
 
 

 

  
Abstract—We look at the problem of real-time tumor 

tracking and motion compensation in radiotherapy techniques 
from a pure feedback-control point of view and try to 
understand it using simple mechanical models of the treatment 
couch and breathing patterns. Since we want to control a 
robotic couch based on the data collected in real-time, we 
propose the use of an acceleration sensor to develop a feedback 
control system to correct for the random movements of the 
tumor. An acceleration sensor offers a much richer set of data 
and in situations of rapid change in the breathing pattern, an 
acceleration sensor can provide a quick measurement and 
prediction of the trend. Our simplified models and the 
prototype show stable response under normal conditions.  
 
 

Index Terms— Acceleration sensor, automatic couch, cancer, 
engineering design, feedback control, innovation, mathematical 
modeling. 
 
 

I. INTRODUCTION 
According to the American Cancer Society [1], Cancer is 

the second most common cause of death in US (after heart 
attack) with over one million people getting cancer each year. 
Out of all types, lung Cancer is the most frequent form of 
Cancer. Hence developing technologies for the accurate 
treatment of lung cancer is of paramount importance for 
health sciences. Cancer develops when cells in a part of the 
body begin to grow out of control. The root cause of this is a 
defect in the gene structure of the cell [2], [3]. When that 
happens, generally a tumor is formed.  
 
A tumor can be of two types, benign or malignant. Benign 
tumors can generally be removed and do not spread to other 
parts of the body. On the other hand, malignant tumors grow 
rapidly and may travel to the other parts of the body via blood 
circulation and hence must be cured early. The process of 
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cancer spreading is called metastasis. Depending upon the 
tumor location and extent, a surgical removal, chemotherapy, 
or a radiation therapy may be recommended for treatment [4]. 
Various other methods are available for this purpose too 
including direct surgery and minimally-invasive surgery. A 
combination of these has also been used.  We are currently 
interested in variants of radiotherapy [5]. 
 
The plan of the paper is as follows. In section II we provide a 
literature review with a focus on works that follow a similar 
approach. In section III we discuss the details of the problem 
of tumor localization and our approach to it. In sections IV 
and V we discuss the mathematical models of the lung-tumor 
system and breathing. The next, section VI details our 
experimental setup. We conclude with some results and 
comment on future directions in section VII. 

 

II. LITERATURE REVIEW 
Different groups have tried various approaches to follow 

the tumor movement, using a mixture of experimental 
measurements and some sort of mathematical modeling [6], 
[7]. The main problems in this process are: 
 

a. The lung tumor itself is not visible from outside 
hence direct image processing methodologies are 
not effective.  

b. The scanning methodologies (like CT scan) put 
restrictions on the number of times they can be 
applied to the same patient in the same session due 
to the use of radiations.  

c. A surface monitoring of the chest provides only an 
‘estimate’ of the tumor position 

d. Mathematical / Statistical models of the human body 
are approximations and generally require extensive 
computations. 

e. Even if all the above problems can be solved, we 
still need extremely fast electronics to cope with the 
actual control of treatment couch which has its own 
dynamics. 

f. We also have take into account inherent latencies in 
the mechanical and electrical systems (drives, servo 
systems, MCU clock speeds, etc.) 

 
Hence a lot of effort has gone into solving the various aspects 
of this problem. Suh et. al. [8] study the accuracy of 2D 
projecting imaging for tumor motion monitoring. Obviously 
in this projection we loose the information along the beam 
axis. Hence the movement along this axis cannot be resolved. 
Weiss et. al. [9] explore the temporospatial variations of 
tumor during respiration in lung cancer. Other methods using 
robotic arms to control the therapeutic beams have also been  
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Figure 1: A simplified model of a lung. The air flows in 
and out from the right hand side.   
 
investigated [10], [11]. These rely on infrared tracking and 
synchronized x-ray imaging to locate the tumor. Finite state 
models for respiratory motion analysis in image guided 
radiotherapy have been explored and provide a tool to 
quantify respiratory motion characteristics [12]. Low et. al. 
[13] have developed a mathematical model for the lung tumor 
movement based on five degrees of freedom, including the 
tidal volume rate of change. This variable plays an important 
role in the simple mathematical model we have presented in 
this paper. For the purpose of this paper we follow the 
approach taken by the D’Souza, et. al. [14], [15]. They 
suggest the use of a robotic treatment couch whose position 
can be adjusted using position markers on the chest. Sohn., 
et.al. [16] model the respiratory system using the Weibel’s 
morphometry [17] and show that the average velocity of 
exhaust is always greater than that of the inhale during tidal 
breathing, provided the intervals of inhale and exhale are 
identical. 
 
Another important reference is that of Nakao, et.al. [18] and 
their approach is quite similar to the current methodology, 
though at a much more sophisticated level. They propose 
methods for radiotherapy planning for dynamic 
tumor-tracking for lung tumors. Their mathematical model 
treats the lung as an elastic object and uses the Finite Element 
Method to study the deformation of the lung. The paper [19] 
develops a model and prediction of lung tumor motion for a 
new adaptive tumor tracking system in radiotherapy. 

III. DETAILS 
In order to solve this problem with the available resources 

we had to make various approximations and adjustments in 
our proposed design. We first discuss the “ideal” solution and 
then, one by one we’ll show how to approximate the problem 
to a more tractable level where simple microcontrollers can 
be used to control the system autonomously.  
 
Ideally, the couch should have (controllable) six degrees of 
freedom (three translations and three rotations which can be 
taken as the roll, yaw and pitch). The patient (and his tumor) 
can also have any of the previously mentioned movements. 
Part of these movements (the breathing cycle) can be 
approximated as a sinusoidal movement for a small period of 
time t. After that time, either the breathing pattern breaks due 
to normal human behavior or due any other unexpected 
circumstance (sudden jerk in the body, reflex action, 
vibrations, etc). Hence a six degree of freedom system (the  

 
Figure 2: A rectangular model of the lung tumor system 
 
patient) has to be compensated by another six degree of 
freedom robotic couch. If are the unit vectors of the 
unperturbed system are i, j,k and the unit vectors of the 

rotated system are i', j',k' ; and , ,x y zl l l are the translations 

in the three coordinate axis, then the 4x4 representation of the 
transformation equation can be written as: 

0 0 0 1

x

y

z

l
l
l

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

i.i' j.i' k.i'
i.j' j.j' k.j'
i.k' j.k' k.k'

 

(Each of the dot products written above can also be written as 
sine or cosine of the angle between the two axes. We prefer to 
leave them in the above form for simplicity). However, if we 
look at the problem closely, some of the degrees of freedom 
are really not necessary and one can look for approximations. 
First, the translational movement along z-axis (perpendicular 
to the base frame, or in the vertical direction of the room) can 
be eliminated as the beam energy will remain more or less the 
same even if the height changes. Hence we can eliminate one 
degree. Also note that the beam is circularly symmetric and 
hence rotation along z-axis is also unnecessary.  
 
We are therefore left with 4-degrees of freedom. Out of these, 
the two rotations along x- and y-axis may also be ignored as a 
first approximation as that would mean the beam falling at an 
angle on the tumor. Part of this can be compensated for by 
movements along x and/ or y-axis as the ultimate objective is 
to keep the tumor directly under the beam (the beam must be 
switched off when it is off tumor). Although these two 
dimensions will be important at a more advanced level due to 
the non-spherical nature of the tumor where the bottom may 
need different treatment, we ignore them for now. Hence we 
are finally left with only two translations along x- and y-axis 
which need to be controlled and the transformation matrix 
becomes: 

0 0 0
0 0 0
0 0 0 0
0 0 0 1

x

y

l
l

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

For simplicity, we choose to model only one rotation along 
z-axis in this project. Hence the transformation matrix 
relevant to our work is: 
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cos sin 0 0
sin cos 0 0
0 0 1 0
0 0 0 1

γ γ
γ γ

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

, 

where γ  is the angle of rotation along the z-axis. We take 
this axis to be along the center of the couch connected to the 
stepper motor in the prototype, Fig. 7.  
 
The second part of the project is simulating the breathing of a 
patient. For that we have developed a small doll fitted with a 
servo mechanism which is under the control of a PICAXE 
[20] microcontroller and provides various movement cycles 
not known to the control system and hence are completely 
random from the control point of view.  
 
The control system used in this project requires an 
accelerometer connected to the stepper motor via a feedback 
control loop incorporating a Basic Stamp micro controller 
[21]. The details are discussed in section 5.  

IV. MATHEMATICAL MODELING  
All control systems have inherent latencies due to motor 

inductance, circuit delays, etc. Hence we need a 
mathematical model to guide the control system in 
intermediate points where no control signal is present. In this 
section we present a few simplistic models of the lung-tumor 
system, each with its advantages and disadvantages. These 
allow us to predict the next position of the lung given the 
current position, the rate of the air flowing in, and the time 
interval.  
 

A. Model I 
We assume that the lung is a triangular shaped object with 

an inclination angle of θ , as shown in Fig. 1. To make it 
three dimensional, we add the z-axis where there will be no 
changes and hence 0z

•

= . The length of the inclined side is l  
 

Now the derivatives of the x and y coordinates can be written 
as: 

cos ,  sin ,   (constant)x l y l z cθ θ= = =  

sin ,  cos ,  0x l y l zθ θ θ θ= − = =
i i i i i

                (1) 
To estimate the time derivative of the angle, we note that the 
air flowing into the lung increases the volume (area) of the 
lung by increasing the angle. First we write the volume as: 

21 sin 2
4LV l c θ=  

Where l  is the length of the inclined distance to the point 
( , , )x y z  on the triangle and c  is the dimension along the 

axis perpendicular to the page. The variable l  would be 
difficult to measure in a real CT Scan but we prefer to use it 
as in our prototype system we can measure it. The subscript L 
for the volume V has been used to identify the lung volume. 
Calculating the derivative and inverting the equation gives: 

2

2sec2
LV

l c
θθ =

i i
 

And the second derivative can be written as 

 
Figure 3: A closed loop control system showing the servo 
motor which controls the couch. The feed back signal 
from the couch (generated by the acceleration sensor) is 
used to correct the couch position using some signal 
processing and control algorithms.  

 

2

2sec2 2tan 2 L LV V
l c

θθ θ θ⎡ ⎤= +⎢ ⎥⎣ ⎦

ii i i ii
               (2) 

Hence we can write the derivatives of ,x y  in equation (1) as 

2sin 2cos,  ,  0
cos2 cos2L Lx V y V z

l l
θ θ
θ θ

= − = =
i i i i i

,    (3) 

Thus if we know the current values of ,i ix y  and the time 
rate of change of volume, we can find the next values after a 
time tΔ as follows: 

2sin
cos2

L
f i

dVx x t
l dt

θ
θ

= − Δ  

2cos
cos2

L
f i

dVy y t
l dt

θ
θ

= + Δ  

f iz z=                                               (4)  

The second derivate gives us the following relations for the 
acceleration: 

2

cos sin ,x l lθ θ θ θ= − −
ii i ii

 
2

sin cosy l lθ θ θ θ= − +
ii i ii

                    (5) 
 
Putting values of the first and second derivative of θ  in the 
above, from equation (2), we can calculate the acceleration.  
 
Another way to calculate the acceleration would be by using 
the balance of forces along the perpendicular and horizontal 
axis: 

sin

cos

m x pA

m y pA mg

θ

θ

=

= −

ii

ii
                               (6) 

 
Where m and A are the mass and area of the tumor, 
respectively.  
 

Or, simplifying for acceleration and putting the values of θ
i
 

we get: 

2

2 sin
cos 2 L

pAx V
ml

θ
θ

=
ii i

 

2

2 cos
cos 2 L

pAy V g
ml

θ
θ

= −
ii i

                   (7) 

In this case however, our calculation depends on an accurate 
measurement of the tumor mass, which is a difficult task.  
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Figure 4: The Circuit Diagram used to implement the 
feedback control loop. It uses a BS2 chip (extreme left), a 
L297D H-bridge (center), a stepper motor (extreme 
right) and a MEMSIC sensor (center, below the L297D). 

 

A note on singularities  
Notice that the equations (3) become singular when 45oθ = . 

The origin of this singularity is physical. As we approach this 
value, the area of the triangle stops increasing and beyond 
this angle it starts decreasing. Hence exactly at this point the 
time rate of change of the volume of air going in becomes 
zero. Hence our model works only in the range: 0 45oθ< < . 
Within this range the air can flow in or out.   
 
Another Method: 
 
The above equations (7) assume we can measure the time rate 
of change of air flowing into the lung. However, we can also 
measure the pressure difference between the air inside and 
outside to estimate the time derivative of volume using the 
continuity equation: 

dV Av
dt

=                                         (8) 

where A  is the area of the tube and v  is the air flow 
velocity. Using Bernoulli’s equation: 

2 2
1 1 1 2 2 2

1 1
2 2

p gy v p gy vρ ρ ρ ρ+ + = + +  

Where p is the pressure, ρ the density, y the vertical 
height, and g the acceleration due to gravity (the subscript 1 
indicates the point at which air is entering the lung; 2 show 
the point inside the lung, just below the tumor). Hence 

2
2 1 1

1
2

p p vρ− =  

 
Thus we can write equation (8) as 

 
( )2 12 p pdV A

dt ρ
−

=                            (9) 

The above equation is useful only if we can measure the 
inside and outside pressures accurately.  

 

 
Figure 5: The doll with an artificial “tumor” (a stepper 
motor, shown near the head of the doll) which is under 
the control of a PICAXE microcontroller (installed on 
the proto board). 

 

B. Model II 
Here we develop another model to measure the acceleration 

of the tumor. A rapid change in velocity means the system is 
either accelerating or decelerating. Since we are dealing with 
a periodic system, this is a signal that the tumor is about to 
start its reverse trajectory – time to reduce the motor speed. 
Hence we focus on measuring the acceleration with the help 
of the volume of air flowing in. We assume a rectangular 
lung with varying height (along y axis), as shown in Fig. 2. 
We also assume that the tumor is on the top and moves up due 
to the pressure of air flowing in, whereas the “spring” force 
applied by the lung is forcing it to return to its original 
position. The system is shown in figure below. The force 
applied by the air flowing in is given by the product of the 
pressure and the transverse area of the lung.  
 
In this case, if L  is the width of the lung along x-axis and c is 
the depth along z-axis, we can write the volume as: 

1dy dV
dt Lc dt

⎛ ⎞= ⎜ ⎟
⎝ ⎠

                              (10) 

All the other variables remain constant. A balance of forces 
along y-axis yields: 

yma pA ky= −  

Where k  is the spring constant of the lung. We assume that 
the weight plays no role in this case as the tumor and lung are 
light-weight spongy objects. Now we have to relate the 
pressure with the volume of air flowing in. We use, once 
again, the Bernoulli’s equation and note that the velocity of 
air flowing in is given by: 

1
1

1 dVv
A dt

=  

The velocity on the top of the lung (just below the tumor) can 
be approximated as zero. Also, the height of the entrance 
point (labeled 1) can be taken as origin and hence 2y y= . 
Thus we get 

2
2
1

1

1 1 1
2 2

dVp v gy gy
A dt

ρ ρ ρ ρ
⎛ ⎞

= − = −⎜ ⎟
⎝ ⎠

         (11) 

Where p is the gauge pressure at point 2.  
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Figure 6: Typical chest acceleration measurement, in 
units of (1/100)g (vertical axis), over a period of 55 
seconds (horizontal axis). 
 
So finally, the acceleration is related to the change of volume 
as: 

( )
2

1

1
2y
A dVa A g k y
mA dt m

ρ ρ⎛ ⎞= − +⎜ ⎟
⎝ ⎠

          (12) 

 

V. MODELS OF BREATHING  
As pointed out earlier, we need a mathematical model of the 

breathing too. We discuss three simple models.  
 

A. Model I: 
 
The simplest thing to do is to use a cosine form for the rate of 
change of volume of air, as follows:  

cos( )LdV t
dt

α ω φ= +                      (13) 

 
This model obviously is predictive in nature. However, the 
idea is to keep this behavior a secret for the control 
electronics and let it follow the tumor using a feedback 
control loop. 
 

B. Model II: 
In this case we assume a constant rate of change which 

changes its sign with a certain frequency. We can use a 
simple structure to model this behavior:  

 
cos( )
cos( )

LdV t
dt t

ω φα
ω φ

+
=

+
                         (14) 

C. Model III: 
Finally we consider a more realistic model based on inhale, 

exhale, and end of exhale cycle. The end of exhale is faster 
than sine:  

 
2

2

sin ( ) 0 ( ) 3 / 4
sin ( ) 3 / 4 ( ) 2

L
t

t tdV
dt t e tβ

α ω φ ω φ π
α ω φ π ω φ π−

⎧ + < + <
= ⎨

+ < + <⎩

 

    (15) 

VI. EXPERIMENTAL SETUP 
 

   
Figure 7: The “tumor” (mounted on a proto board) 
placed in front of the couch (the plastic sheet assembly). 

 
To test some of the models developed, we have made a 

prototype system with similar parameters as the models. The 
lung-tumor system has been made as shown in Fig. 5. We use 
feedback control [22] shown in Fig. 3 as a block diagram.  

 
We use the Parallax Memsic 2125 Dual Axis Accelerometer 
module [21] to measure the acceleration of the tumor. Its 
structure is relatively simple. It has a pocket of hot air in the 
middle and four temperature sensors around it. Depending 
upon the tilt or acceleration of the accelerometer, the hot gas 
will collect close to one (or may be two) temperature sensors. 
The difference in the measurements from the four sensors 
allows us to measure the acceleration. The PULSIN 
command used by the Basic Stamp allows us to measure the 
width of the pulse generated by x or y tilt. This width is 
proportional to the magnitude of acceleration. Two 
successive measurements allow us to see if the system is 
accelerating in one direction or the other. The values of these 
measurements range between 1875-3125, where a flat 
accelerometer reads a value of around 2500. This gives a 
range of ±1250 which has to be handled by the control 
algorithm. Let ( ) and ( 1)x n x n − be the measurements at 
time and 1n n − respectively. We define: 

( ) ( ) ( 1)y n x n x n= − − .  Once these measurements have 
been made, we apply a variant of differential gap control 
algorithm which can be symbolically written as:  
 
IF ( ( ) 0)y n >   
 THEN IF ( ( ) 15)y n ≤  THEN  ... 

 ELSE IF ( ( ) 15)y n >  AND ( ( ) 40)y n ≤  THEN... 

 ELSE IF ( ( ) 40)y n >  THEN... 
ENDIF 
 
IF ( ( ) 0)y n ≤   
 THEN IF ( ( ) 15)y n ≥ −  THEN  ... 

 ELSE IF ( ( ) 15)y n < −  AND ( ( ) 40)y n ≥ −  THEN... 

 ELSE IF ( ( ) 40)y n < −  THEN... 
ENDIF 
 
The three dots in the above code are sets of instructions to 
move the stepper motor a certain number of steps clock wise 
or anti clock wise, depending upon the value of ( )y n . An 
implementation of the control algorithm is shown in Fig. 4. 
This system could be made more sophisticated by dividing 
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the interval into further smaller parts and by increasing the 
data  

 
Figure 8: Details of the couch control mechanics.  A ‘half 
gear’ connected to the transparent plastic sheet (on the 
top) has a lower gear connected to the stepper motor. 
 
collection rate. However for the purpose of this project, a 
“proof-of-concept” solution was deemed sufficient.  
 
The control system tries to counter the effect of tumor 
movements simulated in our project using a PICAXE 
controlled stepper motor with an attached wooden strip [23]. 
The movements of this strip are “random” in the sense that 
the corresponding software changes the cycle after every few 
seconds and this change is not visible to the control circuitry. 
This system is shown in Fig. 5 with the stepper motor placed 
outside. The chest of the doll was later cut to make the tumor 
visible and to make estimates of the quality of the control 
system.  
 
The measurement of acceleration was a crucial part of this 
project and we made measurements on various volunteers 
(both male and female) and a characteristic measurement is 
shown in Fig. 6. We are currently collecting more data from 
volunteers over longer periods of time. A detailed Fourier 
analysis of the frequency spectrum and its significance in real 
clinical measurements will appear elsewhere [24].  

 
The final completed system is shown in Fig. 7 with all the 
control electronics placed below the couch. The white 
proto-board in front of the couch has the accelerometer 
installed on it and measures the acceleration of the tumor. 
Fig. 8 shows the details of the mechanical control mechanism 
with gears 

VII. RESULTS AND CONCLUSIONS  
A simulation of the mathematical model of the lung-tumor 

system together with a breathing cycle has been shown to 
model the behavior of our prototype pretty well. However the 
movement frequency of the tumor was much higher than the 
capability of the control circuitry, keeping in view the meager 
resources available for the project.  
 
We have shown that a real-time tracking of a moving tumor is 
possible using acceleration sensors placed on the chest. 
Keeping in view the timidity of the electronics involved, the 
results are quite promising. Our preliminary results show that 
a better system, incorporating more degrees of freedom may 
be developed. The final system will have applications in the 

health sector provided we succeed in performing clinical 
trials. 
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