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Abstract— This paper develops a method for auto-
matically incorporating variable selection in Fisher’s
linear discriminant analysis (LDA). Utilizing the con-
nection of Fisher’s LDA and a generalized eigenvalue
problem, our approach applies the method of regu-
larization to obtain sparse linear discriminant vec-
tors, where “sparse” means that the discriminant vec-
tors have only a small number of nonzero compo-
nents. Our sparse LDA procedure is especially effec-
tive in the so-called high dimensional, low sample size
(HDLSS) settings, where LDA possesses the “data
piling” property, that is, it maps all points from the
same class in the training data to a common point,
and so when viewed along the LDA projection direc-
tions, the data are piled up. Data piling indicates
overfitting and usually results in poor out-of-sample
classification. By incorporating variable selection, the
sparse LDA overcomes the data piling problem. The
underlying assumption is that, among the large num-
ber of variables there are many irrelevant or redun-
dant variables for the purpose of classification. By
using only important or significant variables we es-
sentially deal with a lower dimensional problem. Both
synthetic and real data sets are used to illustrate the
proposed method.

Keywords: Classification, linear discriminant analysis,

variable selection, regularization, sparse LDA

1 Introduction

Fisher’s linear discriminant analysis (LDA) is typically
used as a feature extraction or dimension reduction step
before classification. The most popular tool for di-
mensionality reduction is principal components analysis
(PCA, Pearson 1901, Hotelling 1933). PCA searches for
a few directions to project the data such that the pro-
jected data explain most of the variability in the original
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data. In this way, one obtains a low dimensional repre-
sentation of the data without losing much information.
Such attempt to reduce dimensionality can be described
as “parsimonious summarization” of the data. However,
since PCA targets for the unsupervised problem, it would
not be suitable for classification problems.

For a classification problem, how does one utilize the
class information in finding informative projections of the
data? Fisher (1936) proposed a classic approach: Find
the projection direction such that for the projected data,
the between-class variance is maximized relative to the
within-class variance. Additional projection directions
with decreasing importance in discrimination can be de-
fined in sequence. The total number of projection di-
rections one can define is one less than the number of
classes. Once the projection directions are identified, the
data can be projected to these directions to obtain the
reduced data, which are usually called discriminant vari-
ables. For the discriminant variables, any classification
method can be carried out, such as nearest centroid, k-
nearest neighborhood, and support vector machines. A
particular advantage of Fisher’s idea is that one can ex-
ploit the graphical tools. For example, with two projec-
tion directions one can view the data in a two-dimensional
plot, color-coding the classes.

An important query in application of Fisher’s LDA is
whether all the variables on which measurements are ob-
tained contain useful information or only some of them
may suffice for the purpose of classification. Since the
variables are likely to be correlated, it is possible that
a subset of these variables can be chosen such that the
others may not contain substantial additional informa-
tion and may be deemed redundant in the presence of
this subset of variables. A case for variable selection in
Fisher’s LDA can be made further by pointing out that
by increasing the number of variables we do not necessar-
ily ensure an increase in the discriminatory power. This
is a form of overfitting. One explanation is that when the
number of variables is large, the within-class covariance
matrix is hard to be reliably estimated. In additional to
avoiding overfitting, interpretation can be facilitated if
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Figure 1: A simulated example with two classes. Plotted
are the projected data using the estimated and theoretical
LDA directions. Top panels are for training data; bot-
tom panels for test data. Left panels use estimated LDA
directions; right panels the theoretical directions. The
in-sample and out-of-sample error rates are 0 and 32%
respectively, when applying the nearest centroid method
to the data projected to the estimated LDA direction.
The dimension of the data is 100 and there are 25 cases
for each class.

we incorporate variable selection in LDA.

We find that variable selection may provide a promising
approach to deal with a very challenging case of data
mining: the high dimensional, low sample size (HDLSS,
Marron et al. 2007) settings. The HDLSS means that
the dimension of the data vectors is larger (often much
larger) than the sample size (the number of data vectors
available). HDLSS data occur in many applied areas such
as genetic micro-array analysis, chemometrics, medical
image analysis, text classification, and face recognition.
As pointed out by Marron et al., classical multivariate
statistical methods often fail to give a meaningful analysis
in HDLSS contexts.

Ahn and Marron (2007) and Marron et al. (2007) dis-
covered an interesting phenomenon called “data piling”
for discriminant analysis in HDLSS settings. Data piling
means that when the data are projected onto some pro-
jection direction, many of the projections are exactly the
same, that is, the data pile up on top of each other. Data
piling is not a useful property for discrimination, because
the corresponding direction vector is driven by very par-
ticular aspects of the realization of the training data at
hand. Data piling direction provides perfect separation of
classes in sample, but it inevitably has bad generalization
property.

The Fisher’s LDA is not applicable to HDLSS settings

since the within-class covariance matrix is singular. Sev-
eral extensions of LDA that can overcome the singular-
ity problem, including pseudo-inverse LDA, Uncorrelated
LDA (Ye et al. 2006), and Orthogonal LDA (Ye 2005),
all possess the data piling problem. As an illustration of
the data piling problem, Figure 1 provides views of two
simulated data sets, one of which serves as a training data
set, shown in the first row, the other the test data set,
shown in the second row. The data are projected onto
some direction vector and the projections are represented
as a “jitter plot”, with the horizontal coordinate repre-
senting the projection, and with a random vertical coor-
dinate used for visual separation of the points. A kernel
density estimate is also shown in each plot to reveal the
structure of the projected data. Two methods are con-
sidered to find a projection direction in Figure 1. Fisher’s
LDA (using pseudo-inverse of the with-in class covariance
matrix) is applied to the training data set to obtain the
projection direction for the left panels, while the theo-
retical LDA direction, which is based on the knowledge
of the true within-class and between-class covariance ma-
trices, is used for the right panels. The LDA direction
estimated using training data possesses obvious data pil-
ing and overfitting. The perfect class separation in sam-
ple does not translate to good separation out of sample.
In contrast, the projections to the theoretical LDA di-
rection for the two data sets have similar distributional
properties.

One contribution of the present paper is to offer a method
to deal with the “data piling” problem in HDLSS set-
tings. If a small number of significant variables suffice
for discrimination, then identifying these variables may
help prevent “data piling” in the training data and con-
sequently yield good out-of-sample classification. In Sec-
tion 4.1, the same data sets will be projected to the sparse
LDA direction estimated using the training data. We will
see that these projections will resemble the distributional
behavior on the right panels of Figure 1 that are based on
the theoretical LDA directions. The main message is that
without variable selection, LDA is subject to data piling
and leads to bad out-of-sample classification; with vari-
able selection, data piling on training data is prevented
and thereby good classification on test data is obtained.

The rest of the paper is organized as follows. Section
2 reviews Fisher’s LDA and also serves the purpose of
introducing necessary notations for subsequent sections.
In Section 3, we describe our sparse regularized LDA
method for constructing sparse discriminant vectors. Nu-
merical algorithm for finding these vectors is also pro-
vided. Sections 4 and 5 illustrate the proposed method
using two simulated data examples and two real data sets.
Section 6 concludes. Some technical proofs are given in
the Appendix.
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2 Review of Fisher’s LDA

Discriminant analysis has been a standard topic in any
multivariate analysis text book (e.g., Mardia, et al.,
1979). A common approach to discriminant analysis is
to apply the decision theory framework. In this frame-
work, one assumes a parametric form of the population
distribution and a prior probability for each class, then
derives the Bayesian decision rule for classification. If the
assumed population distribution for each class is multi-
variate normal and the covariances are common across
different classes, the resulting decision rule is based on
a linear function of the input data and therefore called
linear discriminant analysis (LDA). Although the strong
assumptions used in this derivation of LDA are not true in
many applications, LDA has been proven very effective.
This is mainly due to the fact that a simple, linear model
is more robust against noise, and less likely to overfit.

An alternative approach to discrimination analysis can
be made by merely looking for a “sensible” rule to dis-
criminate the classes without assuming any particular
parametric form for the distribution of the populations.
Fisher’s LDA looks for the linear function aT x such that
the ratio of the between-class sum of squares to the
within-class sum of squares is maximized. Formally, sup-
pose there are k classes and let xij , j = 1, . . . , ni, be vec-
tors of observations from the i-th class, i = 1, . . . , k. Set
n = n1 + . . . , nk and let x̄i denote the mean of the i-th
class. Let

Xn×p = (x11, . . . , x1n1
, . . . , xT

k1, . . . , x
T
knk

)T

and y = Xa, then Fisher’s LDA solves

max
a

∑k
i=1 ni(ȳi − ȳ)2

∑k
i=1

∑ni

j=1(yij − ȳi)2
, (1)

where ȳi is the mean of the i-th sub-vector yi of y, corre-
sponding to the i-th class. Substituting y by Xa, we can
rewrite the within-class sum of squares as

k∑

i=1

ni∑

j=1

(yij − ȳi)
2 = aT

k∑

i=1

ni∑

j=1

(xij − x̄i)(xij − x̄i)
T a

def
= aT Σwa,

and the between-class sum of squares as

k∑

i=1

ni(ȳi − ȳ)2 =
k∑

i=1

ni{aT (x̄i − x̄)}2

= aT
k∑

i=1

ni(x̄i − x̄)(x̄i − x̄)T a
def
= aT Σba.

Therefore the ratio is given by

aT Σba/aT Σwa.

If a1 is the vector that maximizes the ratio, one can find
the next direction a2 orthogonal in Σw to a1, such that
the ratio is maximized; and the additional directions can
be computed in sequence similarly. The projection direc-
tions ai are usually called discriminant coordinates and
the linear functions aT

i x are called Fisher’s linear discrim-
inant functions. Fisher’s criterion is intuitively sound be-
cause it is relatively easy to tell the classes apart if the
between-class sum of squares for y is large relative to
the within-class sum of squares. Alternatively, Fisher’s
criterion can be understood as dimension reduction us-
ing principal components analysis on the class centroids
standardized by the common within-class covariance ma-
trix.

The problem (1) was Fisher’s original formulation of
LDA. Another formulation of LDA popular in the pat-
tern recognition literature (i.e., Fukunaga, 1990) is to
solve the optimization problem

max
A

{
tr (AT ΣwA)−1AT ΣbA

}
(2)

subject to AT A = I. Both (1) and (2) are equivalent
to finding a’s that satisfy Σba = ηΣwa, for η 6= 0. This
is a generalized eigenvalue problem. There are no more
than min(p, k− 1) eigenvectors corresponding to nonzero
eigenvalues, since the rank of the matrix Σb is bounded
from above by min(p, k − 1).

In this paper, we view LDA as a supervised dimension
reduction tool that searches for suitable projection di-
rections, and therefore refer to eigenvectors ai’s as the
discriminant directions or discriminant vectors. These
discriminant directions/vectors are useful for data visu-
alization and also for classification. By projecting the p-
dimensional data onto the q-dimensional space spanned
by the first q (q ≤ min(p, k − 1)) discriminant vectors,
we reduce the p-dimensional data to q-dimensional data.
The low dimensional data can be easily visualized, us-
ing for example pairwise scatterplots. Any methods of
discriminant analysis, such as nearest centroid method,
nearest neighborhood method, and the support vector
machines, can be applied to the reduced data to develop
classification rules.

To facilitate subsequent discussion, we introduce some
notations here. Define n × p matrices

Hw = X −




en1 x̄T
1

...
enk x̄T

k


 and Hb =




en1(x̄1 − x̄)T

...
enk(x̄k − x̄)T


 ,

where eni is a column vector of ones with length ni and e
is a column vector of ones with length n. It is clear that
with these notations, we have

Σw = HT
wHw and Σb = HT

b Hb.

IAENG International Journal of Applied Mathematics, 39:1, IJAM_39_1_06
______________________________________________________________________________________

(Advance online publication: 17 February 2009)



Notice that the matrix Hb can be reduced to a lower
dimension (k × p) matrix

(
√

n1(x̄1 − x̄), . . . ,
√

nk(x̄k − x̄))T , (3)

which also satisfies Σb = HT
b Hb. In the discussion that

follows, this latter form of Hb is used throughout without
further mentioning.

3 Sparse Discriminant Vectors

When Σw is positive definite, the first discriminant di-
rection vector a in Fisher’s LDA is the eigenvector corre-
sponding to the largest eigenvalue of the following gener-
alized eigenvalue problem

Σbβ = ηΣwβ. (4)

To incorporate variable selection in LDA corresponds to
making the eigenvector a sparse. Here “sparsity” means
that the eigenvector a has only a few nonzero components
or it has lots of zero components. It is not so obvious
how to achieve this. However, variable selection methods
are well studied for linear regression problems and those
methods are useful in suggesting a feasible approach to
extracting sparse eigenvectors.

LASSO (Tibshirani, 1996) is a penalized least squares
method that imposes a constraint on the L1 norm of re-
gression coefficients. Specifically, the LASSO solves the
following optimization problem

min
β

‖Y − Xβ‖2 + λ‖β‖1,

where Y , X are the response vector and design matrix
respectively, and β is the vector of regression coefficients.
Due to the nature of the L1 penalty, some components
of β will be shrunk to exact zero if λ is large enough.
Therefore the LASSO can produce a sparse coefficient
vector β, which makes it a variable selection method.

3.1 Link of generalized eigenvalue problems
to regressions

Our approach for obtaining sparse discriminant vectors
is an extension of the sparse PCA method of Zou et
al. (2006). It first relates the discriminant vector to a
regression coefficient vector by transforming the general-
ized eigenvalue problem to a regression-type problem, and
then apply penalized least squares with an L1 penalty.
The following theorem will serve our purpose.

Theorem 1. Suppose Σw is positive definite and de-

note its Cholesky decomposition as Σw = RT
wRw, where

Rw ∈ R
p×p is an upper triangular matrix. Let Hb ∈ R

k×p

be defined as in (3). Let V1, . . . , Vq (q ≤ min(p, k − 1))
denote the eigenvectors of problem (4) corresponding to

the q largest eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λq. Let

Ap×q = [α1, . . . , αq] and Bp×q = [β1, . . . , βq]. For λ > 0,

let Â and B̂ be the solution to the following problem

min
A,B

k∑

i=1

‖R−T
w Hb,i − ABT Hb,i‖2 + λ

q∑

j=1

βT
j Σwβj ,

subject to AT A = Iq×q,

(5)

where Hb,i =
√

ni(x̄i − x̄)T is the i-th row of Hb. Then

β̂j , j = 1, . . . , q, span the same linear space as Vj , j =
1, . . . , q.

To prove Theorem 1, we need the following Lemma.

Lemma 1. Let M be a p × p symmetric positive semi-

definite matrix. Assume q < p and the eigenvalues of

M satisfy d11 ≥ · · · ≥ dqq > dq+1,q+1 ≥ · · · ≥ dpp ≥ 0.
The p×q matrix A that maximizes tr (AT MA) under the

constrain that AT A = I has the form A = V1U1 where

V1 consists the first q eigenvectors of M and U1 is an

arbitrary q × q orthogonal matrix.

Proof of Lemma 1. Let the eigenvalue decomposition of
M be M = V DV T , where V is orthogonal and D =
diag(d11, . . . , dpp) is diagonal, both are p × p matrices.
Note that tr (AT MA) = tr (AT V DV T A). Let U = V T A,
which is a p×q matrix. Then A = V U . Moreover, UT U =
AT V V T A = I, which means that U has orthonormal
columns. Denote the rows of U by uT

1 , . . . , uT
p . Then

tr (AT MA) = tr (UT DU) =

p∑

i=1

diitr (uiu
T
i ) =

p∑

i=1

dii|ui|2.

Since U has orthonormal columns, |ui|2 ≤ 1 for i =
1, . . . , p and

∑p
i=1 |ui|2 = q. The problem reduces to

maximizing
∑p

i=1 dii|ui|2 subject to the constraints that
|ui|2 ≤ 1 for i = 1, . . . , p and

∑p
i=1 |ui|2 = q. Note

that d11 ≥ · · · ≥ dqq > dq+1,q+1 · · · ≥ dpp > 0 are
arranged in decreasing order. It is clear that the opti-
mization problem is solved by |u1| = · · · = |uq| = 1 and
|uq+1| = · · · = |up| = 0. This implies that the first q
rows of U form a q× q orthogonal matrix, denoted as U1,
and the rest rows of U consist of only zeros. Partition
V = (V1, V2) where V1 is p× q. Then we have A = V1U1,
which is the desired result.

Now we are ready to prove Theorem 1.

Proof of Theorem 1. Using (9) we see that the optimal
B = [β1, . . . , βq] for fixed A are

β̂j = (Σb + λΣw)−1ΣbR
−1αj ,

or equivalently

B̂ = (Σb + λΣw)−1ΣbR
−1
w A. (6)
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Then we substitute B̂ into the objective function of (5)
and find that we need to maximize the object

tr {AT R−T
w Σb(Σb + λΣw)−1ΣbR

−1
w A} (7)

as a function of A subject to AT A = I.

Denote the q leading eigenvectors of R−T
w ΣbR

−1
w by E =

[η1, . . . , ηq] so that R−T
w ΣbR

−1
w = EΛET where Λ is an

q × q diagonal matrix of eigenvalues. The columns of E
are also the q leading eigenvectors of the matrix

R−T
w Σb(Σb + λΣw)−1ΣbR

−1
w

= R−T
w ΣbR

−1
w (R−T

w ΣbR
−1
w + λI)−1R−T

w ΣbR
−1
w .

Thus, according Lemma 1, the Â that maximizes (7) sat-

isfies Â = EP where P is an arbitrary q × q orthogonal
matrix. Substituting this Â into equation (6) results in

B̂ = R−1
w (R−T

w ΣbR
−1
w + λI)−1R−T

w ΣbR
−1
w Â

= R−1
w (EΛET + λI)−1EΛET EP

= R−1
w E(Λ + λI)−1ΛP

Note that the q leading eigenvectors of the generalized
eigenvalue problem (4) are columns of V = R−1

w E. There-

fore, B̂ = V (Λ+λI)−1ΛP. The desired result follows.

From theorem 1, we know that if W is positive definite,
then the Bβ = (β1, . . . , βq) that solves the optimization
problem (5) contains the first q discriminant vectors. The
optimization problem (5) can be solved by iteratively
minimizing over A and B. The update of A for fixed B
is a Procrustes problem (Gower and Dijksterhuis 2004).
To see this, note that

k∑

i=1

‖R−T
w Hb,i − ABT Hb,i‖2

= ‖HbR
−1
w − HbBAT ‖2

= tr{(HbR
−1
w − HbBAT )(HbR

−1
w − HbBAT )T }

= tr{HbR
−1
w R−T

w HT
b + HbBBT HT

b }
− 2 tr{BT HT

b HbR
−1
w A};

(8)

we have used AT A = I to obtain the last equal-
ity. Thus, if B is fixed, the update of A maximizes
tr{BT HT

b HbR
−1
w A} subject to the constraint that A has

orthonormal columns. This is an inner-product version
of projection Procrustes that has an analytical solution.
The solution is given by computing the singular value
decomposition

R−T
w (HT

b Hb)B = UDV T ,

where U (p× q) has orthonormal columns and V (q × q)

is orthogonal, and setting Â = UV T . (See Cliff, 1966,

Section 3 of Gower and Jijksterhuis, 2004, or Theorem 4
of Zou et al. 2006).

The update of B for fixed A is a regression-type problem.
To see this, let A⊥ be an orthogonal matrix such that
[A; A⊥] is p × p orthogonal; this is feasible since A has
orthonormal columns. Then we have that

‖HbR
−1
w − HbBAT ‖2

= ‖HbR
−1
w [A; A⊥] − HbBAT [A; A⊥]‖2

= ‖HbR
−1
w A − HbB‖2 + ‖HbR

−1
w A⊥‖2

=

q∑

j=1

‖HbR
−1
w αj − Hbβj‖2 + ‖HbR

−1
w A⊥‖2.

If A is fixed, then the B that optimizes (5) solves

min
B

q∑

j=1

{‖HbR
−1
w αj − Hbβj‖2 + λβT

j Σwβj}, (9)

which is equivalent to q independent ridge regression
problems.

3.2 Sparse eigenvectors

The connection to a regression-type problem of the opti-
mization problem for extracting the discriminant vectors
suggests an approach to produce sparse discriminant vec-
tors. As in the LASSO, by adding an L1 penalty to the
objective function in the regression problem, we can ob-
tain sparse regression coefficients. Therefore we consider
the optimization problem

min
A,B

q∑

j=1

{‖HbR
−1
w αj − Hbβj‖2

+ λβT
j Σwβj + λ1,j‖βj‖1},

(10)

subject to AT A = Iq×q, where ‖βj‖1 is the 1-norm of the
vector βj , or equivalently,

min
A,B

k∑

i=1

‖R−T
w Hb,i − ABT Hb,i‖2

+ λ

q∑

j=1

βjΣwβj +

q∑

j=1

λ1,j‖βj‖1,

(11)

subject to AT A = Iq×q. Whereas the same λ is used for
all q directions, different λ1,j ’s are allowed to penalize
different discriminant directions.

The optimization problem (10) or (11) can be numerically
solved by alternating optimization over A and B.

• B given A: For each j, let Y ∗
j = HbR

−1
w αj . For

fixed A, B is solved by q independent LASSO prob-
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lems

min
βj

‖Y ∗
j − Hbβj‖2 + λβT

j Σwβj + λ1,j‖βj‖1,

j = 1, . . . , q.
(12)

• A given B: For fixed B, we can ignore the penalty
term in (11) and need only minimize

k∑

i=1

‖R−T
w Hb,i − ABT Hb,i‖2 = ‖HbR

−1
w − HbBAT ‖2

subject to AT A = Iq×q. The solution is obtained by
computing the singular value decomposition

R−T
w (HT

b Hb)B = UDV T

and letting Â = UV T .

Using the Cholesky decomposition Σw = RT
wRw, we see

that for each j, (12) is equivalent to minimization of

‖Ỹj − W̃βj‖2 + λ1,j‖βj‖1,

where Ỹj = (Y ∗T
j , 0p×p)

T and W̃ = (HT
b , RT

w)T . This is
a LASSO-type optimization problem where efficient im-
plementations exist such as LARS (Efron et al. 2004).

Algorithm 1 summarizes the steps of our Sparse LDA
procedure described above.

Remarks: 1. Theorem 1 implies that the solution of the
optimization problem (5) is independent of the value of
λ. This does not necessarily imply that the solution of
the regularized problem (11) is also independent of λ.
However, our empirical study suggests that the solution
is very stable when λ varies in a wide range, for example
in (0.01, 10000).

2. We can use K-fold cross validation (CV) to select the
optimal tuning parameters {λ1,j}. We use the error rate
of a specified classification method such as the nearest
centroid or nearest neighbor method applied on the pro-
jected data to generate the cross validation score. Specif-
ically, we randomly split the data into K parts. Fixing
one part at a time as the test data, we apply the Sparse
LDA to the rest of the data (treated as training data) to
find the sparse discriminant vectors. Then we project all
the data onto these discriminant vectors, apply a given
classification method to the training data, and calculate
the classification error using the test data. After we re-
peat this K times, with one part as test data at a time,
we combine the classification errors as the selection crite-
rion. When the dimension of the input data is very large,
the numerical algorithm becomes time-consuming and we
can let λ1,1 = · · · = λ1,q to expedite computation.

Algorithm 1 Sparse LDA Algorithm

1. Form the matrices Hb ∈ R
k×p and Hw ∈ R

n×p from
the data as follows

Hw = X−




en1 x̄T
1

...
enk x̄T

k


 and Hb =




√
n1(x̄1 − x̄)

...√
nk(x̄k − x̄)


 .

2. Compute the upper triangular matrix Rw ∈ R
p×p

from the Cholesky decomposition of HT
wHw such

that HT
wHw = RT

wRw.

3. Solve q independent LASSO problems

min
βj

βT
j (W̃T W̃ )βj − 2ỹT W̃βj + λ1‖βj‖1,

where

W̃(n+p)×p =

(
Hb√
λRw

)
, ỹ(n+p)×1 =

(
HbR

−1
w αj

0

)
.

4. Compute the singular value decomposition
R−T

w (HT
b Hb)B = UDV T and let A = UV T .

5. Repeat steps 3 and 4 until converges.

3.3 Sparse regularized LDA

When the number of variables exceeds the sample size,
i.e., the high dimensional, low sample size (HDLSS) set-
tings according to Marron et al. (2005), the within-class
covariance matrix is singular and the method proposed
above breaks down. One method to circumvent this sin-
gularity problem is to regularize the within-class covari-
ance, similar to the regularization method as used in ridge
regression.

Consider a standard linear regression with the design ma-
trix X. When X is collinear or close to being collinear,
the normal equation XT Xβ = XT Y is ill-conditioned
and can not produce a stable solution. To stabilize the
solution, ridge regression adds a positive multiple of the
identity matrix to the Gram matrix XT X in forming the
normal equation, that is, (XT X + γI)β = XT Y . Simi-
larly, when the within-class covariance matrix Σw is sin-
gular, we can replace it by Σw + γI when applying LDA.
This idea has been proposed in the past, see for example,
Champbell (1980), Peck and Van Ness (1982), Friedman
(1989), and Rayens (1990). We adopt this idea but fur-
thermore introduce sparsity in the discriminant vectors.
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Algorithm 2 Sparse rLDA Algorithm

1. Form the matrix HB ∈ R
k×p and HW ∈ R

n×p from
the data as follows

HW = X −




en1 x̄T
1

...
enk x̄T

k




HB = (
√

n1(x̄1 − x̄), . . . ,
√

nk(x̄k − x̄))T

2. Compute upper triangular matrix Rw ∈ R
p×p from

the Cholesky decomposition of Σw + (γ/p) tr (Σw)I
such that Σw + (γ/p) tr (Σw)I = RT

wRw.

3. Solve q independent LASSO problems

min
βj

βT
j (W̃T W̃ )βj − 2ỹT W̃βj + λ1‖βj‖1, (13)

where

W̃(n+p)×p =

(
HB√
λRW

)
, ỹ(n+p)×1 =

(
HBR−1

W αj

0

)
.

4. Compute the singular value decomposition
R−T

W (HT
BHB)B = UDV T and let A = UV T .

5. Repeat steps 3 and 4 until converges.

Consider the generalized eigenvalue problem

Σbβ = η

(
Σw + γ

tr (Σw)

p
I

)
β,

where γ is a regularization parameter. The identity ma-
trix is scaled by tr (Σw)/p so that the matrices Σw and
{tr (Σw)/p}I have the same trace. We refer to this prob-
lem as regularized LDA (rLDA for short). Following
the same development as in Section 3.2, we see that the
eigenvectors β1, . . . , βq, associated with the first q largest
eigenvalues of the generalized eigenvalue problem can be
obtained up to a scaling constant as the solution to the
following regression-type problem

min
A∈R

p×q

B∈R
p×q

k∑

i=1

‖R−T
w Hb,i − ABT Hb,i‖2

+ λ

q∑

j=1

βT
j

(
Σw + γ

tr (Σw)

p
I

)
βj ,

subject to AT A = Iq×q, where B = [β1, . . . , βq]. This
connection suggests using the L1 penalty to obtain spar-
sity for the βj ’s.

We define the first q sparse discriminant directions

β1, . . . , βq as the solutions to the following optimization
problem

min
A∈R

p×q

B∈R
p×q

k∑

i=1

‖R−T
w Hb,i − ABT Hb,i‖2

+ λ

q∑

j=1

βT
j

(
Σw + γ

tr (Σw)

p
I

)
βj +

q∑

j=1

λ1,j‖βj‖1,

(14)

subject to AT A = Iq×q, where B = [β1, . . . , βq]. Al-
gorithm 1 can be modified to obtain the sparse rLDA
directions. The resulting algorithm is summarized in Al-
gorithm 2. The two algorithms only differ in step 2.

Remark: In (14), γ is a tuning parameter that controls
the strength of regularization of the within-class covari-
ance matrix. A large value of γ will bias too much the
within-class covariance matrix towards identity matrix.
There are two helpful criteria for choosing γ. First, if
the sample size is small and the dimension is high, then
the within-class covariance matrix is not accurately es-
timated and therefore we want to employ a high degree
of regularization by using a relatively large value of γ.
Second, we can exploit the graphical tools to choose a
suitable γ with the aid of data visualization. For exam-
ple, we seek a γ that yields a good separation of classes for
the training data set. In our empirical studies, however,
we find that the results of sparse rLDA are not sensitive
to the choice of γ if a small value that is less than 0.1 is
used. We shall use γ = 0.05 for the empirical results to
be presented in Sections 4 and 5. More careful studies of
choice of γ are left for future research.

4 Simulated Data

4.1 Two classes

Our first simulation example contains training data set
of size 25 for each of the two classes and test data set of
size 100 for each class. The input data X has dimension
p = 100 so this is a HDLSS setting. Only the first two
variables of X can distinguish the two classes, and the
remaining 98 variables are irrelevant for discrimination.
The distribution of each class is

xi ∼
(

N2(µi, Σw,2)
Np−2(0, Ip−2)

)
, i = 1, 2,

µi =

(
0

± 0.9

)
, Σw,2 =

(
1 0.7

0.7 1

)
.

There is only one discriminant direction of Fisher’s LDA
since we have two classes. Clearly, the theoretical dis-
criminant direction depends only on the first two vari-
ables. Hence we can ignore the redundant variables in
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Figure 2: The theoretical projection direction and the
ellipses of the population distributions of the two classes.

deriving the theoretical direction. The between-class co-
variance matrix is given by

Σw,2 =
2∑

i=1

(µi − µ̄)(µi − µ̄)T =
1

2
(µ1 − µ2)(µ1 − µ2)

T

and the within-class covariance matrix is Σb,2. The the-
oretical discriminant direction is the leading eigenvector
of Σ−1

w,2(µ1 −µ2)(µ1 −µ2)
T , which is (−0.57, 0.82) in this

example. This projection direction and the ellipses of the
population distributions of the two classes are plotted in
Figure 2. The estimated direction will be compared with
the theoretical direction derived here.

Since this is a HDLSS case, Σw is singular and therefore
sparse LDA is not directly applicable. We thus applied
the sparse rLDA to the simulated data sets. Denote the
number of significant variables involved in specifying the
discriminant direction to be m. For each of 50 simulated
data sets, we applied sparse rLDA for m = 1, 2, 3, 4, 5,
10, 20, 30, 40, 50, 75, 100, and calculated the angles be-
tween the estimated and the true discriminant directions.
The average angles as a function of m is plotted in the
top panel of Figure 3. It is very clear that sparsity helps:
Compare average angles around 30 degrees for m = 2–
20 to an average angle about 60 degrees for m = 100.
Sparse discriminant vectors are closer to the theoretical
direction than the non-sparse ones.

The theoretical discriminant direction has only 2 nonzero
components, while in Figure 3 the smallest average an-
gle is achieved when m = 10. Although difference of
the average angles between m = 2 and m = 10 is not
significant, one may wonder why m = 10 is the best in-
stead of m = 2. The main reason for this discrepancy is
the insufficiency of training sample size, which causes the
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Figure 3: A simulated example with two classes. Top
panel: The average of angles between the estimated and
theoretical directions as a function of the number of vari-
ables used. Bottom panel: Average classification error
rates using least centroid on the projected data. Based
on 50 simulations.

estimation of the covariance matrix Σw inaccurate and
therefore the inclusion of more variables. We did some
simulation experiments with increased sample size and
observed that the optimal m indeed decrease and come
closer to m = 2.

The closeness of estimated direction to the theoretical
direction also translates into out-of-sample classification
performance. The bottom panel of Figure 3 shows the in-
sample and out-of-sample classification error rate using
nearest centroid method applied to the projected data.
When all variables are used in constructing the discrimi-
nant vectors, the overfitting of training data is apparent,
and is associated with low in-sample error rate and high
out-of-sample error rate. The out-of-sample error rate
is minimized when the number of significant variables
used in constructing the discriminant vectors is ten. It
is also interesting to point out that the shape of the out-
of-sample error rate curve resembles that of the average
angle curve shown on the top panel of Figure 3.

The discriminant power of the sparse discriminant pro-
jection is illustrated in Figure 4, where we plotted the
projected, both training and test, data. On the left pan-
els, regularized LDA with penalty parameter γ = 0.05
was used to obtain the discriminant direction. Compar-
ing with the upper left panel of Figure 1, we see that
regularized LDA does help alleviate data piling slightly,
but does not help improve out-of-sample classification.
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Projected data

Figure 4: A simulated example with two classes. Top
panels are the results of rLDA and sparse rLDA (m = 5)
for the training data; bottom panels are the results for the
test data. The in-sample and out-of-sample error rates
are 0 and 32% for rLDA and 12% and 13.5% for sparse
rLDA, when applying the nearest centroid method to the
projected data. The dimension of the data is 100 and
there are 25 cases for each class.

On the other hand, if sparsity is imposed in obtaining
the discriminant direction, data piling of training set dis-
appears and substantial improvement in test set classifi-
cation is manifested.

4.2 Three classes

In this example we have three classes. The dimension of
the input data is p = 100. For each class, there are 25
cases in the training data set and 200 cases in the test
data set. The distribution of each class is

xi ∼
(

N3(µi, Σw,3)
Np−3(0, Ip−3)

)
, i = 1, 2, 3,

where

(µ1, µ2, µ3) =




0 0.9 0
0 −0.9 0

1.6 1.1 0




and

Σw,3 =




1 0 0.7
0 1 0.7

0.7 0.7 1


 .

There are two discriminant directions of Fisher’s LDA for
this three-class problem. We first derive the theoretical
directions. As in the previous example, we can ignore
the redundant variables in this calculation. The between-
class covariance matrix is given by

Σb,3 =
1

2

3∑

i=1

(µi − µ̄)(µi − µ̄)T

and the within-class covariance matrix is Σw,3. The
two true projection directions are the eigenvectors of
Σ−1

w,3Σb,3.

Since the within-class covariance matrix with all variables
is singular, we applied sparse rLDA to the simulated data
sets. There are two discriminant directions that form a
2-dimensional dimension reduction subspace. In estimat-
ing the sparse discriminant directions, we let the number
of included variables m in the two projections to be the
same. For a set of values of m, we calculated the an-
gles between the estimated projection subspace and the
theoretical discriminant subspace for 50 simulation runs.
Here the angle between two q-dimensional spaces is de-
fined by θ = arccos(ρ), where ρ is the vector correlation
coefficient (Hotelling 1936) defined in the following way.
Suppose A and B are two matrices whose columns form
the orthonormal bases of the two q-dimensional spaces
under consideration. Then the vector correlation coeffi-
cient is

ρ =
( q∏

i=1

ρ2
i

)1/2

,

where ρ2
i are the eigenvalues of the matrix BT AAT B.

The top panel of Figure 5 shows the average angles as
a function of m, while the bottom panel shows the error
rate of nearest centroid applied to the projected data.
Both the average angle and the out-of-sample error rate is
minimized around m = 30. Use of only a small number of
variables in constructing the discriminant directions does
help estimate the theoretical directions more accurately
and improve the classification performance.

To illustrate the discriminant power using estimated dis-
criminant directions, we show in Figure 6 the projection
of a training data set and a test data set on the subspace
spanned by the two discriminant directions obtained us-
ing rLDA and sparse rLDA. Without incorporating spar-
sity in the discriminant vector, the data piling is apparent
in training data set and projected data lead to terrible
discrimination. As a contrast, if sparsity is imposed in
estimating the discriminant directions, the data piling in
the training set is avoided and good test set classification
is achieved.

5 Real Data Examples

5.1 Wine data

The data, described in Forina et al. (1991) and available
at The UCI Repository of Machine Learning Databases
(Merz and Murphy, 1996), are the results of a chemical
analysis of wines grown in the same region in Italy but
derived from three different cultivars. The chemical anal-
ysis determined the quantities of 13 constituents found in
each of the three types of wines. Our statistical analy-
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Figure 5: A simulated example with three classes. Top
panel: The average of angles between the estimated and
theoretical directions as a function of the number of vari-
ables used. Bottom panel: Average classification error
rates using least centroid on the projected data. Based
on 50 simulations.
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Figure 6: A simulated example with three classes. Top
panels are the results of rLDA and sparse rLDA (m = 10)
for the training data; bottom panels are the results for the
test data. The in-sample and out-of-sample error rates
are 0 and 44.3% for rLDA and 0 and 0.3% for sparse
rLDA, when applying the nearest centroid method to the
projected data. The dimension of the data is 100 and for
each class, there are 25 cases in the training data and 200
cases in the test data.

sis is to find which type of wine a new sample belonging
to based on its 13 attributes. The data consists of 178
instances, each belonging to one of three classes. This
is not a HDLSS setting. Fisher’s LDA projects the data
to a two-dimensional subspace of R

13. We would like to
explore if it is possible to classify the wines using only
part of the 13 constituents. In estimating the sparse dis-
criminant directions, for simplicity, we let both direction
vectors to have the same number of nonzero components
m, which is set between 1 and 13.

We partitioned the data randomly into a training set with
2/3 of the data and a test set with 1/3 of the data. We
did the random partition 50 times to average out the
variability in the results due to the partition. For each
partition, we used sparse LDA on the training data and
obtained two sparse discriminant directions. Then we
used the nearest centroid method on the projected data
and computed the test set error rates. Figure 7 shows
the average of error rates for 50 partitions as a function of
the number of variables involved in each estimated sparse
direction.
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Figure 7: Wine data. The average of error rates as a
function of the number of variables. Based on 50 random
partitions of the dataset into training and test.

From the plot it is clear that if we specify m = 6 for
each discriminate direction, sparse LDA can discriminate
the classes fairly well. To check the stability of variable
selection, we fixed m = 6, did 50 random partitions, and
recorded the selected variables for each partition. Table 1
summarizes the frequency of each variable being selected.
It shows that the variable selection is not sensitive to the
random partition. Overall, eight variables are important
in the discriminant analysis.

Finally, we picked one random partition and compared
Fisher’s LDA with the sparse LDA by plotting the pro-
jected data as in Figure 8. The results show that using
six variables in each discriminant projection can separate
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Table 1: Wine data. Frequency of selected variables.

P
P

P
P

P
P

PP

variable ♯
1 2 3 4 5 6 7 8 9 10 11 12 13

projection 1 1 11 0 50 45 0 50 0 0 50 0 43 50
projection 2 50 49 2 48 45 0 1 0 4 49 0 2 50
importance

√ √ √ √ √ √ √ √

the data almost as well as using all the variables. It is
not surprising that the separation is the best when using
all the variables because, in this example, each variable is
a constituent that characterizes the wine and would not
be redundant. But the sparse LDA does suggest which
constituents are the most important in the classification
of wines.
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Figure 8: Wine data. Projection of the data (training and
test separately) onto the two discriminant directions.

5.2 Gene expression data

We use two gene expression microarray data sets to il-
lustrate the sparse rLDA method. Gene expression mi-
croarrays can be used to discriminate between multiple
clinical and biological classes. It is a typical example of
HDLSS settings because there are usually thousands of
genes while the availability of the patients is very limited.

The first data set is the Colon data set (Alon et al., 1999),
which contains 42 tumor and 20 normal colon tissue sam-
ples. For each sample there are 2000 gene expression level
measurements. The second data set is the Prostate data
set (Singh et al., 2002), which contains 52 tumor samples
and 50 normal samples. For each sample there exist 6033
gene expression level measurements. For both data sets,
the goal of the analysis is classification of tumor and nor-
mal samples based on the gene expression measurements.
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Figure 9: Colon data. The average test error rate as a
function of the number of significant genes for the nearest
centroid, 1-nearest neighbor and support vector machine,
applied to the reduced data obtained from sparse rLDA.
Based on 50 (2:1) training-test partition of the original
data set.

For each data set, we first reduce the dimensionality of
the data by projecting the data to the discriminant di-
rections obtained using sparse rLDA, then the reduced
data is used as an input to some standard classification
methods. We shall examine the effect of gene selection
on classification. Our sparse rLDA algorithm incorpo-
rates gene selection to constructing discriminant vector.
To expedite computation, we implemented a two-step
procedure. First we do a crude gene preselection using
the Wilcoxon rank test statistic to obtain 200 significant
genes. Then the preselected gene expressions are used as
input to sparse rLDA. Note that even after gene prese-
lection, we still have HDLSS settings, so regularization
of with-in class covariance matrices is needed and the
sparse rLDA instead of the sparse LDA algorithm should
be applied.

In the absence of genuine test sets we performed our com-
parative study by repeated random splitting of the data
into training and test sets. The data were partitioned
into a balanced training set comprising two-thirds of the
arrays, used for gene preselection, applying sparse rLDA
for dimension reduction and fitting the classifiers. Then,
the class labels of the remaining one-third of the experi-
ments were predicted, compared with the true labels, and
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Figure 10: Prostate data. The average test error rate as a
function of the number of significant genes for the nearest
centroid, 1-nearest neighbor and support vector machine,
applied to the reduced data obtained from sparse rLDA.
Based on 50 (2:1) training-test partition of the original
data set.

the misclassification error rate was computed. To reduce
variability, the splitting into training and test sets were
repeated 50 times and the error rate is averaged. It is
important to note that, for reliable conclusion, all gene
preselection, applying sparse rLDA and fitting classifiers
were re-done on each of the 50 training sets.

Three classifiers, the nearest centroid, 1-nearest neighbor
and support vector machine, have been applied to the re-
duced data for classification. Figures 9 and 10 plot the
average test error rate as a function of significant genes
used in sparse rLDA for the two data sets. The x-axis
is plotted using the logarithmic scale to put less focus
on large values. As the number of significant genes vary
from 2 to 200, the error rates for three methods all de-
crease first and then rise. The nearest centroid method
has the best overall classification performance. The ben-
eficial effect of variable selection in sparse rLDA is clear:
The classification using reduced data based on sparse dis-
criminant vectors perform better than that based on non-
sparse discriminant vectors. For example, if the nearest
centroid method is used as the classifier, using the sparse
discriminant vectors based on only 10-20 significant genes
gives the best test set classification, while using all 200
genes is harmful to classification. Note that the 200 genes
used are preselected significant genes, the benefit of using
the sparse rLDA could be much bigger if the 200 genes
were randomly selected.

6 Conclusions

In this paper, we propose a novel algorithm for con-
structing sparse discriminant vectors. The sparse dis-
criminant vectors are useful for supervised dimension re-
duction for high dimensional data. Naive application of

classical Fisher’s LDA to high dimensional, low sample
size settings suffers from the data piling problem. Intro-
ducing sparsity in the discriminant vectors is very effec-
tive in eliminating data piling and the associated over-
fitting problem. Our results on simulated and real data
examples suggest that, in the presence of irrelevant or
redundant variables, the sparse LDA method can select
important variables for discriminant analysis and thereby
yield improved classification.
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