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Abstract—Applications are given of a formula for

the exact probability density function of the maxi-

mum likelihood estimates of a statistical model, where

the data generating model is allowed to differ from

the estimation model. The main examples are sup-

ported by simulation experiments. Curved exponen-

tial families are investigated, for which an approach

is described that can be used in many practical situ-

ations. The distribution of a maximum likelihood es-

timator in exponential regression is developed. Non-

linear regression is then considered, with an example

of a model discrepancy situation arising in ELISA im-

munoassays and similar biochemical titrations. An in-

correct logistic model is specified for a titration curve

that is used for describing the reaction of a chemical

sample to applied substrate concentration. A method

is suggested to reduce the amount of bias in the es-

timate of binding affinity. Finally there is a prospec-

tive discussion of other possible uses of the technique,

including general comparisons of sets of alternative

models in frequentist and Bayesian settings, appli-

cations to robust estimation and extensions beyond

maximum likelihood estimates.
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1 Introduction

A technique for estimator densities (TED) gives the exact
joint density of the maximum likelihood estimates (MLE)
from a specified statistical model, typically a nonlinear
regression model [11]. The method can be used where
the estimation model either agrees with or differs from
the model that has generated the data.

The use of a specific estimation model is widespread when
the data are presumed to be distributed in a certain way
according to a scientific hypothesis. Nevertheless the
modeller may accept that alternative hypotheses are pos-
sible. TED considers a pair of models without exploring
specifically the question of discriminating between them.
The models are freely chosen and need not be nested. We
can consider two situations.
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1. Estimation model equivalent to data generating model.
Here TED is in competition with existing approximate
and exact analytic techniques. It is an addition to the
statistical toolbox as an analytical approach to derive the
exact algebraic expression for the density of the MLE.

2. Estimation model not equivalent to data generating
model. Here TED may be the only exact analytic method
that is available for describing the density of the quasi
maximum likelihood estimates (which will also be termed
MLE here).

Since TED operates under both of these situations, it
can be used as a basis for assessing the robustness of an
estimation model against deviations from the presumed
data generating process. An exact criterion can also be
constructed that is based on Kullbach-Leibler informa-
tion for the comparison of a pair of alternative models as
fitted to a set of data. This dispenses with the asymp-
totic approximation that is inherent in most other such
criteria in common use like AIC [12]. TED is of most
potential value for cases where data samples are unique
or expensive to replicate. It can therefore be expected to
be particularly useful in areas such as epidemiology (e.g.
[16]) and econometrics (e.g. [5]), where bias can arise
from functional differences between models or by overfit-
ting or underfitting models to data. It should be stressed
that the construction of the analytic density of the MLE
is an algebraic exercise that can be intractable for more
complicated setups. TED facilitates the algebraic proce-
dure but may still not provide a closed solution in more
difficult cases.

In this paper the application of TED to curved exponen-
tial families will be described and two examples will be
given. The first example is exponential regression, where
the technique gives an easy path to derive results that are
already available in the literature. The second example
demonstrates nonlinear regression modelling in the set-
ting of biochemical titration experiments, where distinct
data generating model and estimation model are speci-
fied. For these examples S-Plus has been used because
of its easy facility for handling vectors and matrices [25].
APL2 was also previously found to be a suitable medium
for the calculations [10][11]. Finally there is a discus-
sion of ways that TED could be extended to other kinds
of estimates, including in particular M-estimates for ro-
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bust estimation, and also how comparison of members of
a family of models can be approached via TED under
either frequentist or Bayesian paradigms.

2 TED applied to curved exponential
family estimation models

2.1 The technique

In the following, statistical models will be specified in
terms of the densities of data that are generated by them.

The n members of a sample are described as a (n × 1)
vector w, g0(w) is the true density of w, and g1(w|θ) is
the presumed density with a (p × 1) parameter vector
θ to be estimated. The log likelihood corresponding to
g1(w|θ) is l(θ|w). The space of w is W , and the space
of θ is Θ. A (n × 1) vector of independent variables z
or a design matrix can be introduced to cope with the
regression situation.

θ̂ is the MLE and is given as l′(θ, w)|
θ=θ̂

= 0, (where ′

indicates differentiation with respect to θ).

Consider a (p×1) vector T .

T (θ, θ∗, w) = l′(θ∗, w) − l′(θ, w), (1)

where θ∗ is fixed at an arbitrary value. Under a simple set
of regularity conditions, the exact density for θ̂ is given
as follows.

g(θ̂) = Ew[|j(θ, w)||
θ=θ̂

] . g[T (θ̂,θ∗=θ̂,w)](0), (2)

where j(θ, w) = −l′′(θ, w) is the observed information,
and the second term represents the value of the density
g[T (θ̂,θ∗,w)](t), for which θ∗ = θ̂, and hence t = 0 by (1).

The term Ew[|j(θ, w)||
θ=θ̂

] describes a conditional expec-

tation, that is conditional on θ = θ̂ and is taken with
respect to w over g1(w|θ).

Ew[|j(θ, w)||
θ=θ̂

] =





∫
W

θ̂(v)

|j(θ,w(v))||
θ=θ̂

. g1(w(v)|θ=θ̂) . ||w′(v)|| dv

∫
W

θ̂(v)

g1(w(v)|θ=θ̂) . ||w′(v)|| dv



 (3)

It is usually unnecessary to evaluate the multidimensional
integrals in (3), because in practice terms in w can be

replaced by Ew[w|θ = θ̂], terms in w2 by Ew[w2|θ =

θ̂], etc. For example, if the model g1(w|θ) was normal
N(h[θ1], θ2), terms proportional to w would be replaced

by terms proportional to h[θ̂1], and terms proportional

to w2 would be replaced by terms proportional to θ̂2 +
[h(θ̂1]

2.

The proof of (2) is given in [11] and consists of three
parts. Part 1 considers the special case where each real-
isable value of θ̂ is associated with a distinct data vector,

w
θ̂
. The conditional density of θ̂ for fixed θ∗, h(θ̂|θ∗)

say, is then given by a standard change of variable ar-
gument, using a Jacobian. Part 2 of the proof goes on
to consider the usual case that more than one w

θ̂
vec-

tor can exist for each θ̂. Now the conditional density of
θ̂, g(θ̂|θ∗) say, is given as a conditional expectation of

h(θ̂|θ∗), conditional on θ̂ over the range of w
θ̂

vectors.
Part 3 of the proof provides the unconditional density
g(θ̂), by taking account of the fact that, for each θ̂ value,

part 2 specifies a distinct density g(θ̂|θ∗ = θ̂), for which

T (θ̂, θ∗ = θ̂, w(v)) = 0, by equation (1) and the property

l′(θ, w)|
θ=θ̂

= 0. The description of the density g(θ̂) is

made for various distinct θ̂ values and, for each of them,
θ∗ = θ̂ can be selected. When taken together, the corre-
sponding terms g(θ̂|θ∗ = θ̂) constitute a new density g(θ̂)
that is independent of θ∗ and is given by (2).

A simple introductory example involving the MLE of the
mean of a normal distribution estimation model is given
in [12]. Further examples are considered below.

2.2 TED with curved exponential family es-
timation models

TED will now be considered in the context of curved ex-
ponential families because a straightforward formulation
is obtained and many useful estimation models are cov-
ered.

Following Dobson [4], let θ appear in a (n× 1) canonical
function b(θ, z) and in a (p×1) functional c(θ, z), together
with (n × 1) functionals of the data a(w) and d(w); all
constrained to describe a valid density for w.

g1(w|θ) = exp[a(w)T b(θ, z)+1(p×1)
T c(θ, z)+1(n×1)

T d(w)],
(4)

where T indicates transposition.

If f(θ, z) is the unconditional expectation of a(w), then

the (p × 1) vectors for l′(θ, w) and T (θ̂, θ∗, w) are given
as follows.

l′(θ, w) = b′(θ, z) . (a(w) − f(θ, z)) (5)

T (θ̂, θ∗, w) = b′(θ∗, z) . (a(w) − f(θ∗, z)) (6)

Equation (6) shows that T (θ̂, θ∗, w) is a linear transform
of a(w), and so g[T (θ̂,θ∗,w)](t) can often be found easily.

The conditional expectation Ew[|j(θ, w)||
θ=θ̂

] is obtained
as in (3) from the observed information j(θ, w), which
is a (p × p) matrix that is calculated by differentiating
l′(θ, w) again.

−j(θ, w) = l′′(θ, w) =

[b′′(θ, z) . (a(w) − f(θ, z))] − [f ′(θ, z) . (b′(θ, z)T ] (7)

Here b′′(θ, z) is a (p × p × n) matrix, while f ′(θ, z) and
b′(θ, z) are (p × n) matrices.
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3 Exponential regression (Case 1, esti-
mation model equivalent to data gener-
ating model)

The prescriptive formula (2) will often be easier to use
than other suggested analytic methods. Consider for ex-
ample an equation for g(θ̂) that was introduced by Hillier
and Armstrong [7], and then applied to exponential re-
gression by Hillier and O’Brien [8]. Here, equivalents to
a subset of their results will be demonstrated using TED,
which offers a shorter derivation.

Data are distributed according to a negative exponential
density, with the rate parameter itself given as an expo-
nential function of an underlying independent (n × 1)
variate z. As above, the data set is of n values wi with
prespecified independent variables zi. A single scalar
parameter θ0 is to be estimated in this example (p = 1).

g0(wi) = γ0i.exp[−wiγ0i],

wi > 0, γ0i = exp[−ziθ0] > 0 (8)

This can be written in vector forms for the equivalent
data generating model and estimation models.

g0(w) = exp
[
−θ0z

T 1 − wT .exp[−θ0zi]
]

(9)

g1(w|θ) = exp
[
−θzT .1 − wT exp[−θzi]

]
(10)

Here, 1 is a (n×1) vector of 1s. exp[−θ0zi] and exp[−θzi]
are (n × 1) vectors that contain, respectively, the scalar
quantities exp[−ziθ0] and exp[−ziθ] taken over the n val-
ues of zi (i = 1, ..., n).

Density (10) is a member of the exponential family (4),
with

a(w) = w, b(θ, z) = −exp[−θzi],
1T c(θ, z) = −θzT 1, 1T d(w) = 0.

The unconditional expectation of a(w) is the (n×1) vec-
tor f(θ, z) = exp[θzi]. So, from (6),

T (θ̂, θ∗, w) = (ziexp[−θ∗zi])
T . (w − exp[θ∗zi]), (11)

where ziexp[−θ∗zi] and exp[θ∗zi] are (n × 1) vectors.

Also

−j(θ, w) = l′′(θ, w) = −(z2
i exp[−θzi])

T . w

Ew[|j(θ, w)||
θ=θ̂

] = Ew[|(z2
i exp[−θzi])

T . w|
θ=θ̂

] =

[|(z2
i exp[−θ̂zi])

T | . (Ew [w]|
θ=θ̂

) =

(z2
i exp[−θ̂zi])

T . (exp[θ̂zi]) = (z2
i )T .1, (12)

where z2
i exp[−θzi] and z2

i are (n × 1) vectors.

Examining (11), T (θ̂, θ∗, w) is a weighted sum of expo-
nentials with an offset. Let

V = (ziexp[−θ∗zi])
T . w =

n∑

i=1

wizi.exp[−ziθ
∗] (13)

Then

T (θ̂, θ∗, w) = V − (ziexp[−θ∗zi])
T . (exp[θ∗zi]) = V − zT1

(14)

The density of T can be obtained by first finding the
density of V and then applying a transformation. If vi is a
standard exponential variable (g(vi) = exp[−vi]), then V
can be expressed as a weighted sum of n such independent
variables. From (13), V =

∑n
i=1 Φivi, where, in terms of

scalar quantities,

Φi = ziexp[−ziθ
∗] . exp[ziθ0] = ziexp[zi(θ0 − θ∗)] (15)

As a weighted sum of independent standard exponential
variables, V has a general Erlang distribution [14].

g(V ) =

n∑

i=1




∏

i6=k

(Φi − Φk)−1



 .Φn−2
i .

(
exp

[
−V

Φi

])
,

V≥ 0 (16)

The analytic formula for g(θ̂) is now developed, without
loss of generality, for the case n = 2. Re-expressing (16)
using (15),

g(V ) =
1

(z1exp[(θ0 − θ∗)] − z2exp[(θ0 − θ∗)])
.

(
exp

[
−V

z1exp[z1(θ0−θ∗)]

]
− exp

[
−V

z2exp[z2(θ0−θ∗)]

])
,

V≥ 0 (17)

Now, from (14), g[T (θ̂,θ∗,w)](t) = g[V ](t +
∑

zi), and

g[T (θ̂,θ̂,w)](0) = g[V ](
∑

zi). Applying equation (2) to (12)

and (17), when V =
∑

zi,

g(θ̂) = (z2
1 + z2

2).
1

(z1exp[(θ0 − θ̂)] − z2exp[(θ0 − θ̂)])
.

(
exp

[
−(z1+z2)

z1exp[z1(θ0−θ̂)]

]
− exp

[
−(z1+z2)

z2exp[z2(θ0−θ̂)]

])
, θ̂ ≥ 0

A program was written to calculate this density and also
to construct a simulated probability histogram by deriv-
ing samples using a sequence of independent standard
exponential random numbers. The MLE θ̂ can be cal-
culated for each simulated data set without difficulty as
an analytical formula. For this experiment, θ0 = 0.8,
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Figure 1:
Exponential regression. Empirical probability density

function based on a histogram of estimates from 100,000

simulations, with analytic distribution g(θ̂). (X-axis label

Theta is θ̂).

z1 = 0.75 and z2 = 1.5. 100,000 simulated sets of data
were used. Fig. 1 shows the comparison of the densities
derived by the analytic method and by simulation. By
inspection, the simulated probability histogram can be
seen to agree well with the analytic density. The analytic
density agrees well with Fig. 3.1 of [8].

4 Nonlinear regression models

Consider a nonlinear regression model with normal er-
rors, MNw(µ(z); Σ), where µ(z) is the (n × 1) vector of
mean responses and Σ is the known (n × n) covariance
matrix. Assume that the data generating model g0(w|z)
has µ(z) = f0(z), and the estimation model g1(w|θ, z)
has µ(z) = f(θ, z), where f(θ, z) can be nonlinear with
respect to θ. The estimation model can be restructured
in the form (4), with

a(w) = w, b(θ, z) = Σ−1f(θ, z),
1T c(θ, z) = − 1

2f(θ, z)T Σ−1f(θ, z),
1T d(w) = − 1

2 [nlog(2π) + log|Σ|+ wT Σ−1w]

From (6),

T(θ̂, θ∗, w) = f ′(θ∗, z)Σ−1[w − f(θ∗, z)]

The density of T (θ̂, θ∗, w) is as follows.

MNT (f ′(θ∗, z)Σ−1[f0(z) − f(θ∗, z)];
f ′(θ∗, z)Σ−1ΣΣ−1(f ′(θ∗, z))T )

For the simple iid case Σ = σ2I, where I is the (n × n)

identity matrix, the density g(θ̂) can be obtained from
(2) as follows.

g(θ̂) = Ew[|j(θ, w)||
θ=θ̂

] . |
2π

σ2
f ′(θ̂, z)(f ′(θ̂, z))T |−

1
2 .

exp ( − 1
2σ2 [f(θ̂, z) − f0(z)]T [f ′(θ̂, z)]T

[f’(θ̂, z)(f ′(θ̂, z))T ]−1[f ′(θ̂, z)][f(θ̂, z) − f0(z)] )

(18)

Further explanation is given by Hingley [11], where there
is a recipe to evaluate Ew[|j(θ, w)||

θ=θ̂
], in particular

demonstrating the setup for a two parameter nonlinear
model. An example of nonlinear regression is given in
Section 5 below.

For the method as developed here, a complete descrip-
tion of the data generating model is assumed known, in-
cluding specification of σ2. However, in an experimental
situation, error variance is usually estimated from the
residual sum of squares after fitting the model to data,
giving an MLE σ̂2 that is biased (an unbiased estimate is

n
(n−p) σ̂

2). Now the form of equation (18) shows that g(θ̂)

depends on σ2 but does not depend on σ̂2. An exten-
sion of the density, to include σ̂2 with θ̂ in a joint density
g(σ̂2, θ̂), requires multiplication of g(θ̂) by the conditional

density g(σ̂2|
θ̂
).

In the common case where the data generating model is a
linear model, with a (n×p) design matrix X0 and a (p×1)
parameter vector B0, then f(θ0, z) = X0B0. The density

g(σ̂2|
θ̂
) is that of a multiple of a central chi-square variate

if the estimation model agrees with the data generating
model. This distribution does not depend on f(θ̂, z) or θ̂,

so g(σ̂2|
θ̂
) = g(σ̂2) and g(σ̂2, θ̂) = g(θ̂).g(σ̂2). In the case

of equivalent nonlinear models, the density g(σ̂2|
θ̂
) is also

that of a multiple of a variable with a central chi-square
distribution. But for either linear or nonlinear models, if
there is a distinction between the data generating model
and the estimation model, then g(σ̂2|

θ̂
) will be related

to a noncentral chi-square density, with a noncentrality
parameter depending on f(θ̂, z)− f0(z) as well as σ2 and
other terms [15]. An effective dependence is created be-

tween g(θ̂) and g(σ̂2), in the sense that both depend on

θ̂ and f0(z). However g(σ̂2, θ̂) = g(θ̂).g(σ̂2|
θ̂
) can still be

calculated if required, and in all cases g(θ̂) can be de-
termined from knowledge of σ2 without needing to worry
about the distribution of σ̂2. The above statements apply
to the simplest possible formulation of the error process
(Σ = σ2I) and should be revisited when using models
with more intricate error structures.
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5 Biochemical titration using a logistic
curve (Case 2, estimation model not

equivalent to data generating model)

This example involves a practical problem that exists in
biochemical assays, based on principles of physical chem-
istry. The assays are titrations and come in various types
- such as enzyme-linked immunosorbent assays (ELISA,
e.g. [19]), determinations of enzyme kinetics (e.g. [18]) or
other binding assays (e.g. [21]). They also relate to meth-
ods for total adsorption of substrate onto a heterogenous
surface [22], [20]. The measured reaction is an indirect
indicator of the way that two or more chemical entities in-
teract. A scientist may postulate several different models
for the nature of the interaction, so this is an area where
TED can be useful.

In titration experiments, the reactivity of an unknown
amount of a component in a chemical preparation is as-
sessed by applying various known concentrations of an-
other substrate substance, with which it reacts. It will be
seen that the mathematical form of the function that re-
lates the extent of reaction to the substrate concentration
is difficult to fit to data directly. A simpler function can
be used for estimation. In the presence of errors in the
measured experimental data from the chemical titration
experiment, a problem exists of assessing the robustness
of estimation of the parameters under the resulting mis-
specified model. This situation for ELISA estimations of
antibody levels in serum is discussed in [19].

Here, the the simplest kind of two component chemical
reaction is assumed. The reversible reaction of two sub-
strates can be described by the Law of mass action [26].
Let s and y be the separate chemical components, while
s.y is the product of reaction in what is assumed to be a
reversible process.

s + y ⇀↽ s.y

Suppose that a biochemical assay is to be carried out
to assess a chemical sample by reacting it with varying
concentrations of substrate. From now on, let the terms
indicate the concentrations of the reacting components.
y0 and sapp are the applied concentrations of the chemi-
cal sample and substrate respectively, while s.y, s, y are
the concentrations respectively of bound chemical sam-
ple, unbound chemical sample and substrate that remain
at equilibrium.

The affinity of the components for each other can be ex-
pressed as an equilibrium constant.

K =
s.y

sy
=

s.y

(sapp − s.y)(y0 − s.y)
(19)

The magnitude of K represents the propensity of the
components to react with each other. If they have a high
affinity, then the concentration of product at equilibrium
will be high and hence K will have a high value.

The concentration y0 is fixed but unknown, while the con-
centration sapp is known and allowed to vary. The aim
of the exercise is to estimate K and, if possible, y0 as
well. At chemical equilibrium, the fraction of the chemi-
cal sample that is bound by substrate is given by a logistic
function.

f =
s.y

y + s.y
=

Ksy

y + Ksy
=

Ks

1 + Ks
(20)

It is straightforward to fit this model to data by using
an iterative nonlinear estimation routine [10]. But (20)
is specified with respect to s, the substrate concentration
at equilibrium, rather than the applied concentration of
substrate sapp. In the usual setup of a titration experi-
ment, a series of readings are taken at different sapp val-
ues. Equation (20) then does not apply.

Meinert and McHugh [17] give an expression from which
the fraction of substrate bound can be found in terms of
sapp. In the following, the variables from (19) are repa-
rameterised as γ0 = logK, z = log[sapp].

f0(z) =
1

2y0

[
ez + e−γ0 + y0 − +

√
(ez + e−γ0 + y0)2 − 4ezy0

]

(21)

Assume that a two parameter logistic model is fitted (in-
correctly) to applied substrate log concentration z, in the
presence of independent homoscedastic normal errors on
the assay measurements. This setup can be written as
a nonlinear regression model using the formulation that
was given in Section 4.

w = f(θ, z) + ǫ,

where ǫ is distributed as N(0, σ2I), and σ2 is assumed
known.

The function f0(z) is given by (21) and will now be writ-
ten as f0(θ0, z), with θ0 = [γ0, y0]

T .

The logistic estimation model (20) will be recast as fol-
lows.

f(θL, z) =
eaL(γL+z)

1 + eaL(γL+z)
, (22)

where θL = [γL, aL]T . Comparison of equation (22)
with (20) shows that aL has been introduced, with γL =
1

aL
logK. The new parameter aL allows some flexibility

in the slope of the fitted function, since the data generat-
ing model (21) will be sigmoidal when f(θ0, z) is plotted
against z, but can not be expected to agree in form with
(22). While the aim is to estimate γ0, and aL will be
considered as a nuisance parameter in terms of the chem-
ical reaction, in fact there are some contexts in which aL

has a physical meaning. In immunoassays for example,
where y represents a heterogenous set of antibody mole-
cules of differing affinity, aL determines the distribution
of affinity [1], [9]. Application of L’Hopital’s rule to equa-
tion (21), with 2y0 being the bottom component, shows
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Figure 2:
Fractional saturation curves for biochemical reactions.

Triangles: Data generating model f0(θ0, z) according to

equation (21); γ0 = −3, y0 = 100. Circles: Logistic curve

f(θ̂L, z) according to equation (22), with θ̂L generated using

equations (23) and (24), after substituting θ̂0 = θ0.

that, as y0 → 0, the curve f0(z) tends towards the logis-
tic f(θL, z), with aL = 1 and γ0 = γL. Nevertheless, in
an assay that contains any chemical sample at all, y0 will
be positive and located away from zero.

This exercise is supported by a set of simulated data using
γ0 = −3, y0 = 100, and σ2 = 0.008787 (comparable to
[11], Example 3.4). 16 z values were taken in 8 replicate
pairs, that were equally spaced from 2.8 to 4.9. This de-
sign is chosen to emulate a typical experimental ELISA
setup. Fig. 2 shows f0(z) using these parameter val-
ues. A function f(θL, z) is also shown that is equivalent
to f0(z) according to an ad-hoc method that will be de-
scribed below. It is striking that both plots look similar,
even though the physical processes that are assumed to
be generating them differ. A significance test to discrim-
inate between the models in the presence of experimental
error might have difficulty to do so. The data generating
model is slightly asymmetric, with a flattening towards
the top of the curve, while the logistic curve is symmetric.

An attempt was made to fit the data generating model
(21) separately to each simulated data set. The data sets
were made and analysed by an S-Plus program, with the
standard iterative nonlinear routine nls used to estimate
the parameters [25]. The default Gauss-Newton algo-
rithm did not specify derivatives and the starting values
each time were γ0 and y0. After successfully fitting five
simulated sets of data, the iterative algorithm did not
converge for the sixth set and caused a process interrup-

Figure 3:
Distributions of estimates from biochemical titration tests.

A probability density function (pdf) surface g(θ̂) according

to equation (18). (X-axis label aL is âL. Y-axis label

GammaL is γ̂L.)

tion. The data set that failed was rather flat compared to
the expected values from which it had been generated. It
might have been possible to force a fit by using another
algorithm or by tailoring the control parameters, but this
was not investigated further. It seems that it is difficult
to fit the model (21) directly to data.

The TED expression g(θ̂L) was calculated from (22), us-
ing the method described in [11] for a nonlinear regression
model that is based on equation (18), with two estimable
parameters and homoscedastic independent normal er-
rors. The fit of (22) was assessed on a series of simulated
data sets that were generated by (21) in the same way
as described above, using as starting values for the fit-
ting algorithm γL = −3, aL = 1.5. This time 1,000
sets of simulated data were fitted without apparent diffi-
culty, although experiments with much larger numbers of
simulations again suggested that there can be occasional
occurences of non convergence.

Fig.s 3 and 4 show a comparison of g(θ̂L) with an empir-
ical density plot of the 1,000 results from the simulated
data sets. Visual inspection indicates agreement of the
simulated data with the analytic density. Bias can ex-
ist in any situation where the data generating model or
the estimation model are asymmetric and the experimen-
tal design does not centre around the mid point of the
model. Here, both the analytic density and the simula-
tions demonstrate that γ̂L is indeed a biased estimator
of γ0. The distribution is centred at about γ̂L = −4.22
(compared to γ0 = −3), âL = 1.45, with positive correla-
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Figure 4:
Distributions of estimates from biochemical titration tests.

Empirical probability density function (pdf) based on a

histogram of estimates from 1,000 simulation experiments.

(X-axis label aL is âL. Y-axis label GammaL is γ̂L.)

tion between the estimates.

How should the experimenter proceed to estimate γ0 af-
ter fitting a logistic curve to a single set of data? No
perfect solution will be offered here, but a suggestion can
be made for a correction that reduces the bias of the es-
timate to some extent. A reparameterisation of the esti-
mates can be made from θ̂L = [γ̂L, âL]T to θ̂0 = [γ̂0, ŷ0]

T ,
by using an ad hoc method to pick an equivalent curve
f0(θ̂0, z) to the fitted curve f(θ̂L, z). Let z0.5 be the

value of z at half saturation. Set γ̂0 to give f0(θ̂0, z) with
the same half saturation value z0.5 and slope δf

δz
|z=z0.5 .

This is chosen because the algebra is simple and because
a well designed experiment will centre measurements
roughly around z0.5. Equation (22) gives γL = −z0.5, and
δf(θL,z)

δz

∣∣
z=z0.5 = aL

4 , leading to the following suggestions
for corrections.

γ̂0 = γ̂L + log

(
4 − âL

âL

)
(23)

ŷ0 = 4e−γ̂L(1 −
âL

2
) (24)

Constraints on âL are suggested by empirical equation
(23) as 0 < âL < 4, and by empirical equation (24) as
âL < 2, implying 0 < âL < 2. However, in the simula-
tions a few âL values are above 2, which demonstrates
that this is indeed an approximate argument (âL: mean
= 1.45, min.= 0.85, max. = 2.25; γ̂L: mean = -4.22, min.
= -4.49, max. = -4.01).
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Distributions of estimates from biochemical titration tests.

Empirical probability density function (pdf) based on a

histogram of estimates from 1,000 simulation experiments,

after reparameterisation using the bias reducing transfor-

mation according to equations (23) and (24). (X-axis label

Yo is ŷ0. Y-axis label Gamma0 is γ̂0.)

Fig. 5 shows an empirical density of the same 1,000
simulation results that were described in Fig. 4, after
transformation of the parameter estimates from each set
of simulated data from θ̂L to θ̂0. The reparameterisa-
tion has reduced the bias in estimation of γ0 (-3), and
now also gives information about the useful parameter
y0 (100) (ŷ0: mean = 75.5, min.= -29.3, max. = 184;
γ̂0: mean = -3.65, min. = -4.40, max. = -2.92). The
distribution of ŷ0 is diffuse - although it covers y0 (100),
it also reaches below 0 which has no physical meaning in
terms of applied concentrations for the chemical reaction.
Recall that equation (21) showed that γ0 is a measure of
the reactivity of the substance under assay, while y0 in-
dicates the total amount of the substance. The plateau
of the titration curve in some assays is not unity but is
proportional to the amount of substance under test [13].
The plateau thus gives additional information on y0 that
could be combined with the estimate ŷ0 from the two
parameter logistic estimation. The model will not be ex-
tended in this way here.

The density of the corrected estimates, and other poten-
tial corrections, could also be investigated using TED by
obtaining the density of the transformed variables after
multiplication by a Jacobian as follows.

g(θ̂0) = |dθ̂L/dθ̂0|.g(θ̂L)
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6 Uses and extensions of TED

TED is a framework approach for determining the density
of the MLE, where the functional forms of both the data
generating model and the estimation model are distinctly
specified. When models are the same, alternative analytic
approximate and exact methods are available [12]. But
apparently no other analytic techniques exist when the
models differ. Tractability can be achieved as long as the
density g[T (θ̂,θ∗,w)](t) can be determined and, for the case
of curved exponential family models, this involves the
determination of the density of the linear transform (6)
of a functional of the data. This can be done for simple
estimation models but there may be cases where it is hard
or impossible. Then approximations to g[T (θ̂,θ∗,w)](t) can
be tried and incorporated into the framework.

In the frequentist mode, if common parameters exist in
the data generating model and the estimation model,
then TED can be used to construct a formal Robust-
ness Index (RI) for the comparison of the adequacy of an
estimation model with a data generating model on a par-
ticular experimental design [11]. The emphasis is then on
the estimation of equivalent parameters on a set of candi-
date models that have a physical interpretation in terms
of an underlying experiment. This will often be more rel-
evant to the scientist than the rather sterile practice of
testing a null hypothesis vs. an alternative hypothesis to
discriminate between models. An advantage of TED is
to provide an analytic handle in an area where otherwise
simulations are used. The RI approach with TED may
itself require numerical integration to be carried out. It
is not suggested that numerical approaches are inappro-
priate, only that TED enables the departure point for
simulation work to be put further down the line where
more interesting results may be obtained.

In the Bayesian framework, an experimental approach
might be to align the prior density of a parameter θ on
a particular model with the TED density g(θ̂), since this
incorporates the range of variability in θ that might exist
when data are incorporated in order to calculate a pos-
terior density. Applications in Bayesian model selection
and in Bayesian model averaging might also be possible
[2], [3].

Model uncertainty can be countered by using distribution
free techniques and by robust estimation methods. Data
contamination, systematic error and various other forms
of heteroscedasticity are all facts of life that can also be
considered by using TED.

Theoretical extensions could be considered to the basic
design concept of TED. Other choices are possible for
T (θ, θ∗, w) for equation (1) in order to develop a method

to find g(θ̂). Such expressions should also involve a con-
stant like θ∗ and an unspecified parameter θ. But they
would probably have to be more complicated than the

existing definition in (1). It seems to be inadequate to
use the simpler expression T (θ∗, w) = l′(θ∗, w), since the
absence of θ means that the observed information can not
be found by differentiation. It is also inappropriate to use
T (θ̂, w) = l′(θ, w) by itself, since then the equivalent to

T (θ̂, θ∗, w) is l′(θ, w)|
θ=θ̂

, which is necessarily 0 and so
g[l′(θ̂,w)](l

′) is degenerate.

There seems to be a need to restrict θ to be some calcu-
lated statistic of the data. Otherwise it is necessary to
develop a density for T (θ, θ∗, w) itself, a mixture of the
terms involving w and θ. Transformation of the known
density g0(w) to that for an unspecified θ is probably not
feasible. For example, it would be quite difficult to find
the density for the equivalent to expression (6) for curved
exponential families with θ unspecified.

T(θ, θ∗, w) =

[b′(θ∗, z) . (a(w) − f(θ∗, z)] − [b′(θ, z) . (a(w) − f(θ, z)]

TED could be expanded to cover other estimators than
the MLE, although the algebra may be less convenient.
One possible extension is to minimum contrast estima-
tors, in order to complement the approach of Skovgaard
[23] when models differ. Similar derivations to that of
equation (2) can be applied. Another application is to

find the density g(θ̂) for a MLE that assumes no conta-
mination when in fact some degree of prespecified conta-
mination does occur in the data generating model. One
way to assess robustness properties is via the influence
function [6], to which the analytic function g(θ̂) should
be able to give some support.

The TED approach could also be generalised to robust
regression using M-estimators. A simple example is to
find the mean of a normal sample. Consider an exam-
ple in [12] which assumes that σ2 is known and simplify
further to σ2 = 1. An extended version of TED can be
imagined, where T is based on a robustified equivalent to
the score function l′(θ, w).

A Huber function Ψ(θ, w) can to be used to obtain a
robust estimate µ̂m of the mean µ [24].

Ψ(µm, wi) =

wi−µm

0.6745 ,

if
∣∣wi−µm

0.6745

∣∣ ≤ 1.28

1.28sign(wi − µm),

if
∣∣wi−µm

0.6745

∣∣ > 1.28

In this case, define T (µm, µ∗
m, w) =

∑n
i=1ti(µm, µ∗

m, wi),
where
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ti(µm, µ∗
m, wi) =

wi−µ∗

m

0.6745 − wi−µm

0.6745 ,

if
∣∣∣wi−µ∗

m

0.6745

∣∣∣ ≤ 1.28,
∣∣wi−µm

0.6745

∣∣ ≤ 1.28

wi−µ∗

m

0.6745 − 1.28sign(wi − µm),

if
∣∣∣wi−µ∗

m

0.6745

∣∣∣ ≤ 1.28,
∣∣wi−µm

0.6745

∣∣ > 1.28

1.28sign(wi − µ∗
m) − wi−µm

0.6745 ,

if
∣∣∣wi−µ∗

m

0.6745

∣∣∣ > 1.28,
∣∣wi−µm

0.6745

∣∣ ≤ 1.28

1.28sign(wi − µ∗
m) − 1.28sign(wi − µm),

if
∣∣∣wi−µ∗

m

0.6745

∣∣∣ > 1.28,
∣∣wi−µm

0.6745

∣∣ > 1.28

The problem is to determine the distribution of T , either
on a data generating model that is normal or, preferably,
on a suitably contaminated normal for which robust es-
timation is worthwhile.

It remains to be investigated whether these kinds of ro-
bust estimates are appropriate when studying problems
of model misspecification. Perhaps robustness can be ex-
amined better by looking directly at the influence func-
tions for various types of estimates and model combina-
tions, with g(θ̂) merely giving a confirmation in each case.

7 Conclusion

The exposition in this paper has been given with a view
to assist with practical modelling problems. The exam-
ples in Sections 3 and 5 can be extended and, when real
data are available, an information criterion for compar-
ing the adequacy of competing models can be used [12].
Regression techniques are applied in most practical sta-
tistical modelling studies and the possibilities for further
applications of TED therefore seem to be almost unlim-
ited.
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