
 
 

 

  
 Abstract— A third order nonlinear differential equation 

modeling a more critically damped system is considered. A new 
perturbation technique based on the Krylov-Bogoliubov- 
Mitropolskii (KBM) method is developed for obtaining the 
transient response in the presence of different damping forces 
as well as for different sets initial conditions. For large 
eigenvalues, the technique presented in this article gives better 
results than the technique presented by Shamsul. 

 
Index Terms— Perturbation, Asymptotic Solution, More 

Critically Damped Systems.  
 

I. INTRODUCTION 
 The Krylov-Bogoliubov-Mitropolskii (KBM) [2], [4] 
method is one of the most convenient and extensively used 
methods to study nonlinear differential systems with small 
nonlinearites. Originally, the method was developed by 
Krylov and Bogoliubov [2] for obtaining the periodic 
solutions of second order nonlinear differential systems. 
Later, the method was amplified and justified mathematically 
by Bogoliubov and Mitropolskii [4]. Popov [8] extended the 
KBM method to damped oscillatory nonlinear processes in 
which strong linear damping forces were active. Murty et 
al. [5] and Shamsul [14] extended the KBM method for 
solving over-damped nonlinear systems. Sattar [11] 
examined an asymptotic solution of second order critically 
damped nonlinear systems. 

 First, Osiniskii [7] investigated the solution of third order 
nonlinear systems by Bogoliubov's method imposing some 
restrictions on the parameters and thus the solution was 
over-simplified and ultimately gave incorrect results. 
Mulholland [6] removed the restrictions imposed by 
Osiniskii and found the desired solution. Bojadziev [3] and 
Sattar [12] respectively investigated solutions of the similar 
type of three dimensional damped and over-damped 
systems. Shamsul [16] examined a solution of third order 
over-damped nonlinear systems, when certain relations exist 
among the eigenvalues of the corresponding linear systems. 
 Shamsul and Sattar [13] have extended Bogoliubov’s 
asymptotic method for obtaining the solution of third order 
critically damped nonlinear systems. Shamsul [15] has 
also investigated solutions of third order critically 
damped nonlinear systems whose unequal eigenvalues 
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are in integral multiple and in the same article [15] Shamsul 
also extended the KBM method to solve more critically 
damped systems. 

In the present article, we have investigated a new 
asymptotic solution for third order more critically damped 
nonlinear systems. For numerically large eigenvalue, the 
results obtained by the solution, presented in this article 
are better than the results obtained by Shamsul [15] and 
show good coincidence with numerical results. 

II. THE METHOD 
 Let us consider a weakly nonlinear system governed by the 
third order ordinary differential equation 
  ),,(321 xxxfxkxkxkx &&&&&&&&& ε−=+++                  (1)  
where over-dots denote the derivatives of x  with respect to t; 

321 ,, kkk  are constants, ε  is the small parameter and f  
is the given nonlinear function. When 0=ε , the 
equation (1) becomes linear and since the system is more 
critically damped, suppose the eigenvalues of the 
corresponding linear equation are λλλ −−− ,, . 
Therefore, the solution of the linear equation is 

tetctbatx λ−++= )()0,( 2
000             (2) 

where 000 ,, cba are constants of integration. 
 When 0≠ε , following [17], an asymptotic solution of the 
system (1) is presented in the form 
     L++++= − ),,,()(),( 1

2 tcbauetctbatx t εε λ          (3) 
where each cba ,,  are functions of t  and satisfy the 
following first order differential equation 
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 Confining only a first few terms n,,3,2,1 L  in the series 
expansion of (3) and (4), we evaluate the functions 

iu and niCBA iii ,,3,2,1,,, L=  such that cba ,,  
appearing in (3) and (4) satisfy the given system (1) with an 
accuracy of order 1+nε . In order to determine these unknown 
functions, following the KBM method, Murty [5] assumed 
that the correction terms, niui ,,2,1, L=  must exclude the 
fundamental terms, since these are included in the series 
expansion (3) at order 0ε . Theoretically, the solution can 
obtain up to the accuracy of any order of approximation. 
However, owing to the rapidly growing algebraic 
complexity for the derivation of the formulae, the 
solution is in general confined to a lower order, usually 
the first (see also Murty [5] for details). 
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 Differentiating the equation (3), three times with respect 
to t, substituting the value of x and the derivatives xxx &&&&&& ,,  
in the original equation (1), utilizing the relations presented in 
(4) and finally equating the coefficients of ε , we obtain 
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where ( ) ),,(),,,( 000
0 xxxftcbaf &&&= and 

tetctbax λ−++= )( 2
0 .  

 In this article, we have expanded the functional )0(f  in the 
Taylor’s series of the form (see also [16], [18] for details) 
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 Substituting the value of )0(f  from (6) into (5), we obtain 

       

L−−

−−

−=⎟
⎠
⎞

⎜
⎝
⎛ +

∂
∂

+
⎪⎭

⎪
⎬
⎫

∂

∂
+

⎪⎩

⎪
⎨
⎧

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

+
∂

∂
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

∂
∂

+
∂

∂

∑

∑∑

∑

∞

=

−

∞

=

−
∞

=

−

∞

=

−

−

1
3

3

1
2

2

1
1

1
01

3

2
1

2
2

1
2

1
2

1
1

2
1

2

),,(

),,(),,(

),,(

663

i

ti

i

ti

i

ti

i

ti

t

ecbaFt

ecbaFtecbaFt

ecbaFu
tt

C
t

t
C

t
B

tC
t

B
t
A

e

λ

λλ

λ

λ

λ
   (7)  

 According to the KBM method (see also [5], [9], [10], [14], 
[18] for details) 1u  does not contain the fundamental terms 
(the solution (2) is called generating solution and its terms are 
called fundamental terms) of )0(f . Therefore, equation (7) 
can be separated for unknown functions 111 ,, CBA  and 1u  
(see also [1], [18] for details) in the following way: 

           ∑
∞

=

−− −=
∂

∂

1
22

1
2

),,(
i

tit ecbaF
t
C

e λλ                 (8) 

  ∑
∞

=

−− −=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

+
∂

∂

1
1

1
2

1
2

),,(6
i

tit ecbaF
t

C
t
B

e λλ         (9) 

  ∑
∞

=

−− −=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

∂
∂

+
∂

∂

1
01

1
2

1
2

),,(63
i

tit ecbaFC
t

B
t
A

e λλ    (10) 

and  L−−=⎟
⎠
⎞

⎜
⎝
⎛ +

∂
∂ ∑

∞

=

−

1
3

3
1

3

),,(
i

tiecbaFtu
t

λλ           (11) 

 Now, solving the equation (8), we obtain  
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 Putting the value of 1C  from (12) into equation (9) and 
solving, we obtain 
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 Substituting the value of 1B  and 1C  from (13) and (12) 
respectively into equation (10) and solving, we obtain 
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 Equation (11) is a third order non-homogeneous linear 
differential equation; so, we can solve the equation (11) for 

1u  by the well-known operator method. 
 Substituting the values of 11, BA  and 1C  into the 
equation (4) and then integrating, we obtain the values of 

ba,  and c . 
 Thus, the determination of the first order improved 
solution is completed. 

III. EXAMPLE 
As an example of the above method, we have considered a 

nonlinear mechanical system with internal friction and 
relaxation (see also [7], [13], [15]) 
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Here, x is the deformation, σ  is the stress, m is the mass of 
the system, γβα ,, and s  are constants. The terms with 
coefficients α  and s represent respectively the linear and 
nonlinear elasticity, the term with coefficient β  corresponds 
to the linear viscous damping and the term with coefficient γ  
reflects the linear relaxation. In the case of small internal 
friction, one can neglect the effect of relaxation. However, 
there exist phenomena in which the influence of relaxation is 
significant, such as, the plastic materials, and the study of 
such cases based on the assumption of lack of relaxation may 
severely limit their closeness to the reality. By a little effort, 
the above system (15) can be reducing to the third order 
nonlinear differential system as: 
    31111111 xmsxmxmxx −−−−−−− −=+++ γγαγβγ &&&&&&    (16)                   

It is clear that the equation (16) is a particular case of the 
nonlinear system (1). Therefore, comparing (1) and (16), we 
obtain    11

3
11
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1 ,, −−−−− === mkmkk αγβγγ , 
11 −−= msγε  and  3xf = . And we obtain 
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So, for equation (16), equations (8)-(11) respectively 
become 
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The solution of the equation (17) is 
  ( ) ,)4/3( 2222

1
tecaabPC λ−+−=      where 1−= λP       (21) 

Putting the value of 1C  from equation (21) into the 
equation (18) and solving, we obtain 
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Substituting the value of 1B and 1C  from the equations 
(22) and (21) respectively, into the equation (19) and solving, 
we obtain 
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And the solution of the equation (20) is 
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where 3
1 )8/1( Pr = ,    Prr )2/9(12 ×= ,   2

13 9 Prr ×= , 
3

14 )2/15( Prr ×= ,        3
5 )8/3( Pr = ,          Prr 656 ×= ,  

2
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,)2/15(510 Prr ×=     ,30 2
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514 Prr ×= ,9115 Prr ×=      

,45 2
116 Prr ×=   ,150 3

117 Prr ×=    ,)4/135( 4
118 Prr ×=    

5
119 )2/945( Prr ×= ,       6

120 315 Prr ×= . 
Substituting the values of 111 ,, CBA from the equation 

(23), (22) and (21) into (4), we obtain 
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The equations of (25) have no exact solution. But, since 
cba &&& ,,  are proportional to the small parameter ε , so they 

change slowly with time t. So, it is logical to replace cba ,,  
by their respective values obtained in the linear case (i.e. the 
values of cba ,,  obtained, when 0=ε ) in the right hand 
side of the equations of (25). This type of replacement was 
first made by Murty [5] to solve similar type of nonlinear 
equations. 

Therefore, solving the equations of (25), we obtain 
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Consequently, we obtain the first order improved solution 
of the equation (16) as: 

1
2 )(),( uetctbatx t εε λ +++= −                  (27)  

where  cba ,, a re  g iven  by the  equa t ion  (26)  and  1u  
given by (24). 

IV. DISCUSSION OF THE METHOD OF SHAMSUL [15] 
Shamsul [15] found an asymptotic solution of the 

nonlinear system (1) which is identical to the form, as we 
have considered in the equation (3) and the variational 
equations are also identical to the form as we have 
considered in the equation (4). 

We have extended the functional )0(f  in the Taylor’s 
series of the form which is given by the equation (6), but 
Shamsul [15] expanded the functional )0(f  in the Taylor’s 

series about 
c
bt −

= . i.e. in powers of )( tcb + . Therefore, he 

obtained 
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where nFFF ,.,, 10 L  do not contain the terms of the form 
ntttt ,,,, 32 L . 

Following the KBM [2], [4] method, Murty [5], Sattar 
[11], Shamsul and Sattar [13], Shamsul, in article [15] 
assumed that 1u  does not contain the terms with 0)( tcb +  

and 1)( tcb +  of ( )0f , since these are already included in the 

series expansion (3) at order 0ε . 
Therefore, putting the values of )0(f  from (28) 

into (5) and equating the coefficients of 10 , tt  and 

2, ≥rt r , he obtained 
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Solving the equations (29)-(32), he obtained the 
unknown functions 111 ,, CBA and .1u  Finally, 
substituting the values of 111 ,, CBA  in the equation (4) 
and integrating them, Shamsul [15] obtained the 
values of ba, and c . This completes the 
determination of the solution of the system (1). 

Therefore, for the example (16), Shamsul [15] 
obtained, teaF λ33

0
−= , teaF λ32

1
−= , teaF λ3

2
−=  and 

teF λ3
2

−= . 
Substituting the values of 0F  and 1F  into 

equations (29)-(31) and then solving, he obtained 
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Again putting the values of 2F  and 3F  into 
equation (32) and then solving, he obtained 
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Therefore, substituting the values of 11, BA  and 1C  into 
(4), he obtained 
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Solving equation (35), he obtained 
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Thus, Shamsul [15] obtained the first order improved 
solution of the more critically damped nonlinear system 
(16) as:  

 )()(),( 2
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where a, b, c are given by (36) and 1u  is given by (34). 

V. GENERAL DISCUSSION AND RESULTS 
General Discussion: Shamsul [15] expanded the 

functional )0(f  in powers of ( )tcb + . i.e. he expanded 

)0(f  at 
c
bt −

=  (see in discussion of Shamsul [15]). On 

the other hand, in this article, we have expanded the 

functional )0(f  in power of t . i. e. we have 

extended )0(f , at 0=t . Simply, one may claim that, our 
expansion equation (6) is a special case of the expansion 
equation (28) presented by Shamsul [15]. i.e. the 
expansion equation (6) can be obtained by putting 

0=b  in the expansion equation (28). But, this claim is 
not true, because, if one put 0=b  in the expansion 
equation (28), then it takes the form 

L+++= 22
210

)0( ),(),(),( tctaFtctaFtaFf , which is 
not at all identical to the expansion equation (6) as well as the 
solution (3) reduces to 

L+++= − ),,()(),( 1
2 tcauetcatx t εε λ , which is not the 

actual solution of the nonlinear system (1). Therefore, our 
expansion equation (6) is fully independent. As a result 
our variational equation (25) is different from the 
variational equation (35) of Shamsul [15] and our 
correction term 1u  given by (24) is different from 
Shamsul’s [15] correction term 1u  given by (34) (see in 
discussion of Shamsul [15]). Although the variational 
equation as well as correction term are different, but for 
different set of initial conditions as well as for different 
eigenvalues our solution gives desired results. 

Results: Based on the KBM method an asymptotic 
solution of third order more critically damped nonlinear 
systems has been found in this article. In order to test the 
accuracy of an approximate solution obtained by a 
certain perturbation method, we some times compare the 
approximate results to the numerical results (considered 
to be exact). With regard to such a comparison 
concerning the presented KBM method of this article, 
we refer the work of Murty [5]. 

F i r s t  o f  a l l ,  we  have computed ),( εtx  by (27) 
(designated by x ) in which cba ,,  are computed by (26) and 

1u  is computed by (24) together with the initial conditions 
,3.00 =a  ,3.00 =b  0.00 =c  for ,0.1=λ  ,0.2=λ  

0.3=λ  and 0.4=λ , and the results are presented in the 
second column of the Table-1, Table-2, Table-3 and 
Table-4 respectively. Then ),( εtx  has again been 
calculated by (37) (designated by ]15[ASx ) in which cba ,,  

are computed by (36) and 1u  is computed by (34) together 
with the same set of initial condition as well as with same 
eigenvalues and the results are presented in the fifth column 
of the Table-1, Table-2, Table-3 and Table-4. Column three 
and six show the corresponding numerical results calculated 
by the fourth order Runge-Kutta method. Corresponding 
percentage errors have also been calculated and are presented 
in the fourth and seventh column of the Table-1, Table-2, 
Table-3 and Table-4. The first column shows the various 
values of time t .   

 
 
 



 
 

 

Table-1: For ,3.00 =a ,3.00 =b ,0.00 =c  1.0=ε  and 0.1=λ . 
1 2 3 4 5 6 7 
t x  *x  Error% ]15[ASx  *

]15[ASx  Error% 

0.0 0.302531 0.302531 0.0000 0.305569 0.305569 0.0000 
0.5 0.271054 0.271560 0.1863 0.274089 0.274132 0.0157 
1.0 0.217856 0.218792 0.4278 0.220531 0.220556 0.0113 
1.5 0.164637 0.165825 0.7164 0.166868 0.166873 0.0030 
2.0 0.119568 0.120819 1.0354 0.121361 0.121352 -0.0074 
2.5 0.084458 0.085632 1.3709 0.085854 0.085838 -0.0186 
3.0 0.058448 0.059469 1.7168 0.059508 0.059490 -0.0303 
3.5 0.039818 0.040659 2.0684 0.040606 0.040588 -0.0443 
4.0 0.026791 0.027456 2.4221 0.027366 0.027351 -0.0548 

               x  is computed by (27) and ]15[ASx  is computed by (37); *x and *
]15[ASx  denote the corresponding numerical results. 

 

Table-2: For ,3.00 =a ,3.00 =b ,0.00 =c  1.0=ε  and 0.2=λ . 
1 2 3 4 5 6 7 
t x  *x  Error% ]15[ASx  *

]15[ASx  Error% 

0.0 0.300040 0.300040 0.0000 0.300134 0.300134 0.0000 
0.5 0.165417 0.165516 0.0598 0.165499 0.165506 0.0042 
1.0 0.081112 0.081214 0.1256 0.081168 0.081134 0.0419 
1.5 0.037291 0.037363 0.1927 0.037324 0.037284 -0.1073 
2.0 0.016459 0.016502 0.2606 0.016477 0.016446 -0.1885 
2.5 0.007063 0.007086 0.3246 0.007072 0.007053 -0.2694 
3.0 0.002969 0.002981 0.4025 0.002973 0.002963 -0.3375 
3.5 0.001228 0.001234 0.4862 0.001231 0.001225 -0.4898 
4.0 0.000502 0.000505 0.5941 0.000503 0.000500 -0.6000 

            x  is computed by (27) and ]15[ASx  is computed by (37); *x and *
]15[ASx  denote the corresponding numerical results.   [                      

Table-3: For  ,3.00 =a ,3.00 =b ,0.00 =c  1.0=ε  and 0.3=λ . 
1 2 3 4 5 6 7 
t x  *x  Error% ]15[ASx  *

]15[ASx  Error% 

0.0 0.300003 0.300003 0.00000 0.300016 0.300016 0.00000 
0.5 0.100390 0.100309 0.08075 0.100399 0.100298 0.10069 
1.0 0.029864 0.029785 0.26523 0.029869 0.029772 0.32580 
1.5 0.008329 0.008288 0.49469 0.008331 0.008281 0.60379 
2.0 0.002230 0.002214 0.72267 0.002231 0.002211 0.90456 
2.5 0.000580 0.000575 0.86956 0.000581 0.000574 1.21951 
3.5 0.000037 0.000037 0.00000 0.000037 0.000036 2.77777 
4.0 0.000009 0.000009 0.00000 0.000009 0.000009 0.00000 

                x  is computed by (27) and ]15[ASx  is computed by (37); *x and *
]15[ASx  denote the corresponding numerical results. 

 
Table-4: For  ,3.00 =a ,3.00 =b ,0.00 =c  1.0=ε  and 0.4=λ . 

1 2 3 4 5 6 7 
t x  *x  Error% ]15[ASx  *

]15[ASx  Error% 

0.0 0.300001 0.300001 0.0000 0.300004 0.300004 0.0000 
0.2 0.161751 0.161727 -0.0148 0.161754 0.161727 -0.0166 
0.4 0.084791 0.084761 -0.0353 0.084793 0.084757 -0.0427 
0.6 0.043541 0.043515 -0.0597 0.043543 0.043511 -0.0735 
0.8 0.022010 0.021990 -0.0909 0.022011 0.021987 -0.1091 
1.0 0.010988 0.010975 -0.1184 0.010989 0.010973 -0.1458 
1.2 0.005431 0.005423 -0.1475 0.005431 0.005421 -0.1844 
1.4 0.002662 0.002657 -0.1881 0.002662 0.002656 -0.2259 
1.6 0.001296 0.001293 -0.2302 0.001296 0.001292 -0.3096 
1.8 0.000627 0.000626 -0.1597 0.000627 0.000625 -0.3200 
2.0 0.000302 0.000301 -0.3322 0.000302 0.000301 -0.3322 

            x  is computed by (27) and ]15[ASx  is computed by (37); *x and *
]15[ASx  denote the corresponding numerical results. 

 
 
 
 



 
 

 

In Table-1, we see that, our percentage errors are greater 
than the percentage errors obtained by Shamsul [15], but 
from Table-2, Table-3 and Table-4, we see that our 
percentage errors are smaller than the percentage errors 
obtained by Shamsul [15]. i.e. if the eigenvalue increases 
numerically then our errors decrease and Shamsul’s [15] 
errors increase. 

We  aga in  have computed ),( εtx  by (27) (designated 
by x ) in which cba ,,  are computed by (26) and 1u  is 
computed by (24) together with the initial conditions 

,8.00 =a  ,7.00 =b  0.00 =c  for ,0.1=λ  ,0.3=λ  
0.4=λ and 0.5=λ , and the results are respectively 

presented in the second column of the Table-5, Table-6, 

Table-7 and Table-8. Then ),( εtx  has been calculated by 
(37) (designated by ]15[ASx ) in which cba ,,  are computed 

by (36) and 1u  is computed by (34) together with the same 
set of initial condition as well as with same eigenvalues and 
the results are presented in the fifth column of the Table-5, 
Table-6, Table-7 and Table-8. Column three and six show 
the corresponding numerical results calculated by the fourth 
order Runge-Kutta method. Corresponding percentage errors 
have also been calculated and are presented in the fourth and 
seventh column of the Table-5, Table-6, Table-7 and 
Table-8. The first column shows the various values of time 
t . 

 

Table-5: For ,8.00 =a ,7.00 =b ,0.00 =c  1.0=ε  and 0.1=λ . 
1 2 3 4 5 6 7 
t x  *x  Error% ]15[ASx  *

]15[ASx  Error% 

0.0 0.832156 0.832156 0.0000 0.876256 0.876256 0.0000 
0.2 0.759032 0.766521 0.9770 0.810497 0.811849 0.1665 
0.4 0.691176 0.701535 1.4766 0.742935 0.744364 0.1919 
0.6 0.625920 0.638124 1.9124 0.675279 0.676326 0.1548 
0.8 0.563060 0.577094 2.4318 0.609081 0.609642 0.0920 
1.0 0.503124 0.519090 3.0757 0.545578 0.545690 0.0205 
1.2 0.446730 0.464585 3.8432 0.485668 0.485416 -0.0519 
1.4 0.394357 0.413885 4.7182 0.429936 0.429412 -0.1220 
1.6 0.346296 0.367153 5.6870 0.378701 0.377990 -0.1881 
1.8 0.302650 0.324425 6.7118 0.332078 0.331249 -0.2502 
2.0 0.263376 0.285642 7.7950 0.290019 0.289129 -0.3078 

                  x  is computed by (27) and ]15[ASx  is computed by (37); *x and *
]15[ASx  denote the corresponding numerical results. 

Table-6: For ,8.00 =a ,7.00 =b ,0.00 =c  1.0=ε  and 0.3=λ . 
1 2 3 4 5 6 7 
t x  *x  Error% ]15[ASx  *

]15[ASx  Error% 

0.0 0.800044 0.800044 0.00000 0.800226 0.800226 0.00000 
0.5 0.256295 0.256253 0.01639 0.256426 0.256113 0.12221 
1.0 0.074559 0.074553 0.00804 0.074623 0.074362 0.35098 
1.5 0.020510 0.020512 0.00975 0.020535 0.020407 0.62723 
2.0 0.005440 0.005442 0.03675 0.005449 0.005399 0.92609 
2.5 0.001406 0.001407 0.07107 0.001409 0.001392 1.22126 
3.0 0.000357 0.000357 0.00000 0.000358 0.000352 1.70454 
3.5 0.000089 0.000089 0.00000 0.000089 0.000088 1.13636 
4.0 0.000022 0.000022 0.00000 0.000022 0.000022 0.00000 

              x  is computed by (27) and ]15[ASx  is computed by (37); *x and *
]15[ASx  denote the corresponding numerical results. 

Table-7: For ,8.00 =a ,7.00 =b ,0.00 =c  1.0=ε  and 0.4=λ . 
1 2 3 4 5 6 7 
t x  *x  Error% ]15[ASx  *

]15[ASx  Error% 

0.0 0.800008 0.800008 0.0000 0.800051 0.800051 0.0000 
0.2 0.422250 0.422202 -0.0113 0.422289 0.422203 -0.0204 
0.4 0.217961 0.217930 -0.0142 0.217991 0.217887 -0.0477 
0.6 0.110623 0.110611 -0.0109 0.110644 0.110556 -0.0796 
0.8 0.055407 0.055404 -0.0054 0.055420 0.055356 -0.1156 
1.0 0.027457 0.027458 0.0036 0.027465 0.027423 -0.1532 
1.2 0.013488 0.013490 0.0148 0.013493 0.013467 -0.1931 
1.4 0.006577 0.006579 0.0304 0.006580 0.006565 -0.2285 
1.6 0.003188 0.003189 0.0314 0.003189 0.003180 -0.2830 
1.8 0.001537 0.001538 0.0650 0.001537 0.001533 -0.2609 
2.0 0.000737 0.000738 0.1355 0.000738 0.000735 -0.4082 

                 x  is computed by (27) and ]15[ASx  is computed by (37); *x and *
]15[ASx  denote the corresponding numerical results. 

 



 
 

 

Table-8: For ,8.00 =a ,7.00 =b ,0.00 =c  1.0=ε  and 0.5=λ . 
1 2 3 4 5 6 7 
t x  *x  Error% ]15[ASx  *

]15[ASx  Error% 

0.0 0.800002 0.800002 0.0000 0.800016 0.800016 0.0000 
0.2 0.345759 0.345598 -0.0466 0.345771 0.345593 -0.0515 
0.4 0.146135 0.145994 -0.0966 0.146143 0.145976 -0.1144 
0.6 0.060727 0.060637 -0.1484 0.060732 0.060619 -0.1864 
0.8 0.024903 0.024853 -0.2012 0.024906 0.024841 -0.2617 
1.0 0.010104 0.010078 -0.2580 0.010105 0.010071 -0.3376 
1.2 0.004064 0.004051 -0.3209 0.004065 0.004047 -0.4448 
1.4 0.001623 0.001617 -0.3711 0.001623 0.001615 -0.4954 
1.6 0.000644 0.000641 -0.4680 0.000644 0.000640 -0.6250 
1.8 0.000254 0.000253 -0.3953 0.000254 0.000252 -0.7937 
2.0 0.000100 0.000099 -1.0101 0.000100 0.000099 -1.0101 

              x  is computed by (27) and ]15[ASx  is computed by (37); *x and *
]15[ASx  denote the corresponding numerical results.

In Table-5, we observe that, our percentage errors are 
greater than the percentage errors obtained by Shamsul [15], 
but from Table-6, Table-7, and Table-8; we notice that our 
percentage errors are smaller than the percentage errors 
obtained by Shamsul [15]. i. e. if the eigenvalue increases 
numerically then our errors decrease and Shamsul’s [15] 
errors increase. 

Therefore, in the Tables above, it is seen that, if the 
eigenvalue is small, then Shamsul’s [15] technique gives 
better results. On the other hand, if the numerical size of the 
eigenvalue is large, our technique gives better results. 

If 321 9 kkk = , the system (1) undergoes more critically 
damped and the relation between the eigenvalue and the 
constants is 321

6 )9/1( kkk=λ . Thus for the example (16), 

we have [ ] 1326 9
−

= γβαλ m . From this relation, we see that, 
the numerical value of the eigenvalue is large if the mass m  
and the coefficient of relaxation γ  are small. Conversely if 
the mass m  and the coefficient of relaxation γ  are large 
then the numerical value of the eigenvalue is small. Inasmuch 
as, our techniques give better results for large eigenvalue, 
therefore, our technique is suitable for light (not heavy) mass 
systems. 

VI.   CONCLUSION 
The KBM method has been extended in this article for 

obtaining the solution of third order more critically damped 
nonlinear systems. For large eigenvalue, the solution 
obtained in this article gives more accurate results than the 
results obtained by the solution of Shamsul [15]. Since, for 
light mass m  and for small coefficient of relaxation γ , the 
eigenvalue become large, therefore, for small coefficient of 
relaxation and for light mass systems our technique is more 
efficient than the technique of Shamsul [15]. 
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