−1)
n (x)ϕ(k)

(n−2)\k(x)
]

= ϕ
(m−1)
m\(m−1)(x)ϕ(n−1)

n\(n−1)(x)Q(k,j)
m−1,n−1(x)

+ P (m−1)
m (x)P (n−1)

n (x)Q(k,j)
m−2,n−2(x)

− ϕ
(m−1)
m\(m−1)(x)P (n−1)

n (x)Q(k,j)
m−1,n−2(x)

− ϕ
(n−1)
n\(n−1)(x)P (m−1)

m (x)Q(k,j)
m−2,n−1(x)

= P (j)
m (x)

{
ϕ

(m−1)
m\(m−1)(x)ϕ(n−1)

n\(n−1)(x)ϕ(m)
(n−1)\m(x)

+ P (n−1)
n (x)ϕ(m−1)

(n−2)\(m−1)(x)

− ϕ
(m−1)
m\(m−1)(x)P (n−1)

n (x)ϕ(m)
(n−2)\m(x)

−ϕ
(n−1)
n\(n−1)(x)ϕ(m−1)

(n−1)\(m−1)(x)
}

ϕ
(k)
(j−1)\k(x)

= P (j)
m (x)

{
ϕ

(m−1)
m\(m−1)(x)ϕ(m)

n\m(x)

−ϕ
(m−1)
n\(m−1)(x)

}
ϕ

(k)
(j−1)\k(x)

= P
(j)
m+1(x)ϕ(m+1)

n\(m+1)(x)ϕ(k)
(j−1)\k(x).

4 Functions of the second kind

Suppose the ARFs ϕ
(k−1)
n\(k−1) of order k − 1 ≥ 0 form an

orthonormal system with respect to a normalized HPDLF
M (k−1), and let Φn\(k−1) be given by

Φn\(k−1)(x, t) = (1− t/αk−1)ϕ
(k−1)
n\(k−1)(x). (15)
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m

nj+1jj−1

j−1

j

j+1

Figure 1: Graphical representation of the proof by induction of
Theorem 3.3. The (n,m)-coordinates marked with an ’o’ de-
note the initialization, while the induction step is represented
by the rectangular and arrow. Consequently, the statement fol-
lows by induction for the (n,m)-coordinates marked with a
black dot.

Then we define the rational functions of the second kind ψn\k
by

ψn\k(x) =
(1− x/αk)
Ek−1Ck

×
[
M

(k−1)
t

{
Φn\(k−1)(t, x)− Φn\(k−1)(x, t)

t− x

}

−δn,k−1/αk−1

]
, n ≥ k − 1, (16)

where δn,k−1 is the Kronecker Delta. Note that this definition
is very similar to, but not exactly the same as the one given
before in (5). We will then prove that the ψn\k satisfy the
same three-term recurrence relation as ϕ

(k−1)
n\(k−1) with initial

conditions ψ(k−1)\k(x) ≡ 0 and ψk\k(x) ≡ 1, and hence, that
ψn\k(x) = ϕ

(k)
n\k(x). First, we need the following lemma.

Lemma 4.1. Let ψn\k, with n ≥ k − 1 ≥ 0, be defined
as before in (16). Then it holds that ψ(k−1)\k(x) ≡ 0 and
ψk\k(x) ≡ 1, while ψn\k ∈ Ln\k for n > k.

Proof. Define qn−(k−2) by

qn−(k−2)(x) = (1− x/αk−1)πn\(k−1)(x).

For n ≥ k it then follows from (15) and (16) that

Ek−1Ckψn\k(x) =
1

πn\k(x)
M

(k−1)
t

{
1

t− x
×

[
ϕ

(k−1)
n\(k−1)(t)qn−(k−2)(x)− (1− t/αk−1)p

(k−1)
n−(k−1)(x)

]}

=

∑n−(k−1)
i=0 M

(k−1)
t

{
a
(k)
i (t)

}
xi

πn\k(x)
. (17)

Further, with

cn,k = lim
x→∞

πn\k(x)
xn−k

,

we have that

M
(k−1)
t

{
a
(k)
n−(k−1)(t)

}
=

cn,k−1

αk−1
M

(k−1)
t

{
ϕ

(k−1)
n\(k−1)(t)

}

= 0,

so that ψn\k is of the form

ψn\k(x) =
p
(k)
n−k(x)

πn\k(x)
∈ Ln\k.

For n = k we find that

Ek−1Ckψk\k(x) =

M
(k−1)
t





ϕ
(k−1)
k\(k−1)(t)q2(x)− (1− t/αk−1)p

(k−1)
1 (x)

−x(1− t/x)



 .

Note that

lim
x→αk−1

−q2(x)
x

M
(k−1)
t





ϕ
(k−1)
k\(k−1)(t)

1− t/x



 = 0,

so that

ψk\k(x) = lim
x→αk−1

M
(k−1)
t

{
1− t/αk−1

1− t/x

}
p
(k−1)
1 (x)

Ek−1Ckx

= lim
x→αk−1

ϕ
(k−1)
k\(k−1)(x)

Ek−1CkZk(x)
= lim

x→αk−1

Ek [1 + Fk/Zk−1(x)]
Ek−1Ck

=
Ek [1 + Fk/Zk−1(αk−1)]

Ek−1Ck

= 1.

Finally, in the special case in which n = k − 1, we have that

M
(k−1)
t

{
Φ(k−1)\(k−1)(t, x)− Φ(k−1)\(k−1)(x, t)

t− x

}

= M
(k−1)
t

{
(1− x/αk−1)− (1− t/αk−1)

t− x

}

= 1/αk−1.
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The following theorem now shows that these ψn\k satisfy the
same three-term recurrence relation as the ϕ

(k−1)
n\(k−1).

Theorem 4.2. Let ψn\k be defined as before in (16). The ra-
tional functions ψl\k, with l = n− 2, n− 1, n and n ≥ k + 1,
then satisfy the three-term recurrence relation given by

ψn\k(x) = Zn(x)
{

En

[
1 +

Fn

Zn−1(x)

]
ψ(n−1)\k(x)

− Cn

Zn−2∗(x)
ψ(n−2)\k(x)

}
. (18)

The initial conditions are ψ(k−1)\k(x) ≡ 0 and ψk\k(x) ≡ 1.

Proof. First note that the ARFs ϕ
(k−1)
l\(k−1), with l = n− 2, n−

1, n, satisfy the three-term recurrence relation given by (18),
and hence, so do the Φl\(k−1). Consequently, we have that

ψn\k(x) = Zn(x)
{

En

[
1 +

Fn

Zn−1(x)

]
ψ(n−1)\k(x)

− Cn

Zn−2∗(x)
ψ(n−2)\k(x)

}
+ M

(k−1)
t

{
fn(x, t)
t− x

}

− δn,k+1
(1− x/αk)

αk−1Ek−1Ck

Ck+1
Zk+1(x)
Zk−1∗(x)

,

where fn(x, t) = (1−x/αk)

Ek−1Ck
gn(x, t) and gn(x, t) is given by

gn(x, t) = En[Zn(t)− Zn(x)]Φ(n−1)\(k−1)(t, x)

+ EnFn

[
Zn(t)

Zn−1(t)
− Zn(x)

Zn−1(x)

]
Φ(n−1)\(k−1)(t, x)

− Cn

[
Zn(t)

Zn−2∗(t)
− Zn(x)

Zn−2∗(x)

]
Φ(n−2)\(k−1)(t, x).

Note that

Zn(t)− Zn(x) =
(t− x)

(1− t/αn)(1− x/αn)
Zn(t)

Zn−1(t)
− Zn(x)

Zn−1(x)
=

(t− x)/Zn−1(αn)
(1− t/αn)(1− x/αn)

Zn(t)
Zn−2∗(t)

− Zn(x)
Zn−2∗(x)

=
(t− x)/Zn−2∗(αn)

(1− t/αn)(1− x/αn)
,

so that

fn(x, t)
t− x

=
(1− x/αk)
Ek−1Ck

· Zn(x)
Zk−1∗(x)

(1− t/αn)−1hn(t)

=
(1− x/αk)
Ek−1Ck

· Zn(x)
Zk−1∗(x)

(
1 +

Zn(t)
αn

)
hn(t),

where

hn(t) = En

[
1 +

Fn

Zn−1(αn)

]
ϕ

(k−1)
(n−1)\(k−1)(t)

− Cn

Zn−2∗(αn)
ϕ

(k−1)
(n−2)\(k−1)(t).

It clearly holds that

M
(k−1)
t {hn(t)} = −δn,k+1Ck+1/Zk−1∗(αk+1).

Further, note that

Zn(t)
Zn−2∗(αn)

=
Zn(t)

Zn−2∗(t)
− 1

and
Zn(t)

Zn−1(αn)
=

Zn(t)
Zn−1(t)

− 1.

Hence,

Zn(t)hn(t) = ϕ
(k−1)
n\(k−1)(t)

− EnFnϕ
(k−1)
(n−1)\(k−1)(t) + Cnϕ

(k−1)
(n−2)\(k−1)(t),

so that

M
(k−1)
t {Zn(t)hn(t)}

αn
= δn,k+1Ck+1/αk+1.

As a result,

M
(k−1)
t

{
fn(x, t)
t− x

}
=

δn,k+1
(1− x/αk)

αk−1Ek−1Ck

Ck+1
Zk+1(x)
Zk−1∗(x)

,

which ends the proof.

The next theorem directly follows from Lemma 4.1 and The-
orem 4.2.

Theorem 4.3. Let ψn\k be defined as before in (16). These

ψn\k are the ARFs ϕ
(k)
n\k of order k with initial conditions

ϕ
(k)
(k−1)\k(x) ≡ 0 and ϕ

(k)
k\k(x) ≡ 1.

In the above lemma and theorems we have assumed that the
ARFs ϕ

(k−1)
n\(k−1) form an orthonormal system with respect to a

normalized HPDLF M (k−1). The assumption certainly holds
for k = 1, and hence, the ARFs ϕ

(1)
n\1 are the rational functions

of the second kind of the ORFs ϕn. The next question is then
whether the ARFs ϕ

(1)
n\1 form an orthonormal system with re-

spect to a normalized HPDLF M (1). Therefore, we need the
following lemma.

Lemma 4.4. Let the ARFs ϕ
(k)
n\k of order k be defined

by (16). Then the leading coefficient K
(k)
n−k, i.e. the coeffi-

cient of bn\k in the expansion of ϕ
(k)
n\k with respect to the basis

{bk\k, . . . , bn\k}, is given by

K
(k)
n−k =

K
(k−1)
n−(k−1)

Ek−1Ck

M
(k−1)
t

{
1− t/αk−1

1− t/αn

}
, n ≥ k.
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Proof. Note that the leading coefficient K
(k)
n−k is given by (see

also [3, Thm. 3.2])

K
(k)
n−k = lim

x→αn

ϕ
(k)
n\k(x)

bn\k(x)
= lim

x→αn

p
(k)
n−k(x)
xn−k

.

Further, let qn−(k−2) be defined as before in Lemma 4.1.
Clearly, for n ≥ k it then holds that

lim
x→αn

−qn−(k−2)(x)
xn−(k−1)

M
(k−1)
t





ϕ
(k−1)
k\(k−1)(t)

1− t/x



 = 0.

So, from (17) we deduce that

Ek−1CkK
(k)
n−k

= lim
x→αn

p
(k−1)
n−(k−1)(x)

xn−(k−1)
M

(k−1)
t

{
1− t/αk−1

1− t/x

}

= K
(k−1)
n−(k−1)M

(k−1)
t

{
1− t/αk−1

1− t/αn

}
.

This proves the statement.

As a consequence, we now have the following theorem.

Theorem 4.5. Let the ARFs ϕ
(k)
n\k of order k be defined by (16)

and assume that αk−1 ∈ R0. Further, suppose that

M
(k−1)
t

{
1− t/αk−1

1− t/αn

}
6= 0 (19)

whenever n > k and αn /∈ {αk−1, αk, αk}. Then it holds
that the ϕ

(k)
n\k form an orthonormal system with respect to a

normalized HPDLF M (k).

Proof. Note that ϕ
(k)
n\k ∈ Ln\k \ L(n−1)\k iff K

(k)
n−k 6= 0. We

now have that K
(k−1)
n−(k−1) 6= 0 for every n > k, due to the fact

that the ARFs ϕ
(k−1)
n\(k−1) ∈ Ln\(k−1)\L(n−1\(k−1). Moreover,

as M (k−1) is a normalized HPDLF and because ϕ
(k−1)
k\(k−1) is

regular, we also have that

M
(k−1)
t

{
1− t/αk−1

1− t/αn

}
6= 0

whenever αn ∈ {αk−1, αk, αk}. Thus, together with the
assumption given by (19), it follows from Lemma 4.4 that
ϕ

(k)
n\k ∈ Ln\k \ L(n−1)\k for every n > k. Consequently,

both assumptions in Theorem 2.2 are satisfied, which ends the
proof.

Finally, note that none of the ARFs form an orthonormal sys-
tem whenever (A∞ ∪ {α0}) ⊂ (C \ R). On the other hand,
whenever the inner product is defined as a weighted infinite
sum of as an integral over a subset of the real line with respect
to a positive bounded Borel measure, and all the poles (includ-
ing α0) are real and outside the convex hull of the support of
the measure, then the ARFs form an orthonormal system for
every order k ≥ 1.

5 ARFs and functions of the second kind

In the previous section, a generalization of (2) to the case of
ARFs has been proved for the special case in which k = j+1.
The aim of this section is to give a generalization for arbitrary
k, with j +1 ≤ k ≤ n+1, and hence, to give a generalization
of relation (3) and (4).

Suppose the ARFs ϕ
(j)
n\j of order j ≥ 0 form an orthonormal

system with respect to a normalized HPDLF M (j), and let
χ

(j)
n,x be defined by

χ(j)
n,x(t) = (1− x/αj+1)

Φn\j(t, x)− Φn\j(x, t)
t− x

. (20)

Clearly, for fixed values of x we have that χ
(j)
n,x ∈ Ln\j , and

hence, there exist coefficients ak,n(x) so that

χ(j)
n,x(t) =

n∑

k=j

ak,n(x)ϕ(j)
k\j(t),

with
ak,n(x) = M (j)

{
χ(j)

n,xϕ
(j)
(k\j)∗

}
.

For k = j < n, it already follows from the previous section
that

aj,n(x) = EjCj+1ϕ
(j+1)
n\(j+1)(x).

While for k = n we have the following lemma.

Lemma 5.1. For k = n, the coefficient ak,n(x) is given by

an,n(x) =

{
(1− x/αn+1)/αn, n = j
Zn(x)
Zj∗(x) (1− x/αj+1)/αn, n > j

. (21)

In the special case in which αj ∈ R0, we may rewrite (21) as

an,n(x) =
Zn(x)
Zj(x)

(1− x/αj+1)/αn, n ≥ j.

Proof. The expression for aj,j(x) is easily verified (see also
the last step in the proof of Lemma 4.1). So, it remains to
prove the case in which n > j. We then have that

an,n(x) = lim
t→αn

χ
(j)
n,x(t)

ϕ
(j)
n\j(t)

= (1− x/αj+1) lim
t→αn


1− x/αj

t− x
−

(1− t/αj)ϕ
(j)
n\j(x)

(t− x)ϕ(j)
n\j(t)




= (1−x/αj+1)
[
1− x/αj

αn − x

]
=

Zn(x)
Zj∗(x)

(1−x/αj+1)/αn.

In the remainder we will make the following assumptions:

(A1) αj ∈ R0, j ≥ 0;
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(A2) A(n−2)\j ⊂ R0 whenever n > j + 2.

Finally, note that ORFs are fixed up to a unimodular constant.
Thus, without loss of generality we may as well assume that

(A3) Ek ∈ R0 whenever αk−1 ∈ R0.

We are now able to prove our second main result.

Theorem 5.2. Let χ
(j)
n,x, with 0 ≤ j ≤ n, be defined by (20).

Under the assumptions (A1)–(A3) it then holds that

χ(j)
n,x(t) = Ej+1

n−1∑

k=j

P
(j+1)
k+1 (x)ϕ(k+1)

n\(k+1)(x)ϕ(j)
k\j(t)

+
Zn(x)
Zj(x)

(
1− x/αj+1

αn

)
ϕ

(j)
n\j(t), (22)

where P
(j+1)
k+1 is defined as before in (13). And hence,

ϕ
(k+1)
n\(k+1)(x) =

1

Ej+1P
(j+1)
k+1 (x)

M (j)
{

χ(j)
n,xϕ

(j)
(k\j)∗

}
,

j ≤ k < n.

Proof. The equality in (22) clearly holds for n ∈ {j, j + 1}.
Thus, suppose the equality holds for n− 2 and n− 1, and let
(see also the proof of Theorem 4.2)

hn(t) = En

[
1 +

Fn

Zn−1(αn)

]
ϕ

(j)
(n−1)\j(t)

− Cn

Zn−2(αn)
ϕ

(j)
(n−2)\j(t)

and

rn(t) = Zn(t)hn(t) = ϕ
(j)
n\j(t)

− EnFnϕ
(j)
(n−1)\j(t) + Cnϕ

(j)
(n−2)\j(t).

By induction, we then find for n ≥ j + 2 that

χ(j)
n,x(t) = ϕ

(n−1)
n\(n−1)(x)χn−1,x(t)−Cn

Zn(x)
Zn−2(x)

χn−2,x(t)

+ (1− x/αj+1)
Zn(x)
Zj(x)

hn(t) +
(

1− x/αj+1

αn

)
Zn(x)
Zj(x)

rn(t)

= Ej+1

n−2∑

k=j

P
(j+1)
k+1 (x)ϕ(k+1)

n\(k+1)(x)ϕ(j)
k\j(t)

+ cn−2(x)ϕ(j)
(n−2)\j(t) + cn−1(x)ϕ(j)

(n−1)\j(t)

+
Zn(x)
Zj(x)

(
1− x/αj+1

αn

)
ϕ

(j)
n\j(t)

where

cn−2(x) = Cn
Zn(x)
Zj(x)

(1− x/αj+1)×
(

1
αn

− 1
αn−2

− 1
Zn−2(αn)

)
≡ 0

and

cn−1(x) = En(1− x/αj+1)
Zn(x)
Zj(x)

×
{[

1 +
Zn−1(x)

αn−1

]
+ Fn

[
1

αn−1
+

1
Zn−1(αn)

− 1
αn

]}

= En
Zn(x)Zn−1(x)
Zj+1(x)Zj(x)

= Ej+1P
(j+1)
n (x)ϕ(n)

n\n(x).

Finally, as a consequence of the previous theorem, we have
the following corollary.

Corollary 5.3. Let χ
(j)
n,x, with 0 ≤ j ≤ n, be defined by (20).

Under the assumptions (A1)–(A3) it then holds that

(1− x/αj)(1− x/αj+1)
d

dx

[
ϕ

(j)
n\j(x)

]

= Ej+1

n−1∑

k=j

P
(j+1)
k+1 (x)ϕ(k+1)

n\(k+1)(x)ϕ(j)
k\j(x)

+
1

Zj(αn)

[
Zn(x)

Zj+1(x)

]
ϕ

(j)
n\j(x),

where P
(j+1)
k+1 is defined as before in (13).

Proof. From Theorem 5.2 it follows that

χ(j)
n,x(x) = Ej+1

n−1∑

k=j

P
(j+1)
k+1 (x)ϕ(k+1)

n\(k+1)(x)ϕ(j)
k\j(x)

+
Zn(x)
Zj(x)

(
1− x/αj+1

αn

)
ϕ

(j)
n\j(x).

On the other hand we have that

χ(j)
n,x(x) = (1− x/αj+1)(1− x/αj)2 ×

lim
t→x




ϕ
(j)
n\j

(t)

1−t/αj
− ϕ

(j)
n\j

(x)

1−x/αj

t− x




= (1− x/αj+1)(1− x/αj)2
d

dx


 ϕ

(j)
n\j(x)

1− x/αj




= (1− x/αj+1)(1− x/αj)
d

dx

[
ϕ

(j)
n\j(x)

]

+
(

1− x/αj+1

αj

)
ϕ

(j)
n\j(x).

Consequently,

(1− x/αj)(1− x/αj+1)
d

dx

[
ϕ

(j)
n\j(x)

]

= Ej+1

n−1∑

k=j

P
(j+1)
k+1 (x)ϕ(k+1)

n\(k+1)(x)ϕ(j)
k\j(x)

+ (1− x/αj+1)
[
Zn(x)
Zj(x)

· 1
αn

− 1
αj

]
ϕ

(j)
n\j(x).
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Finally, note that

Zn(x)
Zj(x)

· 1
αn

− 1
αj

=
1

Zj(αn)(1− x/αn)
,

which ends the proof.

6 Conclusion

In this paper, we have given a relation between associated ra-
tional functions (ARFs) of order j and k ≥ j + 1 in terms of
rational functions of the second kind, assuming the ARFs of
order j form an orthonormal system with respect to an Her-
mitian positive-definite inner product. Further, we have given
a relation between ARFs of different order that holds in gen-
eral; i.e. the relation holds independently of whether the ARFs
involved form an orthonormal system with respect to an Her-
mitian positive-definite inner product. If all the poles are at
infinity, we again obtain the polynomial case.

The results in this paper have been derived in the more gen-
eral framework of the approximation of integrals on the inter-
val [−1, 1]; more specific, to characterize rational quadrature
formulas with positive weights and to derive asymptotic for-
mulas for the weights (like has been done for the polynomial
case in [6, 7]). At this moment of writing, however, this inves-
tigation is still in an early phase.
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