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Fixed Rate Mortgages: Valuation and Closed
Form Approximations

Dejun Xie *

Abstract—This article considers an amortized fixed
rate mortgage where the borrower has the choice of
prepayment. Asymptotic behaviors of the contract
value are fully analyzed. Based on a known fact about
the optimal prepayment boundary, two analytical ap-
proximations to the value of the mortgage contract
are derived. Numerical experiments are carried out
to validate the accuracy of the approximation formu-
las. In general, the relative error is less than 4%.
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1 Introduction and main result

We consider an amortized mortgage contract with a given
duration T' (years) and a fixed mortgage interest rate c
(year—!), where the borrower is allowed to make prepay-
ment, i.e., to settle the loan balance M(7) at any time
7 < T, where

_ ec(T—T)},

which is the uniquely determined by the differential equa-
tion dM (1) = eM (7)dt — mdr with M(T) = 0 (see [4] or
[11]). Here m is the rate of payment in dollars that the
borrower pays back to the bank (lender) per unit time.

m

M(T):f{1

C

For banks or mortgage companies who are holding a
large pool of such contracts with different nominal loan
balances, different maturity dates, or different payment
schedules, it is crucial for them to know the fair value
of such contracts. If these mortgages constitute substan-
tial portion of a bank’s total assets, the market value of
these contracts may largely determine its credit rating
and refinancing cost. Having this said, it is not trivial for
the bank to determine a fair value of such a contract be-
cause it is the borrower, rather than the bank, who has
the choice to respond rationally according to the mar-
ket reality. Only after the market value of each individ-
ual contract is known, the bank can construct hedging
strategies or make appropriate financial planing for risk
management purposes.

Assume the borrower always has sufficient working cap-
ital to settle the loan, then at any moment 7 while the
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contact is in effect, he can either close the contract by
paying off M (1) or invest in the market with the amount
of M (1) less the current obligatory payment of m per
unit time, earning an instantaneous return rate of, say,
r,. Here we assume r, follows Vasicek model [16], which
is described by the stochastic differential equation

drr = k(0 —r;)dr + o dW,

where k, 0, and o are assumed to be positive known con-
stants and W, is the standard Wiener process. Here the
units for k, 0, o, and W, are year—', year—!, year—3/2 and
year'/? respectively.

For convenience, we use the time to maturity date of the
contract, t := T — 7, instead of real time 7, and introduce
a function V (r, t) being the expected value of the contract
at time t and current market return rate r; = z. Without
loss of generality, we assume m = 1. Mathematically we
have a free boundary problem where the free boundary
x = h(t) denotes the optimal market interest rate level at
which the borrower should close the contract. For each
(t,x) € [0,00) U (—00, +00) being fixed, we are to find a
(h, V) such that

L(V)=1 for x> h(t),t >0,

V(z,t) = M(t) for = < h(t),t >0, W
Vel(z,t) =0 for z < h(t),t >0,

V(z,0) =0 Yz > h(0) =

where the operator L is defined as

Lv)y=- 257 k(0 — x)—‘; +aV. (2

Similar problems have been discussed from option pric-
ing viewpoint in [6, 8, 13, 12, 7, 3]. The free bound-
ary problem formulation of (1) is obtained from standard
mathematical finance theory [17, 14, 15] and variational
inequalities [10], and is detailed in [11, 4] . In particular,
it is proved in [11] that (1) is well-posed, possessing a
unique solution which is smooth up to to the free bound-
ary x = h(t). In [4], asymptotic behaviors of h(t) have
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been analyzed and a global approximation formula for
h(t), valid for all ¢ > 0 , is derived, namely,

h(t) =c— (c — R )\ 1 — e 27t 3

where £ is the unique root to the integral equation

[

with numerical value k = 0.3343641440309..., and R* is
determined parametrically in terms of the Hermite func-
tions H by

-2 (k2 — 22)*(18K2 + 222)
K]Q +22)5

dz, (4)

2

o) g
R*:e_i ¥

R

2 H y+ayd (5)
C_H_LJF o [ yH(uy)e” y

VE [X H(u;y)e v tavdy ’

o o2 — 2k%6

4= 7372 =53

While it is useful, from the borrower’s point of view, to
know the optimal early exercise boundary, the bank or
the contract holder, on the hand, is more interested to
know the market value of the contract, at given time ¢ and
interest level x. In this article, we start with the integral
representation of V(xz,t), derive asymptotic expansions
of V(z,t) for both x large and x — h(t). In particular,
we provide an exact asymptotic expansion of V(x,t) for
small z in terms of confluent hypergeometric functions.
Interpolating these results we obtain two global approxi-
mation formulas for V, valid for all y := (x — h(t)) € R.
The first formula (Formula 1) is

V(y,1t)

= aX(—o0,0] T aErfcx( (6)

where x(z) is the indicator function defined as

] 1
XA—O

Erfex(x) is the scaled complementary error function de-
fined as

ifreA
fzeA”’

Erfex(z) = e Erfe(x),

and

And the second formula (Formula 2) is

V(1) = 0X( oo + [ZIZH(P

i (7)
+ A\y)Erfex(Qiy )}X(OPO)

where a,x, and Erfcx are the same as in Formula 1,
and P;,Q; > 0,\;,i = 1,2 are given by a solution of the
algebraic system

A Ao

B -

Q1 Qo

P1 +P2 =a

)\1 +)\2 == O
2

*7(P1Q1 + PQ2) = —

—%()\1@1 + X2Q2) =

VT

el

The accuracy of our approximation formulas are vali-
dated by numerical experiments with a variety of param-
eters. The asymptotic analysis and the two analytical ap-
proximation formulas, together with the existing result of
(1.3), provide useful tools for the industry practitioners
in addition to theoretical interests.

2 full asymptotic analysis of

In this section we first derive, by analyzing the PDE in
(1.1) directly, the Taylor expansion of V(z,t) for small x
up to the third order. By formulating the integral rep-
resentation of V(x,t) with the free boundary h(t) em-
bedded, we shall obtain an asymptotic representation of
V(z,t) for large value of = in terms of confluent hyperge-
ometric function of the first kind, the leading order term
of which turns out to be %

2.1 Asymptotic expansion of V(z,t) for
small z

We first notice, by regularity, that V, exists and is con-
tinuous for all z € R. In particular, lim, ), Ve =
Va(h(t),t) = 0. Now let V' — M(t) in the PDE in (1),
we have

i Vi = ——(1— ey (1 = ),

lim V., = 5
z—h(t)+ g C

z—h(t)+

Also one notice that in the set where V' < M(t),
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v, %0V, oV, . _9_ o2 =6
o0 2 o MO Gy Tl ke =V Fly,s) = Va(sH — 1)s™2 55—
k 2 _
(y — £(0—0+ 22)\[)6 (=i
o
Let x — h(t)™, we have that o (-0}
w= 3
k2 o
. 2 2 )
x_I}hIE” Vawe = ;{k(@ B SU)[;(l —em )1 - ?)} Since the fundamental solution assocz)lated with the heat
o operator O0s — iagy is known as e:/yg = I'(y,s). Us-
+ E(l —e )} ing Green’s identity, the solution W to the differential

equation in (10) can be expressed as

Then we have the Taylor expansion for V(z,t), up to

third order term, near x = h(t) W(y,s) = / /(5) T(y—p,s—&)f(p,&)dpde  (11)
n
h(t) Translate the integral representation for W in (2.4) into

1 1
V="(1-e"*)— ﬁ(l —e (1 - ?)(a: — h(t))? the integral representation for V, and simplify terms, we

c
have
1 h(t) 1 3
= (1- =224 “Ma — At
o (om0 -0 ") 1 Ly - ny)
2.2 Integration representation of V(x,t) V(z, M(t) — / / tigey Loty
h(r) VT
Let (1-— c e~ T — 1)dydr,
Z\fck (12)
u(y,s) = {0 -veo} o
) , 8
xe 7T [w+2’“2 O~ [+ 7 =l where s, a, 81, 32 are functions of (z,y;t,7) defined by
h(t) = n(s)
where 5 = k(t—7)
2
. o = %(82 - 1)7
kekt o? 2kt 302 1 o? o?
Y= > {x—l—?—G} sS=e . (9) ﬂ1:@82+%(9 k2)5+( 9+W+k)(t_7-)
1 2
( 0+ 2)
One can verify [4] that, under above change of variables, ) 4k2 )
the problem (1) for (V,h) is equivalent to the following _ 2 g7
system for (W, n) Pz = 2k?2 s+ ( k2 st (=0 2k2 )
We —Wyy = ,S if y>n(s),s>1, . .
’ w=F:9) y>n(s) 2.3 Leading Order Expansion of V for Large
Wi(y,s) =0 if y<n(s),s>1, *
W,(y,s) =0 it y<n(s),s>1, (10)  Here we are to derive the large x asymptotic representa-
‘ tion of V in terms of confluent hypergeometric functions.
Wiy, 1) =0 Yy > n(l) = w. Let V(x,t) = M(t) — U(z,t). The inside integral on the
right hand side of (12) is a convolution of a linear function
of y and an exponential of a quadratic form of y, which
can be explicitly calculated. And the result of such a
where calculation gives
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U(x,t) = ﬁ /Ot(l _ e—CT)eB{O-\/\l/?e_iﬂ

o? 0% _
+ﬁ[(_c+9—@)+($—9+ﬁ>8 1 (13)
2
_ 9 2 i
o ]Erfc(h)}dT7
where
2 302 =z
B=( 0+2k2)(t T)JF(%*TICS*E)
0 o> =z, o
TRt E TR T
S 0'2 0'2 -1
- 7a (h(T)—G—i—@)—(—@—i—ﬁ—i-x)s
B +%s‘2}, if T#¢
0, if 7=t.

To find the asymptotic expansion of U(x,t) for x large,
one notices that U(x,t) is essentially a sum of two inte-
grals, and also

lim h = —o0,
Tr— 00

thus (13) reduces to

Uat) = 1 1= )eflet 0= T+ (2 =0

c
2 2
(o2 1 o 9
=I1-1I,
where
1 [t 2
I= 7/ ePl(—c+ 0 — 20?)
o (14)
o2 ., o p
+($—0+ﬁ) _2]625 ]T’
1 t 2
1= ,e—ct/ (DBt g — T
€ 0 2k2
(15)
0'2 1 0'2 _9
+(x_9+ﬁ)5 _ﬁs ]d’T
Observe that
6 0-2 0_2 . 0_2 .
E[c(t_ﬂ'i'ﬁ] = (9—6—@)+(x—9+ﬁ)s _ﬁs ,

so we can apply integral by parts to evaluate I directly,
and get

=L e 1 s
7=0 c C

Il = 1€_Ctec(t_7—)+/6
C

To evaluate I, we first write I = I11 + IV, where

1t t
IIT = 7/ eﬁ(—c)dT:—/ ePar, (16)
0 0

c

c 2k?
2 2
(2 1 g

_ L g o
= [ eo- 7o)

s~ 2]dr.

For (17), we can simply evaluate in the same way we
evaluate II, thus have

1/t 1 gm=t 1 1
0

c or c lr=0 ¢ ¢

Now the asymptotic behavior of V' for large = is essen-
tially determined by the parametric integral

Vix,t) =

2 o2

t 2 2
g 2] 30 a 2] —1 ol —2 .
/ T+ (G- Rt tR)sT —dms gy
0

1 .
Viz,t) = Ee_?/ ek dsT!
7=0
]. x T=t -1 X
— —e & S d(— -1
e /T:O e (ks )
1 2 @, —kt
= —e klek —ek€
e [ex —e ]
1 @ Kt
= Z[1—e k(e
R )
~ L
xz

2.4 Representation of V for Large x

Here we use integral by parts to derive a more accurate
representation of V(z,t) for large « in terms of the con-
fluent hypergeometric functions of the first kind. Because
we are interested in the expansion of V(x,t) as z — oo,

we can neglect the factor —%5*2 in (2.12), thus have

(Advance online publication: 17 February 2009)



TAENG International Journal of Applied Mathematics, 39:1, IJAM 39 1 03

2 2 —
R L

0_3:2 = ¢
ek a3k e
0
2

t
0_30%2_ =z _ _ 0,02 zy,—kz
= ek K3 k/ 6( 0+7z)zt(—gt5z—F)e dz
0

by letting ¢t — 7 = z. To proceed, as in general, we have
that for given a,b,c > 0,

o\;
CB‘
2
<
+
o
)
|
2]
<
QL
<
Il
\
SN
@‘)—lo\ﬁ.

t
+(_1)@/ e~ (atytbe™ gy,
0

a
The process of integration by parts can be repeated using
the recursive identity

1
a+ nc

e~ (a+nc)t+beﬂ:t

t
/ e—(a—&-nc)y-ﬁ-be":ydy _ (_1)
0

1 by (—1) be

t
/ (D)) +he= g
0

e
a + nc a + nc

which leads to

t
/ e W Y dy = P+ Q+ R,
0

where
be (be)™
P==+4+(-1)————+ ...+ (-1)"
a+( )a(a+c)+ +(=1 a(a + ¢)...(a + nc)
1 —ct bC —ct
—(—1)= —at+be -1 2 —(a+c)t+be
@ )ae +(=1 ala+ c) ¢
+o (_1)n+1 (bc)n e—(a-&-nc)t-{-be*d
ala + c)...ga + nc)
R= (_1)n+l(bc)n+1 / e—[a-‘r(n-‘rl)c]y-&-be*cydy
a(a+ ¢)...(a +nc) Jo

It is apparent the tail definite integral R vanishes as n —
0o. Also one notices [5] that

n—=oo

()
< (a/c+1)(a/c+2)...(a/c+n)

¢ = M(1,% +1,-b),
&

n=

where M (p, g, z) is the confluent hypergeometric function
of the first kind of order p,q. Thus we have

t he—cY 1 a
/ e” Wt Vdy = —M(1,— +1,-b)
0 a C

(19)
e—at a
— M(1, = +1,—be™ ).
a c
In terms of our problem, we have
o (0— 2t
Vix,t) = —
0~ 5=
0 o 0 o2 =z
M(1 1, (- — = e R
ML= LGB TR )
0_302 _ = 1
— ek a3 E X 5
0~ o5
0 o? 0 o2 =
MA,-——+1,-——=+ -
(’k 2k3+’kz k3+k)

It is straightforward to verify, by the series representation
of M(p,v, ) [5], that the leading order term of (20) is +.

3 Global Analytical Approximations

In this section we shall interpolate the asymptotic ex-
pansions of V(z) for large = and small = to derive highly
accurate approximation formulas. Define y := x — h().
From the asymptotic analysis in the previous section, we
have that

lim V(y.t) = a+by*+ey’, (21)
y*)

1
Yy—00 y

where a = a(t) , b = b(t) and ¢ = ¢(t) are define by

a = E(l eict%

b= e -1,
1

¢ = ggla— KO- h(H)D)

3.1 Approximation One

We first postulate that

V(y,t) = aepy2Erfc(qy), Yy > 0. (23)

Note that such a postulation automatically satisfies the
condition lim,_,oV = a. To meet the requirement at
y — 00, recall (see [5], for instance) that

1 eV 1 1-3
~y—=—— (- + oo
VT oy 2y? - (2y?)

Yy — 00.

Erfe(y) — ), (24)
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Using the asymptotic expansion of complementary func-
tion to approximate (23), we have
Lie(p—qz)y.
VT qy

Compare (22) with (25),we have

lim V(y,t) =

Yy—o0

(25)

a CL2

q= ﬁ’ b= ?
In terms of original variables, we have the following global
analytical approximation (Formula 1):

oSy @

V(z,t) = ae Erfc(ﬁy),
where a := (1 — e~*"). Numerical plots show that For-
mula 1 is accurate enough from practitioner’s point of
view. But there is room for improvement, namely, the
approximation (26) only takes care of the leading order
limit at x — h(t), but not all of the asymptotic behaviors
specified in (21).

(26)

3.2 Approximation Two

Aiming to improve the accuracy of the approximation
formula, we further postulate that

V(z,t) = (P; + M\ 2)BErfex(Q2?)

+ (Py 4 Agz)Erfex(Qq2?) @7)

where Erfcx is the scaled complementary error function
defined as

Erfex(z) : = ez2E1rfc(z)7

with asymptotic expansion

1

Erfex(z) ~ -, for large z > 0;

z
Erfex(z) ~ (1+2Y(1 — —=2?), for small z > 0.
T
Use the above asymptotic expansions to approximate
(27), match terms with (21) and (22), we have

A1 Ao

- =z - \r
Q1 Q2 VT
P1—|—P2=CL
AM+X=0

*%(P1Q1 + PQ2) =b

—%(A1Q1 +X0Q2) =c
@1 >0
QR2>0

Note that Q1 > 0 and Q5 are required because otherwise
the condition for large x expansion of V' will not be sat-
isfied. This algebraic system can be solved by expressing

P, P, and Qq in terms of @Qs, yielding

VAPAQS + [P Poda+ Qs - b =0, (29)
Then we get
0s = —(Pi\ —P2A2+gb)+\/3’ (30)
2/ Py
where

A= [P1>\1 — PQ)\Q + gb]2 + 27TP2)\2b

One notices that (28) has more number of variables than
number of equations, thus may assume multiple roots.
To simplify, we let P; = P, = a/2, then (28) reduces to

Mo A
o V"

AM+A=0
)
Q1+Q2:—L

a
Q1+ XoQo = — Y

Q>0
Q2>0

In this case,

(a4 50) ¢ N 507 makib
Vma ’

01 — (ar1 — 5b) — \/(ary — b)2 + marb
1 — ﬁa )

Indeed one can verify that Q1,Q2 > 0. Once @7 and
Q2 are determined, A1 and A2 can be numerically solved
using, say, standard Matlab fslove package.

4 Numerical Examples

Here we provide some numerical examples to validate the
accuracy of our approximations Formula 1 and Formula
2. In each of the following figures, we plot both the true
numerical solution of V' and the analytical approximation
of V using our approximation formulas. Tested with a
variety of parameters, the relative error of Formula 2 is
less than 4%, where

relative error :=

max,cr [true solution-analytical approximation|

[V (00) = V(=00
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Figure 1: The dotted curve is the true numerical solution. The plain curve is the global approximation using Formula
1 (left) and Formula 2 (right). Here ¢ = 0.06,6 = 0.05, o = 0.015, k = 0.15, R* = 0.0372,¢ = 30, h(t) = 0.0384.

Figure 2: The dotted curve is the true numerical solution. The plain curve is the global approximation using Formula
1 (left) and Formula 2 (right). Here ¢ = 0.05,0 = 0.05, o = 0.015,k = 0.15, R* = 0.0199, ¢ = 30, h(¢) = 0.0231.

Figure 3: The dotted curve is the true numerical solution. The plain curve is the global approximation using Formula
1 (left) and Formula 2 (right). Here ¢ = 0.055,6 = 0.05, o = 0.010, k = 0.15, R* = 0.0383, ¢ = 30, h(¢) = 0.0395.
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Figure 4: The dotted curve is the true numerical solution. The plain curve is the global approximation using Formula
1 (left) and Formula 2 (right). Here ¢ = 0.055,6 = 0.05, o = 0.020, k = 0.15, R* = 0.0201, ¢ = 30, h(t) = 0.0226.

Figure 5: The dotted curve is the true numerical solution. The plain curve is the global approximation using Formula
1 (left) and Formula 2 (right). Here ¢ = 0.055,6 = 0.05, o = 0.020, k = 0.15, R* = 0.0266, ¢ = 30, h(¢) = 0.0290.

Figure 6: The dotted curve is the true numerical solution. The plain curve is the global approximation using Formula
1 (left) and Formula 2 (right). Here ¢ = 0.055,6 = 0.05, o = 0.015, k = 0.05, R* = 0.0237,¢ = 30, h(¢) = 0.0269.
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Conclusion

A standard type of amortized fixed rate mortgage is for-
mulated in terms of parametric integral equations and
analyzed asymptotically. Two global analytical approx-
imations for the contract value have been derived using
novelty interpolations of the asymptotic expansions. Nu-
merical simulations are provided to validate the accuracy
of the analytical formulas.
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