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A New Asymptotic Solution for Third Order
More Critically Damped Nonlinear Systems

Mo. Rokibul Islam and M. Ali Akbar

Abstract— A third order nonlinear differential equation
modeling a more critically damped system is considered. A new
perturbation technique based on the Krylov-Bogoliubov-
Mitropolskii (KBM) method is developed for obtaining the
transient response in the presence of different damping forces
as well as for different sets initial conditions. For large
eigenvalues, the technique presented in this article gives better
results than the technique presented by Shamsul.

Index Terms— Perturbation, Asymptotic Solution, More
Critically Damped Systems.

I. INTRODUCTION

The Krylov-Bogoliubov-Mitropolskii (KBM) [2], [4]
method is one of the most convenient and extensively used
methods to study nonlinear differential systems with small
nonlinearites. Originally, the method was developed by
Krylov and Bogoliubov [2] for obtaining the periodic
solutions of second order nonlinear differential systems.
Later, the method was amplified and justified mathematically
by Bogoliubov and Mitropolskii [4]. Popov [8] extended the
KBM method to damped oscillatory nonlinear processes in
which strong linear damping forces were active. Murty et
al. [5] and Shamsul [14] extended the KBM method for
solving over-damped nonlinear systems. Sattar [11]
examined an asymptotic solution of second order critically
damped nonlinear systems.

First, Osiniskii [7] investigated the solution of third order
nonlinear systems by Bogoliubov's method imposing some
restrictions on the parameters and thus the solution was
over-simplified and ultimately gave incorrect results.
Mulholland [6] removed the restrictions imposed by
Osiniskii and found the desired solution. Bojadziev [3] and
Sattar [12] respectively investigated solutions of the similar
type of three dimensional damped and over-damped
systems. Shamsul [16] examined a solution of third order
over-damped nonlinear systems, when certain relations exist
among the eigenvalues of the corresponding linear systems.

Shamsul and Sattar [13] have extended Bogoliubov’s
asymptotic method for obtaining the solution of third order
critically damped nonlinear systems. Shamsul [15] has
also investigated solutions of third order critically
damped nonlinear systems whose unequal eigenvalues
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are in integral multiple and in the same article [15] Shamsul
also extended the KBM method to solve more critically
damped systems.

In the present article, we have investigated a new
asymptotic solution for third order more critically damped
nonlinear systems. For numerically large eigenvalue, the
results obtained by the solution, presented in this article
are better than the results obtained by Shamsul [15] and
show good coincidence with numerical results.

Il. THE METHOD

Let us consider a weakly nonlinear system governed by the

third order ordinary differential equation

X+ Kk X+ ko X+ kgx = —¢ (X, % X) (1)
where over-dots denote the derivatives of x with respect to t;
ki, ko, kg are constants, ¢ is the small parameter and f
is the given nonlinear function. When &£=0, the
equation (1) becomes linear and since the system is more
critically damped, suppose the eigenvalues of the
corresponding linear equation are -4,—4,—-1
Therefore, the solution of the linear equation is

X(t,0) = (g +by t+¢co t?) e )

where ay, by, ¢, are constants of integration.

When ¢ = 0, following [17], an asymptotic solution of the
system (1) is presented in the form

x(t,&) = (@a+bt+ct?)e ' + s u, (a,b,ct)+--- 3)
where each a,b,c are functions of t and satisfy the
following first order differential equation

at) =¢ A(a,b,ct)+.--
b(t) = ¢ B,(a,b,c,t) + - (4)
¢(t) =¢ Ci(a,b,c,t) +--

Confining only a first few terms 1,2,3,---,n in the series
expansion of (3) and (4), we evaluate the functions
uy and A,B;,C, i=123--,n such that a b, c
appearing in (3) and (4) satisfy the given system (1) with an
accuracy of order ™. In order to determine these unknown
functions, following the KBM method, Murty [5] assumed
that the correction terms, u;, i =1, 2,---,n must exclude the
fundamental terms, since these are included in the series
expansion (3) at order £°. Theoretically, the solution can
obtain up to the accuracy of any order of approximation.
However, owing to the rapidly growing algebraic
complexity for the derivation of the formulae, the

solution is in general confined to a lower order, usually
the first (see also Murty [5] for details).
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Differentiating the equation (3), three times with respect
to t, substituting the value of x and the derivatives x, X, X

in the original equation (1), utilizing the relations presented in
(4) and finally equating the coefficients of ¢, we obtain

2 2
o[ (308
3

where f 0

J(@a,b,c,t) = f(xy, %o, %) and
X = (a+bt+ct?)e”!.

In this article, we have expanded the functional f © inthe
Taylor’s series of the form (see also [16], [18] for details)

fO=>"F(abce' +t Y F(aboe'”

i=1 i=1

+tzz F,(ab,c)e* +t3z F;(a,b,c)e’*!
i=1 i=1

Substituting the value of f© from (6) into (5), we obtain

(G (T
ot? at? at

a’C o e y
+t28t—21}+(5+/1j ulz—leFo(a,b,c)e At

Y . = 0
~tY F(aboe’* -t?> F,(abc)e

i=1 i=1

—tsz Fy(a,b,c)e”*!
i=1
According to the KBM method (see also [5], [9], [10], [14],
[18] for details) u, does not contain the fundamental terms

(the solution (2) is called generating solution and its terms are
called fundamental terms) of (). Therefore, equation (7)
can be separated for unknown functions A, B;, C; and u;
(see also [1], [18] for details) in the following way:

(6)

et IG ——iF (abc)e’™ ®)
az & rT
[ 22 B , .
et F.(a,b,c)e* 9)
( e J Z 1(ab,c)
_itl © i
e “( at/:l +3§1+6C1J IZl:FO(a b,c)e*t (10)
0 _ 3% it
and (E+/1j u =-t ;Fs(a’b’(:)e (11)
Now, solving the equation (8), we obtain
=Y Fa(abo)e ™« (-1 4] (12)

i=1
Putting the value of C, from (12) into equation (9) and
solving, we obtain

(Advance online publication:

—{i R(ab,o)[i-14]?

i=1 (13)
+6 Y Fy(abo)[i -1 4]

S . -3}e(i1)m
i=1
Substituting the value of B, and C, from (13) and (12)
respectively into equation (10) and solving, we obtain

A= —{i F(ab.o[i-14]%+ 32 Fi(ab,c)x
i=1 i=1

(14)
[(i-DAf®+12 Z Fy(ab,c)[(i-1) ﬁ‘t}e—(i—u 2t
i=1

Equation (11) is a third order non-homogeneous linear
differential equation; so, we can solve the equation (11) for
u, by the well-known operator method.

Substituting the values of A,B;, and C,; into the
equation (4) and then integrating, we obtain the values of
a,band c.

Thus, the determination of the first order improved
solution is completed.

1. EXAMPLE

As an example of the above method, we have considered a
nonlinear mechanical system with internal friction and
relaxation (see also [7], [13], [15])

mX+oc=0
. 3 (15)
o+yo=axX+pfX+sx’, s<1

Here, xis the deformation, o is the stress, mis the mass of
the system, «, 8, y and S are constants. The terms with
coefficients « and s represent respectively the linear and
nonlinear elasticity, the term with coefficient g corresponds
to the linear viscous damping and the term with coefficient »
reflects the linear relaxation. In the case of small internal
friction, one can neglect the effect of relaxation. However,
there exist phenomena in which the influence of relaxation is
significant, such as, the plastic materials, and the study of
such cases based on the assumption of lack of relaxation may
severely limit their closeness to the reality. By a little effort,
the above system (15) can be reducing to the third order
nonlinear differential system as:

X+y 7%+ By m i+ ay Tmix=—sytm? x® (16)

It is clear that the equation (16) is a particular case of the
nonlinear system (1). Therefore, comparing (1) and (16), we
obtain  k; =yt ky = Bytm?, kg = ay tm

e=sy'm?tand f=x3. Andwe obtain
£0 - {a3 +t 3a2b+t2(3ab2 +3a2c)+ b3 + 6t3abc
+3t*b c? +3t*ca? +3t°bc? +tec3}e‘3“
So, for equation (16), equations (8)-(11) respectively
become

2

et (Zt—(;l:—(Sabz +3a’c )e‘“‘ (17)

e—;t[é’a Bl 6;1J _332pe 3t (18)
t?
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2
eﬂt[a ?1 +3681+6C1J=—a383/“ (19)
ot ot
and
P 3
—+1| :—(b?’t3 +6t>abc+3t*b ¢?
at (20)
+3t*ca®+3t°bc?+ t603)e’3“
The solution of the equation (17) is
C =-@/4P(ab? +a’c)e ™!, whereP= 471 (21)

Putting the value of C, from equation (21) into the
equation (18) and solving, we obtain

B, =—{9/4)P*(ab? + a% c)+ (3/4)P? ab| e 2*! (22)

Substituting the value of B, and C; from the equations

(22) and (21) respectively, into the equation (19) and solving,
we obtain

A ={ (9/4)P* (ab? + ac) - (9/8) P*alh

(23)
—(U4)Pad e 2!
And the solution of the equation (20) is
u :e‘g”“{(b3 +6 abc)(r1t3 +rt2 gty
+(b cz+ca2)(r5t4+r6t3+r7t2+r8t+r9) (24)

+bc? (rlo ot P it
+c3(r16 18, o4t 4 t3 4y t? +r21t+r22)
where r, =(1/8)P%, r,=rx(9/2)P, ry=rx9P?,
r,=rx(15/2)P%,  r;=(3/8)P%,
r, =rsx18P?, g =rsx30P3, 1y =rsx(45/2)P*,
Mo =fsx(15/2)P, 1y =rgx30P?, 1, =rsx75P%,
rs =rsx(225/2)P*, r, =r;x(315/4)P°, rjs =1, x9P,
e =N x45P?, 1, =1, x150P%, g =r, x(135/4) P*,
e = x(945/2)P®, 1y =1 x315P°,
Substituting the values of A, B;, C,; from the equation
(23), (22) and (21) into (4), we obtain
a=-¢ (9/4)P?(ab®+a’c) + (9/8) P%a’b
+(1/4) P2a3,¥,r2“
b=—¢ {(9 /4) P3(a b? +a® c)+ (3/4)P? azb} g Mt
C=-¢ (3/4)P2(ab2+azc)e’2“
The equations of (25) have no exact solution. But, since
a, b, ¢ are proportional to the small parameter &, so they
change slowly with time t. So, it is logical to replace a, b, ¢

by their respective values obtained in the linear case (i.e. the
values of a, b, c obtained, when £=0) in the right hand

side of the equations of (25). This type of replacement was
first made by Murty [5] to solve similar type of nonlinear
equations.

Therefore, solving the equations of (25), we obtain

a=ay+¢(L/16) P* 18P (a, b2 +ag ;)
+9PaZ by +2 ag}(e‘w —1)
b=by +£(3/8) P* BP(aght +adc, )
+aj b, }(e’z“ —1)
c=cy+£(3/8) P3(a0b§ +ag ¢, )(e‘z”“ —1)

rg =I5 x6P,

(25)

(26)

Consequently, we obtain the first order improved solution
of the equation (16) as:

X(t, &) =(a+bt+ct?)e 4+ ey, (27)
where a,b,care given by the equation (26) and u,;
given by (24).

IV. DISCUSSION OF THE METHOD OF SHAMSUL [15]

Shamsul [15] found an asymptotic solution of the
nonlinear system (1) which is identical to the form, as we
have considered in the equation (3) and the variational
equations are also identical to the form as we have
considered in the equation (4).

We have extended the functional @ in the Taylor’s
series of the form which is given by the equation (6), but
Shamsul [15] expanded the functional f© inthe Taylor’s

series about t = -b .i.e. in powers of (b+ct). Therefore, he
c

obtained
f O =F,(at)+ F (at)(b+ct)
+F,(a,t)(b+ct)® +---
where Fy, Fy,---,.F, do not contain the terms of the form
t, 2,3, -t
Following the KBM [2], [4] method, Murty [5], Sattar
[11], Shamsul and Sattar [13], Shamsul, in article [15]
assumed that u; does not contain the terms with (b+ct)°

(28)

and (b+ct)* of £ , since these are already included in the

series expansion (3) at order £°.
Therefore, putting the values of f© from (28)

into (5) and equating the coefficients of t° t' and
t",r > 2, he obtained

2
[gﬂasa;ucjp 29)
2
e-u[ztil + aactl]:_bpl (30)
it 0°C
e ?:—CF]_ (31)
P 3
and | —+A| u =—F,(b+ct)t® —-.. 32
ot 1 2

Solving the equations (29)-(32), he obtained the
unknown functions A,B;,C; and u;. Finally,
substituting the values of A, B;,C, in the equation (4)

and integrating them, Shamsul [15] obtained the
values of ab and c This completes the

determination of the solution of the system (1).
Therefore, for the example (16), Shamsul [15]
obtained, F, =a’e?*', F, =a%e "', F, =a e3*' and
F, =e.
Substituting the values of F, and F into
equations (29)-(31) and then solving, he obtained
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a 2a 9b 180) ot

= + —+
Al 8 AZ 13 /14
3a b -2t
__ 33
B 5 (/12 /13) (33)
3a2C 2t
=———¢€
Yo

Again putting the values of F, and F; into
equation (32) and then solving, he obtained

+—(b3+6abc)

e 34t {Qabz 15

u, =
el | 2 228
13 (bzc +ac ) Syﬁbc 316503
2°

J{Qabz +%(b3+6abc)+i—g(bzc+acz) (34)

A

6L‘jbc +945 t+[3ab2+i(b3+6abc)
42 218 21

+%(bzc+acz)+%bc2 +Ec3 t2
p) 22 813

Therefore, substituting the values of A, B, and C, into
(4), he obtained
a’? 2a 9b 180) ot

a=-¢— +—
8 /12 /13 2
b= (— ) Cht (35)
G g 3a’ € g-24t
477
Solving equation (35), he obtained
ao 28y 9b0 1800 -2t
a=a;+ —) (e -1
8y 8 e (0 )
b—bo + 3a0 bO 300)( —2 At 1) (36)
8 A
a
C=Cy+¢ 0 (e2* —1)

Thus, Shamsul [15] obtained the first order improved
solution of the more critically damped nonlinear system
(16) as:

x(t, &) = (@+bt+ct?) e +u, +O(s?) (37)

where a, b,care given by (36) and u;, is given by (34).

—At

V. GENERAL DISCUSSION AND RESULTS

General Discussion: Shamsul [15] expanded the

functional f(© in powers of (b+ct). i.e. he expanded
1O g =2 (see in discussion of Shamsul [15]). On

the other hand, in this article, we have expanded the

functional f©@ in power of t . i. e we have

extended f (@, at t =0. Simply, one may claim that, our
expansion equation (6) is a special case of the expansion
equation (28) presented by Shamsul [15]. i.e. the
expansion equation (6) can be obtained by putting
b =0 in the expansion equation (28). But, this claim is
not true, because, if one put b=0 in the expansion
equation  (28), then it takes the form

fO-F (at)+F(at) ct+F,(at) c>t>+---, which is
not at all identical to the expansion equation (6) as well as the
solution 3) reduces to
x(t,&) = (a+ct’) e + sy, (a,ct)+--, which is not the
actual solution of the nonlinear system (1). Therefore, our
expansion equation (6) is fully independent. As a result
our variational equation (25) is different from the
variational equation (35) of Shamsul [15] and our
correction term u; given by (24) is different from

Shamsul’s [15] correction term u,; given by (34) (see in

discussion of Shamsul [15]). Although the variational
equation as well as correction term are different, but for
different set of initial conditions as well as for different
eigenvalues our solution gives desired results.

Results: Based on the KBM method an asymptotic
solution of third order more critically damped nonlinear
systems has been found in this article. In order to test the
accuracy of an approximate solution obtained by a
certain perturbation method, we some times compare the
approximate results to the numerical results (considered
to be exact). With regard to such a comparison
concerning the presented KBM method of this article,
we refer the work of Murty [5].

First of all, we have computed x(t, &) by (27)

(designated by x) in which a, b, ¢ are computed by (26) and

U, is computed by (24) together with the initial conditions
8, =03, b=03 ¢,=00 for =10, 1=20,
A=3.0 and 24 =4.0, and the results are presented in the

second column of the Table-1, Table-2, Table-3 and
Table-4 respectively. Then x(t, &) has again been

calculated by (37) (designated by Xsaps)) in which a, b, ¢

are computed by (36) and u, is computed by (34) together

with the same set of initial condition as well as with same
eigenvalues and the results are presented in the fifth column
of the Table-1, Table-2, Table-3 and Table-4. Column three
and six show the corresponding numerical results calculated
by the fourth order Runge-Kutta method. Corresponding
percentage errors have also been calculated and are presented
in the fourth and seventh column of the Table-1, Table-2,
Table-3 and Table-4. The first column shows the various
values of time t.

(Advance online publication: 17 February 2009)
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Table-1: For ay =0.3, by=0.3, ¢g=0.0, £=0.1and 2=10.

1 2 3 4 5 6 7

t X X" Error% Xs A f15] X; AQS] Error%
0.0 0.302531 0.302531 0.0000 0.305569 0.305569 0.0000
0.5 0.271054 0.271560 0.1863 0.274089 0.274132 0.0157
1.0 0.217856 0.218792 0.4278 0.220531 0.220556 0.0113
15 0.164637 0.165825 0.7164 0.166868 0.166873 0.0030
2.0 0.119568 0.120819 1.0354 0.121361 0.121352 -0.0074
2.5 0.084458 0.085632 1.3709 0.085854 0.085838 -0.0186
3.0 0.058448 0.059469 1.7168 0.059508 0.059490 -0.0303
35 0.039818 0.040659 2.0684 0.040606 0.040588 -0.0443
4.0 0.026791 0.027456 2.4221 0.027366 0.027351 -0.0548

X is computed by (27) and XS A[15] is computed by (37); X" and XEA[15] denote the corresponding numerical results.

Table-2: For a; =0.3, k=03, ¢;=0.0, ¢=0.1and 1=20.

1 2 3 4 5 6 7

t X X Error% XsA[s] X*s ALS] Error%
0.0 0.300040 0.300040 0.0000 0.300134 0.300134 0.0000
0.5 0.165417 0.165516 0.0598 0.165499 0.165506 0.0042
1.0 0.081112 0.081214 0.1256 0.081168 0.081134 0.0419
15 0.037291 0.037363 0.1927 0.037324 0.037284 -0.1073
2.0 0.016459 0.016502 0.2606 0.016477 0.016446 -0.1885
25 0.007063 0.007086 0.3246 0.007072 0.007053 -0.2694
3.0 0.002969 0.002981 0.4025 0.002973 0.002963 -0.3375
35 0.001228 0.001234 0.4862 0.001231 0.001225 -0.4898
4.0 0.000502 0.000505 0.5941 0.000503 0.000500 -0.6000

X is computed by (27) and XS A[15] is comp

uted by (37);

=
X

and x; A[15] denote the corresponding numerical results.

Table-3: For a, =0.3, by =03, ¢,=0.0, ¢=0.1and 1=3.0.

1 2 3 4 5 6 7

t X X" Error% Xs A1) X; ALS] Error%
0.0 0.300003 0.300003 0.00000 0.300016 0.300016 0.00000
0.5 0.100390 0.100309 0.08075 0.100399 0.100298 0.10069
1.0 0.029864 0.029785 0.26523 0.029869 0.029772 0.32580
15 0.008329 0.008288 0.49469 0.008331 0.008281 0.60379
2.0 0.002230 0.002214 0.72267 0.002231 0.002211 0.90456
2.5 0.000580 0.000575 0.86956 0.000581 0.000574 1.21951
35 0.000037 0.000037 0.00000 0.000037 0.000036 277777
4.0 0.000009 0.000009 0.00000 0.000009 0.000009 0.00000

X is computed by (27) and XS A[15] is computed by (37); X" and X;A[15] denote the corresponding numerical results.

Table-4: For a5 =0.3, by =0.3, ¢, =0.0,

¢=01and 1=40.

2 3 4 5 6 7

t X N Error% Xs A1) X; ALS] Error%
0.0 0.300001 0.300001 0.0000 0.300004 0.300004 0.0000
0.2 0.161751 0.161727 -0.0148 0.161754 0.161727 -0.0166
0.4 0.084791 0.084761 -0.0353 0.084793 0.084757 -0.0427
0.6 0.043541 0.043515 -0.0597 0.043543 0.043511 -0.0735
0.8 0.022010 0.021990 -0.0909 0.022011 0.021987 -0.1091
1.0 0.010988 0.010975 -0.1184 0.010989 0.010973 -0.1458
1.2 0.005431 0.005423 -0.1475 0.005431 0.005421 -0.1844
1.4 0.002662 0.002657 -0.1881 0.002662 0.002656 -0.2259
1.6 0.001296 0.001293 -0.2302 0.001296 0.001292 -0.3096
1.8 0.000627 0.000626 -0.1597 0.000627 0.000625 -0.3200
2.0 0.000302 0.000301 -0.3322 0.000302 0.000301 -0.3322

X is computed by (27) and XS A[15] is computed by (37); X" and X;A[15] denote the corresponding numerical results.
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In Table-1, we see that, our percentage errors are greater
than the percentage errors obtained by Shamsul [15], but
from Table-2, Table-3 and Table-4, we see that our
percentage errors are smaller than the percentage errors
obtained by Shamsul [15]. i.e. if the eigenvalue increases
numerically then our errors decrease and Shamsul’s [15]
errors increase.

We again have computed x(t, &) by (27) (designated

by x) in which a, b, c are computed by (26) and u, is
computed by (24) together with the initial conditions
a;, =08 b,=07 ¢ =00 for 1=10, 21=3.0,
A=4.0 and 2=5.0, and the results are respectively
presented in the second column of the Table-5, Table-6,

Table-7 and Table-8. Then x(t, &) has been calculated by
(37) (designated by xsa15) in which a, b, ¢ are computed

by (36) and u, is computed by (34) together with the same

set of initial condition as well as with same eigenvalues and
the results are presented in the fifth column of the Table-5,
Table-6, Table-7 and Table-8. Column three and six show
the corresponding numerical results calculated by the fourth
order Runge-Kutta method. Corresponding percentage errors
have also been calculated and are presented in the fourth and
seventh column of the Table-5, Table-6, Table-7 and
Table-8. The first column shows the various values of time
t.

Table-5: For a, =0.8, by, =0.7, ¢, =0.0, £=0.1and 1=10.

1 2 3 4 5 6 7

t X X" Error% X A[15] x; ALLS] Error%
0.0 0.832156 0.832156 0.0000 0.876256 0.876256 0.0000
0.2 0.759032 0.766521 0.9770 0.810497 0.811849 0.1665
0.4 0.691176 0.701535 1.4766 0.742935 0.744364 0.1919
0.6 0.625920 0.638124 1.9124 0.675279 0.676326 0.1548
0.8 0.563060 0.577094 2.4318 0.609081 0.609642 0.0920
1.0 0.503124 0.519090 3.0757 0.545578 0.545690 0.0205
1.2 0.446730 0.464585 3.8432 0.485668 0.485416 -0.0519
14 0.394357 0.413885 4.7182 0.429936 0.429412 -0.1220
1.6 0.346296 0.367153 5.6870 0.378701 0.377990 -0.1881
1.8 0.302650 0.324425 6.7118 0.332078 0.331249 -0.2502
2.0 0.263376 0.285642 7.7950 0.290019 0.289129 -0.3078

is computed by (27) and XsA[15] is computed by (37); X" and X;A[ls] denote the corresponding numerical results.

Table-6: For a; =0.8, by =0.7, ¢, =00, £=0.1and 1=30.

1 2 3 4 5 6 7

t X X" Error% XsA[s] X; AS] Error%
0.0 0.800044 0.800044 0.00000 0.800226 0.800226 0.00000
0.5 0.256295 0.256253 0.01639 0.256426 0.256113 0.12221
1.0 0.074559 0.074553 0.00804 0.074623 0.074362 0.35098
15 0.020510 0.020512 0.00975 0.020535 0.020407 0.62723
2.0 0.005440 0.005442 0.03675 0.005449 0.005399 0.92609
25 0.001406 0.001407 0.07107 0.001409 0.001392 1.22126
3.0 0.000357 0.000357 0.00000 0.000358 0.000352 1.70454
3.5 0.000089 0.000089 0.00000 0.000089 0.000088 1.13636
4.0 0.000022 0.000022 0.00000 0.000022 0.000022 0.00000

X is computed by (27) and XS A[15] is computed by (37); X" and X;A[15] denote the corresponding numerical results.
Table-7: For a; =0.8, by =0.7, ¢, =0.0, £=0.1and 1=40.
2 3 4 5 6 7

t X X" Error% XsA[15] X; ALS] Error%
0.0 0.800008 0.800008 0.0000 0.800051 0.800051 0.0000
0.2 0.422250 0.422202 -0.0113 0.422289 0.422203 -0.0204
0.4 0.217961 0.217930 -0.0142 0.217991 0.217887 -0.0477
0.6 0.110623 0.110611 -0.0109 0.110644 0.110556 -0.0796
0.8 0.055407 0.055404 -0.0054 0.055420 0.055356 -0.1156
1.0 0.027457 0.027458 0.0036 0.027465 0.027423 -0.1532
1.2 0.013488 0.013490 0.0148 0.013493 0.013467 -0.1931
14 0.006577 0.006579 0.0304 0.006580 0.006565 -0.2285
1.6 0.003188 0.003189 0.0314 0.003189 0.003180 -0.2830
1.8 0.001537 0.001538 0.0650 0.001537 0.001533 -0.2609
2.0 0.000737 0.000738 0.1355 0.000738 0.000735 -0.4082

is computed by (27) and Xg a[15] is computed by (37); X" and X;A[lg)] denote the corresponding numerical results.
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Table-8: For a, =0.8, b, =0.7, ¢, =0.0, £=0.1and 2=50.

1 2 3 4 5 6 7

t X N Error% XS A[15] X; AL5] Error%
0.0 0.800002 0.800002 0.0000 0.800016 0.800016 0.0000
0.2 0.345759 0.345598 -0.0466 0.345771 0.345593 -0.0515
0.4 0.146135 0.145994 -0.0966 0.146143 0.145976 -0.1144
0.6 0.060727 0.060637 -0.1484 0.060732 0.060619 -0.1864
0.8 0.024903 0.024853 -0.2012 0.024906 0.024841 -0.2617
1.0 0.010104 0.010078 -0.2580 0.010105 0.010071 -0.3376
1.2 0.004064 0.004051 -0.3209 0.004065 0.004047 -0.4448
14 0.001623 0.001617 -0.3711 0.001623 0.001615 -0.4954
1.6 0.000644 0.000641 -0.4680 0.000644 0.000640 -0.6250
1.8 0.000254 0.000253 -0.3953 0.000254 0.000252 -0.7937
2.0 0.000100 0.000099 -1.0101 0.000100 0.000099 -1.0101

X is computed by (27) and XS A[15] is computed by (37);

In Table-5, we observe that, our percentage errors are
greater than the percentage errors obtained by Shamsul [15],
but from Table-6, Table-7, and Table-8; we notice that our
percentage errors are smaller than the percentage errors
obtained by Shamsul [15]. i. e. if the eigenvalue increases
numerically then our errors decrease and Shamsul’s [15]
errors increase.

Therefore, in the Tables above, it is seen that, if the
eigenvalue is small, then Shamsul’s [15] technique gives
better results. On the other hand, if the numerical size of the
eigenvalue is large, our technique gives better results.

Ifkk, =9K;, the system (1) undergoes more critically
damped and the relation between the eigenvalue and the
constants is A% =(1/9)k,k, ks . Thus for the example (16),

-1 . .
we have 2° =a g [9 m2y3] . From this relation, we see that,

the numerical value of the eigenvalue is large if the mass m
and the coefficient of relaxation y are small. Conversely if
the mass m and the coefficient of relaxation y are large
then the numerical value of the eigenvalue is small. Inasmuch
as, our techniques give better results for large eigenvalue,
therefore, our technique is suitable for light (not heavy) mass
systems.
VI. CONCLUSION

The KBM method has been extended in this article for
obtaining the solution of third order more critically damped
nonlinear systems. For large eigenvalue, the solution
obtained in this article gives more accurate results than the
results obtained by the solution of Shamsul [15]. Since, for
light mass m and for small coefficient of relaxationy, the
eigenvalue become large, therefore, for small coefficient of
relaxation and for light mass systems our technique is more
efficient than the technique of Shamsul [15].
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