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Abstract—In parameter estimation of normal distribution, 

the conventional truncated normal estimator worked well only 
if the sample size is greater than 20. In this study, we consider 
to extend its usage for sparse data cases with sample size under 
20. We derive a wide-sense truncated normal joint probability 
distribution function, composing of coverage, range, the 
sample of the first order, and data samples themselves, to 
analyze the problem of truncated normal distribution in sparse 
data estimation. We successfully improve the traditional 
truncated normal estimation by simply finding the solution 
from quadric polynomials without complex computations. 
Besides, we also shapes the formulations to guarantee the 
convergence of the population mean estimation if the standard 
deviation of population is known. 

u      population mean 
σ        standard deviation of population 

:i nx ,1 i n≤ ≤    the ranked random variable resulting from 
sorting the samples of  x  

n       sample size 
[0,1]u  standard uniform distribution in  [0,1]

ξ   random sequence of the standard normal distribution 

:i nξ , 1 i n≤ ≤    order statistics random variable generated 
from the ranked random variable ξ of the standard 
normal pdf 

 
nX      random sequence of length  n

Index Terms—truncated normal distribution, coverage, 
coverage interval, sparse data  [ ]? .Ε [ ](?) .Ε or  expectation operator 
 [ ],Cov ⋅ ⋅  covariance operator 

[.]Min   take the minimum value in set ACRONYMS 

         identity vector Ipdf     probability density function 
       covariance matrix Bs-   statistical(ly)    
        likelihood Lcdf     cumulative distribution function r          range 

MLE    maximum likelihood estimation c          coverage 
MSE    mean square error (.)U     unit step function 
VTNJ    variably truncated normal joint  pdf pdf

( ,t )Z Cc n  normalized factor for the fixed coverage point 
, t  is the sampling index 

BLUE the best linear unbiased estimation 
tCcCLT  central limit theorem 

 root of the Hermite polynomials expanded coverage 
the order of Hermite polynomials 

jηGLI  Gauss Legendre integration 
MLL marginal log likelihood 
i.i.d  independent and identical distribution [ , ]a b   the interval for interval estimation of coverage 
DM     distribution mismatch 

( )Hm iw γ  the roots of the i-th Hermite polynomial 
NOTATION 

? (.)p  pdf or conditional pdf for a certain variable  
Pr(.)  probability 
x       random variable of normal distribution 

? (.)f  pdf of a certain random variable 
(.)xf  pdf of the normal population of  random variable 

x with mean u and standard deviation σ ; i.e., 
2( ) ( , )xf x N u σ=  

(.)xF   cdf of the normal population of  random variable x ; 
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(.)vP   the -th Legendre polynomial v

sr       the random variable of range on standard normal  pdf
  cdf of standard normal distribution (.)Φ

x     if no emphasis, it is the sample mean or average of the 
truncated data 

2x      mean of square 
( )

vP tw κ    the weighting coefficient of the t-th root of the th 

order Legendre polynomial 

v

 

I. INTRODUCTION 
  Robust parameter estimation in sparse data is generally 

applied to the tasks when data collection is time-consuming 
or of high sampling cost. This study focuses on the mean 
estimation of normally distributed random variables under 
the sparse data constraint. Since the truncation or censoring 
scheme is usually adopted in sparse data estimation, our 
major goal is to improve the truncated normal estimator 
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1proposed by Cohen [ ]. There are some shortcomings in his 
truncated normal estimator, including the need of 
looking-up tables for the positions of initial searching points, 
the need of a couple of endpoints to compute the standard 
deviation, the constraint that the expression of endpoints 
must be deterministic, and non-guarantee of convergence. 
Focusing on those problems, we successfully extend 
Cohen’s algorithm to express it for sparse data and to release 
the solving criteria to require only one truncated point 
expressed by random variable.  

In the beginning, we point out that there exists a 
distribution mismatch (DM) problem if the sample size is 
less than 20. Then we propose a new method to overcome 
the problems of needing a table to look up for finding the 
initial searching points and of requiring deterministic 
truncated points encountered in the roots-finding task of the 
truncated normal estimation. A macro view random variable 
of coverage interval [ 2 ], [ 3 ] which is the expression 
recommended for the uncertainty measurement [4], is then 
introduced. The  of coverage interval is firstly derived. 
Then a variably truncated normal joint (VTNJ) pdf, which 
considers coverage, coverage interval, the first order of 
ranked samples and the samples themselves, is created to 
compensate the DM effects.  Lastly, we reduce the 
computations of VTNJ by referring the suggestion of 
Chen [

pdf

pdf
5], [6 ] about the parametric coverage interval to 

obtain a wide-sense parametric coverage estimator. It is a 
simplified result of the VTNJ . pdf

The remainder of the paper is organized as follows. 
Section 2 gives a brief review of previous studies. In Section 
3, the proposed method is presented. The numerical 
implementation of the proposed method with the VTNJ pdf 
is discussed in Section 4. Section 5 derives the variably 
truncated normal joint distribution estimator (VTNJE). 
Experiments to evaluate the performance of the proposed 
method are described in Section 6. An application of using 
the results of realistic quantile mapping invariance (QMI) is 
presented in Section 7. Discussions and conclusions are 
given in the last section. 

 

II. PAPER REVIEW 
In parameter estimation of normally-distributed sparse 

data, there are two popular methods: the best linear unbiased 
estimation (BLUE) method and the maximum likelihood 
estimation (MLE) method. Balarkrishnan and Cohen [7], 
Lloyd [8], and Teichroew [9] have suggested the BLUE 
method for parameter estimation of normal random 
variables using order statistics. BLUE is a weighted 
least-square algorithm basing on the Gauss-Markov 
least-square theorem. It was popularly used for sparse data 
analysis. It is known that BLUE is unbiased and more 
efficient if it takes the censoring sampling scheme. We 
briefly discuss BLUE as follows. 

 Let x  be a normal random variable with pdf 
2( ) ( , ).xf x N u σ=  Assume that there are n  independent 

observed samples 1, , nx x  of x. Let 1: :, ,n n nx x  be the 
ranked samples of  in increasing order. The BLUE 

estimator is formulated as the sum of products of the 
observed data and properly-chosen coefficients. By 
performing the standard normal transformation, 

=( ) /i ix uξ σ− , to the observed data and sorting them in 
increasing order, we have 

 
1[ , , ]T

n nX x x=  

1[ , , ]T
nξ ξ ξ=  

{ }: :i n i nE ξ ρ=  

1, , nx x

: : , :{ , }i n j n i j nCov ξ ξ β=   for 1 ,  and i j n i j≤ ≤ <  

{ }
{ }

: :i n i n

n

E x u

E X u

σξ

σξ

= +

= Ι +
     (1) 

[ ] 1
I 1, ,1 T

n n×
=  

2B Iσ=      (2) 
 
where  is an n-dimensional all-1 vector. Consider the 
generalized variance: 

In

 

( ) (1I IT
n n n nX u B X u )σξ σ−− − − − ξ       (3) 

 
Minimizing it with respect to  and u σ , we obtain. 

1 1 1

1 1

I I I I

I

T T T
n n n n n
T T T

n n

u B B B X

u B B B X

σ ξ

ξ σξ ξ ξ

− − −

− −

+ =

+ = 1−
 (4) 

The solution of Eq.(4) is 
 

1 1 1 1
*

1 1 1 2

1: :
1

I I
( )(I I ) ( I )

   

T T T T
n n

nT T T
n n n

n
T

n i i n
i

B B B B
u X

B B B

X x

ξ ξ ξ ξ
ξ ξ ξ

ξ α

− − − −

− − −

=

⎧ ⎫−
= ⎨ ⎬

−⎩

= − Δ = ∑
⎭    (5) 

1 1 1 1
*

1 1 1 2

2: :
1

I I I I
( )(I I ) ( I )

    I

T T T T
n n n n

nT T T
n n n

n
T
n n i i n

i

B B B B
X

B B B

X x

ξ ξ
σ

ξ ξ ξ

α

− − − −

− − −

=

−
=

−

= Δ = ∑
    (6) 

 
where  and *u *σ  are the estimated parameters, and 1:iα  
and 2:iα  are weighting coefficients. These coefficients have 
been tabulated by Sarhan and Greenberg [10], [11] with 
entries in the 1956 tables being given for sample size up to 
10 and in 1962 up to 20. 

Generally speaking, BLUE performs well in small sample 
size. But it needs a table to look up, and this is a shortcoming. 
The other technique used is the MLE method which is often 
applied to the truncated normal distribution in sparse data 
condition. Cohen [1] derived the singly truncated and 
doubly truncated maximum likelihood estimators and found 
that they outperformed BLUE when the sample size was 
grater than 20. Cohen recognized the sparse data problem as 
a truncated normal pdf and defined its likelihood by  
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III. PROPOSED METHOD 2
1: 1:

2
11: 1:

( ) ( ) ( )
exp( )

22 ( ( ) ( ))

n
n

n n i

ix n x n

U x x U x x r x u
L

F x r F x σπσ =

⎛ ⎞− − − − −
= ⎜ ⎟⎜ ⎟+ −⎝ ⎠

∑−  (7) Our task is to estimate the mean of a random variable x 
with unknown normal distribution 2( ) ( , )xf x N μ σ=  from a 
set of n observed samples { ,

 
1 }ix i n≤ ≤  with 20n ≤ . We 

first rank these n samples in increasing order and denote 
them by 

If we take the transformations of 1: 1:( ) /n nx uξ σ= − and 

: :( ) /n n n nx uξ σ= −  and differentiate the resulting 
log-likelihood function with respect to u  and :{ ,1 }i nx i n≤ ≤ . The range and coverage of the 

sample set are then defined by 
σ , we obtain 

the following two equations: : 1:n n nr x x= −  
and : 1( ) ( )x n n x nc F x F x : ,= − 

1: :
2

1: 1:

1: 1: : :2 2

1: 1:

( ( ) ( )) 1 ( )
( ( ) ( ))

( ( ) ( ) ( )) 11 (
( ( ) ( ))

n
n x n n

i
in n n

n
n n n n n n

i
in n n

n
x u

)x u
n

ξ

ξ ξ

ξ ξ

ξ ξ

φ ξ φ ξ
σ ξ ξ σ

ξ φ ξ ξ φ ξ
σ

ξ ξ

=

=

−
= −

Φ − Φ

⎧ ⎫−⎪ ⎪+ = −⎨ ⎬
Φ − Φ⎪ ⎪⎩ ⎭

∑

∑

 respectively. Coverage is a 
macro view of random variable to carry global information 
of all observed samples. The general relation among 
coverage c , range , the minimum order r 1:nx , and samples        (8) 

nX  is shown in Fig. 1. In our basic assumption, we think the 
macro view random variables should be consistent to the 
result of micro view random variable. The dash-line 
represents the interferences within the macro view random 
variables and the solid-line represents the interferences from 
the macro view to micro view random variables. A joint 
normal pdf of these four parameters will be built in the 
following basing on 

 
 and φ Φwhere are the standard normal pdf and cdf, 

respectively. By defining two new random variables 

1:

1: 1:

( )
( ) (

n
L

n s nr
ξ

ξ ξ

φ ξ
)ξ ξ

Θ =
Φ + − Φ

 
Fig. 1 to compensate the coverage 

mismatch. We treat the distribution as a variably truncated 
normal joint (VTNJ) pdf to represent the randomness of the 
truncated points of a truncated normal distribution 
depending on coverage and sample size. 

and 
1:

1: 1:

( )
( ) (

n s
R

n s n

r
r

ξ

ξ ξ

φ ξ
)ξ ξ

+
Θ =

Φ + − Φ
, 

 

rwe obtain the following two equations 
 

1: 1
1 1 2

2 1

( , ) n L Rx x
H

r
ξ

ξ ξ
ξ ξ

− Θ − Θ −
= =

−
  (9) 

( )

22
1 2

2 1 2 2 2
2 1

1 (
( , ) L R L RSH

r
ξ ξ

ξ ξ
ξ ξ

+ Θ − Θ − Θ − Θ
⇒ =

−

)   (10) 

 
where r is the range, and x  and  are the sample mean 
and variance, respectively. Although the above two 
equations can be solved by applying the Newton and 
Raphson method to calculate the variables 

2S

2  and 1ξ ξ , it may 
be time-consuming. Cohen  [1] therefore announced to use a 
chart consisting of intersecting graphs of the simultaneous 
equations. He proposed an approach to use a look-up table 
which provided a couple of endpoints, 1: :[ , ]n n nξ ξ , to serve as 
the initial searching positions for the roots-finding task. 
After obtaining the estimates of 1:nξ  and :n nξ  by using 
Eqs.(9) and (10), we then compute the estimated mean  
by 

**u

 
** **

: :p n pu x nσ ξ= − ,                    (11) 
 
where =1 or n   and  p
 

** : 1:

: 1:

n n n

n n n

x x
σ

ξ ξ
−

=
−

.  (12) 

 
The final solution is obtained via repeatedly applying the 
above procedure until a convergence is reach. 

 
Fig. 1: Relation of variables’ interference model 

 
We first decompose 

1:, , , ; , | 1:( , , , )
nx x r c u n nf x x r cσ into four 

conditional pdfs by 
 

1:

1: 1:

, , , ; , | 1:

; , | , , , | , 1: | , |

( , , , )

( ) ( ) ( ) ( )
n

n n

x x r c u n n

x u x r c n x r n n r c n c n

f x x r c

f x f x f r f c
σ

σ= ⋅ ⋅ ⋅
 (13) 

where  

1:

1: 1:
; , | , , ,

1:

( ) (
( ) ( )

( , )n

n n
x u x r c n x

n

U x x U x x r
f x f x

Q x rσ
)− − − −

=  

 
is the truncated normal pdf depending on the sample size, the 
truncated points and the sample’s coverage; and 

1: 1: 1:( , ) ( ) (n x n xQ x r F x r F x )n= + −  is the sample coverage. 
We then derive the pdf of coverage. There were some 

previous studies concerning the issue of randomness of 
coverage. The early topic was called “the random division of 
an interval”, which means the range may be cut as many 
small sub-ranges which can be added to calculate the 

nX

1:nx c
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coverage [12], [13]. The cdf of coverage for small sample 
size can be expressed by [

0 0.2 0.4 0.6 0.8 10

1

2
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4
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7

8

Coverage

Pr
(c

ov
er

ag
e)

PDF of coverage depend on sample size n

 

 

n=5
n=10
n=15
n=20

14] 
 

2

|
0

Pr ( ) (1 )
n

k n
c n

k

n
C c c c

k

−
−

=

⎛ ⎞
> = −⎜ ⎟

⎝ ⎠
∑ k  (14) 

 
We now simplify the coverage  as a polynomial of c. 
The derivation is given as follows. 

pdf

  
Fig. 2: The pdf of coverage for different sample size  n

|
1Pr ( ) ((1 ) !{ ( )  ( )

1

        ( 1) ( ) ( ) ( 1) ( ) ( 1)
1 1

        ( 1) ( ) ( 1)}) / (  ( ) ( 1))
1

n n
c n

n n n n

n n

C c c n c n
c

c cc n n
c c

cc n c n n
c

> = − − Γ
−

+ − − Γ + − − Γ +
− −

− − − Γ + Γ Γ +
−

 
| , ( )r c nf r

 (15) 

!( ( 1 ) ( ) ( 1 ) ( 1))
 ( ) ( 1)

n nn c c n c c n
c n n

− − + Γ + − + Γ +
=

Γ Γ +
  

1! !(  ( ) ( 1)  ( 1))
( 1) ( ) ( 1)

nn c n c n n c n
n n n

− Γ + Γ + − Γ +
= −

Γ + Γ Γ +
  

11 (n nnc n c−= − + −1)

dt

 
where  denotes the Gamma function and 

. Hence 

(.)Γ
1

0
( ) z tz t e

∞ − −Γ = ∫
 

( ) 1
| |

2 1

( ) (1 Pr ( ) ) ( ( 1) )

          ( 1)( )                for  0 1

n n
c n c n

n n

f c C c nc n
c c

n n c c c

−

− −

∂ ∂
= − > = − −

∂ ∂
= − − ≤ ≤

c  (16) 

  
It is worth to note that Eq.(16) is distribution-free because 
Pratt and Gibbsons [14] derived it without assuming the 
distribution of the sampled random variable so that it is 
appropriately applied to any kind of . pdf Fig. 2 displays 
the coverage pdf for some small values of n. It can be found 
from the figure that the coverage distribution deviates away 
from 1 progressively and spreads wider as the sample size 
decreases from 20. We call this special phenomenon as 
distribution mismatch (DM) because it implicitly indicates 
that there exists a serious mismatch between the 
distributions of observed samples and the random variable 
when the sample size is small. The DM phenomenon reveals 
an important cue to the modeling of sparse data: coverage 
may serve as a confidence factor to indicate the 
appropriateness of observed data for robust parameter 
estimation. A higher value of coverage means a better match 
of the samples to its original normal distribution. To exploit 
the DM phenomenon, we treat coverage as a random 
variable and add it to the VTNJ pdf. 

 

The other two terms in Eq.(13), 
1: | , 1:( )

nx r n nf x  and , 

can be derived from the nonparametric pdf of range of the 
ranked observed samples expressed by: 
 

1:

|

2
1: 1: 1: 1:

( )

( 1) ( ) ( )( ( ) ( ))
n

r n

n
x n x n x n x n

dx

f r

n n f x f x r F x r F x r −= − + + − +∫   

(17) 
 
The conditional pdf of the minimum sample given with 
range and sample size can be expressed by 
 

{ }
{ }

1:

1:

1:
1:

1:

, | 1:
| , 1:

, | 1:

2
1: 1: 1: 1:

2
1: 1: 1: 1:

( , )
( )

( , )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

n

n

n
n

n

x r n n
x r n n

x r n ndx

n
x n x n x n x n

n
x n x n x n x ndx

f r x
f x

f r x

f x f x r F x r F x

f x f x r F x r F x

−

−

=

+ + −
=

+ + −

∫

∫

         (18) 

 
It can be derived easily by using the Bayes’ theorem.  

 
| , ( )r c nf r  is the range  given with coverage and 

sample size. Range is formally called coverage interval if we 
consider it as joint in association with coverage. 
Coverage interval is a very important random variable in the 
field of measurement and its usage can be divided into the 
parametric coverage interval and non-parametric coverage 
interval. Parametric approach considers it as a pd  with 
parameters and non-parametric approach takes the general 
empirical distribution to compute the total coverage interval. 
In this paper, we consider the parametric coverage interval. 
If we think that the coverage interval is range constrained 
with coverage, it can be derived by the Jacobian determinant 
transform. 

pdf

pdf

f

 Now we take the variable transformation, shown in Fig. 3, 
to transform 1:nx 1: 1:( ( ) ( )x n x nc F x r F x )= + − to  with the 
variable  being preserved.  r

  
r r

1:nx c
 

Fig. 3: The transformation rule for variables  
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Suppose that there are k roots jη , 1 , satisfying 
the coverage sampling point, 

. The joint 
distribution of r and c can be expressed by 

j k≤ ≤

1: 1: 1:( , ) ( ) ( )n x n x nQ x r F x r F x Cc= + − =

 

1: 1:, | , | 1:
1

1:

1:

1( , ) { ( , ) }
n n

k

r c n r x n n x
j

n

n

f r c Cc f r x
r r
r x
c c
r x

jη=
=

+

= = ×
∂ ∂
∂ ∂

∂ ∂
∂ ∂

∑   
Fig. 4 Profile-conditional pdf  by the sampling strategy, where k  
represents a certain constant. 

IV. NUMERICAL IMPLEMENTATION WITH THE VARIABLY 
TRUNCATED NORMAL JOINT  PDF 

, |
1

1{ ( , )
1 0

( ) ( ) ( )

j

k

r n j
j

x j x j x j

f r

f r f r f

η η

η η η
=

}

+

= ×

+ + −

∑  A consequence of applying the sampling point method to 
compute | , ( )r c nf r  is that the interval estimation based on 

, |
1

1( , )
( ) ( )j

k

r n j
j x j x j

f r
f r fη η

η η=

⎛
⎜=
⎜ + −⎝

∑
⎞
⎟
⎟
⎠

n

| , ( )r c nf r  has to be realized by using the sampling point 
method also. This can be solved by using the Gauss 
Legendre Integration (GLI) [ (19) 15 ]. GLI is a well-known 
numerical method to give a good approximation to the 
integration of a function. It represents the integration of a 
function in the standard interval [ 1  by a weighted sum. 
By using GLI, we have 

 
But, since  is a 
transcendental function, we can not get an explicit 
transformation from the first order sample 

1: 1: 1:( , ) ( ) ( )n x n xQ x r F x r F x= + − ,1]−

1:nx   to 
coverage c . Alternatively, we can solve the problem by the 
sampling point method to express 

 

| , ( )r c nf r  by using the 

sampling points of :  1:( , )nQ x r

, |
| ,

, |

( , )
( )

( , )
r c n

r c Cc n
r c ndr

f r c Cc
f r

f r c Cc=

=
=

=∫
   

1

| |1

|
1

( )( ) ( )
2 2 2

                ( ) ( ) ( )
2 2 2

b

c n c na

v

v c n v

b a b a b af c dc f d

b a b a b aw f Rτ τ
τ

ς ς

ς ς ς

−

=

− + −
= +

− − +
= ⋅ + +

∫ ∫

∑
(21) 

 

{ } 2

1

( ) ( ) ( ) ( ) 1
( , )( ) ( )

n
k

x j x j x j x j

j x j x j

f f r F r F

Z Cc nf r f

η η η η

η η

−

=

⎛ + + −⎜=
⎜ + −
⎝ ⎠

∑
⎞
⎟ ⋅
⎟

where a and b are the endpoints of the interval estimation for 
coverage; thτ1 1τς− < < τς  is the  and  root of the 
Legendre polynomials  ( )vP ς  of order ; v 1 vτ≤ ≤ is the 
root index;  

(20)  
( , )Z Cc nwhere  is a normalization factor expressed by  

 

{ } 2

1

( , )

( 1) ( ) ( ) ( ) ( )
;

( ) ( )

n
k

x j x j x j x j

jdr x j x j

Z Cc n

n n f f r F r F

f r f

η η η η

η η

−

=

=

⎧ ⎫⎡ ⎤− + + −⎪ ⎪⎢ ⎥⎨ ⎬⎢ ⎥+ −⎪ ⎪⎣ ⎦⎩ ⎭
∑∫

2

( - )( )  
(1- )( ( ))

v

v

b aw
P

τ

τ τ

ς
ς ς

=
′ 2

                                       (22) 

 
is the weighting function;   

                              
( )

( )

4(2 1)
(2 )
|3

2 !
( ) ( )

(2 1) (2 )!

v
v

v

v
R

v v
c npς ς

+

=
+

                               (23)  
( ) ( )x j xCc F r F jη η= + − ,  1j j k; ≤ are the roots of  ≤η

 
( ) ( )x j x jF r F Ccη η+ − = ; and k  is the number of roots. If 

, it may be approximated by expanding   with 
Hermite polynomials. If we consider to delete the outlier 
solutions of 

is the error of the approximation; and  
 1k > (.)xF

21( ) ( 1) ,  for 0,1, 2,
2 !

v
v

v v vP v
v

ς ς
ς
∂

= − =
∂

.   
jη , we may construct the following empirical 

constraints to select the solutions: 4 4ju uσ η σ− + ≤ ≤ +  , 
Then, the VTNJ  can be implemented by the numerical 
technique. Its result is also an interval estimation for the 
coverage fluctuation. In this study, the default settings are 

pdf
4 4ju r uσ η σ− + ≤ + ≤ +  and 0 8 . r σ< <

 

[ ]| 0.005c na E c= − [ ]| 0.005c nb E c= + and  to consider a 
coverage interval of 0.01. 

It will be perfect if we can use a fixed sampling number 
for GLI to reduce the error so as to make it approach to its 
minimum. As shown in Eq.(23), the error of GLI is related to 
the differential order of the integrated function. Obviously, 
its differential order is finite. From Eq.(23), if the GLI 
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sampling number v meets the condition of 2 1 , the 
estimation error 

v n≥ −
( )vR ξ  will be reduced to zero. In this case, 

GLI will approach to the theoretical optimal solution of no 
errors. Besides, Eq.(16) shows another important fact that 
the coverage pdf is independent of the distribution of the 
sampled random variable. So, we can claim that the pdf of 
coverage is distribution free. This property makes | ( )c nf c  

freely connect to any kind of | , ( )r c nf r  by Chain rule. 

If we want to directly calculate the VTNJ pdf  in , 
we will face the problem that the mean and standard 
deviation of the population must be known in advance. But 
this is unrealistic in our mission. We therefore adopt an 
alternative approach to construct a new bridge to conjoint 
with these variables. The idea is to transform the observed 
data into the standard normal domain. The suggestion is 
shown in 

| , ( )r c np r

Fig. 5. As shown in the figure, we transform the 
observed ranked samples into the domain of standard normal 
by : :( ) /i n i nx uξ σ= − . Each transform pair is marked with 
the same digit number. The range is also transformed by 

: 1:s n n nr ξ ξ= − . Notice that the transform is quantile mapping 
invariance (QMI) for the macro view random variables. 
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Fig. 5: Relative quantile mapping invariance based on their percentiles. 
Dash-line represents the original normal pdf and solid-line represents the 
standard normal pdf. 

V. DERIVE THE VARIABLY TRUNCATED NORMAL JOINT 
DISTRIBUTION ESTIMATOR (VTNJE) 

We then apply GLI to the VTNJ pdf to obtain the marginal 
log likelihood by: 

1:

2 1
t

1
( 1)( ) ( )

2

( )

v
s n

n n
t t P dr d

v

t

b a n n Cc Cc w G

MLL

ξ
κ− −

=

−⎧ ⎫− −⎨ ⎬
⎩ ⎭

⋅

≡ ∫ ∫∑
 (24) 

where  

( )1: 1:

2

2
1 1: 1:| , | ,

1log
2  ( ) ( )

( )
exp

2
  ( ) (

n

n s n

n
i )s

i
s s tn nr n r c Cc n

G
r

x u p p

ξ ξ

ξ

πσ ξ ξ

σ
ξ

=
=

⎧⎛ ⎞⎪⎜ ⎟= ⎨⎜ ⎟Φ + − Φ⎪⎝ ⎠⎩
⎫⎧ ⎫− ⎪−⎨ ⎬⎬
⎪⎩ ⎭⎭

⋅ ⋅ ⋅∑ r

 

A. Simplify the MLL through Coverage Interval 
The marginal log likelihood is complicated and 

computionally time-consuming. We suggested an idea to 
reduce its computation basing on the coverage interval. An 
example of the profile-conditional pdf, | , ( )r c nf r , is plotted 

in Fig. 6. It is to demonstrate the fact that if we would like to 
guarantee the coverage of the estimation to be large enough 
to greater than a lower bound, then there will be much more 
tolerance intervals qualified for solutions to reside. Let us 
return to Eq.(16) to inspect the pdf of coverage which is 
distribution-free. We find that its form is inconvenient for 
parameter estimation due to the no use of derivative operator. 
Fortunately, Chen [6] gave a good suggestion to the 
computation of coverage. According to the conclusion of 
Chen, the pdf of coverage can be parametric if we constrain 
the coverage interval (range) to be the minimum of all 
possible values. The plot shown in Fig. 6 demonstrates that 

| , ( )r c nf r  looks like an impulse with its distribution 
concentrating near the minimum-case. It is hence reasonable 
to take [ ]sMin r sr to substitute all other possible values of . 
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Fig. 6: Exemplified profile-conditional pdf  to show the impulse properties 
for the sample size 15n =  and coverage=0.95 of standard normal pdf. 

B. Algebraic Closed From for Parameter Estimation 
Let we apply the result of Fig. 6 to simplify Eq.(24). It can 

then be optimized and expressed as two quadric equations of 
variables σ  and . Take the roots of these two quadric 
equations will result in the following solutions: 

u

( )2

1*

1

4

2

v

t
t

v

t
t

B B nD C

nD

σ σ σ

σ =

=

⎛ ⎞
± + ⎜ ⎟

⎝ ⎠=
⎛ ⎞
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⎝ ⎠

∑

∑
 , (25) 

where 
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where 
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Here, 
1

1 n

i
i

x x
n =

= ∑  is the sample mean, 2 2

1

1 n

i
i

x x
n =

= ∑  is the 

mean of sample square, 
2 2

( - )( )
(1- )( ( ))vP t

t v t

b aw
P

κ
κ κ

=
′

 is the 

weighting coefficient of the t-th root of the  order 
Legendre polynomial, [ ,  is the coverage estimation 
interval, and 

-thv
]a b

( )ξ ξΦ  is the cdf of the standard normal 
distribution. The same strategy can be applied to the other 
endpoint :n nξ  via replacing 1:nξ  by :n nξ . Then, the VTNJ 

 can be implemented by the numerical technique. Its 
result is also an interval estimation for the coverage 
fluctuation. From 

pdf

Fig. 2, it clearly shows that the coverage is 
a random variable if the sample size is less than 20. Hence, 
we had better to set the most observed interval to inspect its 
randomness. Define the following %β -inspection interval 
( β -II):  

 
%β -inspection interval is an interval estimation for the 

coverage random variable over the interval [a,b] 
with [ ]| /2,c na E c β= −  and [ ]| / 2c nb E c β= + .  

 
We then aim at calculating the most possible happening 
probability. 

 

VI. EXPERIMENTS 
By checking Eqs.(25) and (26), we find that they are 

mainly affected by the sample mean, x , and the individual 
ranked samples, :i nx ,1 . Our strategy is to adjust the 
coverage to make it approach to the real coverage, generated 
from 

i n≤ ≤

x  and :i nx ,1 , in order to compensate the DM 
effects. We examine two methods. One is to view the joint 
effect of 

i n≤ ≤

x  and :i nx  under our suggestion of QMI (see Fig. 
5). The other is to realize the QMI basing only on the real 
coverage. Its purpose is to see the effect of sample mean 
without coverage estimation. 

A. Test the results with consistency to sample mean under 
the QMI principle—case of the default percentile 
We first formed an interval estimation for coverage by 

performing a coverage estimation from the expectation of 
order statistics by  and adding fluctuation of 

.  
| [ ]c nE c

0.005±
The VTNJE might work normally without the tasks of 

looking up the tables so that it supported more conveniences 
for the computer programs. We compared it to the best 
estimator, sample mean. If the performance is not far off too 
much, then we admitted its goodness. Since truncated data 

represents part of the data are lost but sample mean 
represents the complete data condition. We then examined 
the accuracy of the conventional sample mean estimator. 
Two different conditions for sample mean were considered. 
One was to constrain the sample means in the interval of 

0.3 0.3u x u− σ σ+ ≤ ≤ + . It was referred to as the good 
sample mean case. The other was to constrain the sample 
means in the interval of 2.3 1.3u x uσ σ− + ≤ ≤ − +  or 
1.3 2.3u x uσ σ+ ≤ ≤ + , and was referred to as the bad 
sample mean case. Three estimators were compared: 
Scheme A represented the conventional sample mean 
estimator; Scheme B was the coverage-based estimator 
defined below 

{ } { }{ }: :| , ,
* 1

:

1

p n t s

v

t pc Cc Min r n
t

n

p p n pv

t
t

D E
u u x

D

ξ ξ
σ

=
=

=

⎡ ⎤
⎣ ⎦

= = −
∑

∑
 (27) 

where  was constrained to be either 1 or n  which 
corresponded to the endpoints of the range; and Scheme C 
was the estimator defined in Eq. 

p

. If , then the term 1p =(26)

{ } { }
: :| , ,p n t s p nc Cc Min r nEξ ξ=  can be computed by 

{ } { }
1: 1:| , ,( 1)

n t s nc Cc Min r nEξ ξ=− . The results are displayed in Fig. 7. 

It can be found from the figure that MSEs were very small 
for the case of good sample mean for all three estimators; 
while the MSEs were all large for the case of bad sample 
mean. This shows that the performance of VTNJE will 
follow that of the sample mean which is a uniform minimum 
variance unbiased estimator (UMVUE). In other words, the 
performances of the two VTNJ estimators follow the best 
one. Those results also imply that very low MSE can be 
reached provided that the sample mean is near the 
population mean. In other words, if we want to obtain a 
guaranteed coverage, then the difference between the 
estimated mean and the sample mean should be small. 
 

 
Fig. 7: Comparison of the conventional sample mean estimator and two 
coverage-based mean estimators. 

B. Test the results with consistency to sample mean under 
the QMI principle—case of realistic percentile 
In the test phase, we eliminated the effects caused by the 

QMI mapping mismatch for 1:nx :n nx1:nξ :n nξ to  or  to . In 
such a case, 1: 1:( ) /n nx uξ σ= − : :( ) /n n n nx uξ σ= − and  
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were known. But, we pretended that we did not know 1:nx :n nx
 and u σ . The fluctuation assumption for coverage was 

therefore not needed. So, the previous formulation could be 
simplified and expressed by 

: :
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2
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±
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 (29) 

where  was constrained to be either 1 or . Actually, Eq. p n
(28) is equivalent to Eq.(29) because * *

: :p n p nu x ξ σ= − . We 
generated 1,000 trials to examine the new estimator and used 
MSE as the score of comparison. The results are listed in 
Table 1. 
 
Table 1: Performance of realistic QMI analysis 

Item Sample mean Realistic QMI 
MSE 0.0765 0.0252 

 
Notice that the MSE of realistic QMI was defined by 

2
1( )1

1000 2
nu u

u
+⎛ −⎜

⎝ ⎠
∑ ⎞

⎟ , where  and  were the 

estimated results for 

1u nu

1:nx  and :n nx , respectively. It can be 
found from Table 1 that the realistic QMI mean estimator 
performed better than the sample mean estimator. 

VII. APPLICATION OF USING THE RESULTS OF REALISTIC 
QMI 

The above testing results of realistic QMI show us that if 
we are able to take the relative coverage for the range, then 
we can probably reduce the bias of the sample mean. Now 
we utilize the above results to analyze the problem in more 
depth. The transform : :p n p nu x ξ σ= −  has only two degree 
of freedom. Remember that all coefficients in Eqs.(28) and 
(29) are simple scalars or polynomials. So, if σ  is known, 
the degree of freedom is reduced to 1. We therefore have an 
opportunity to approach the real value by recursive 
estimations. 

A. Test the convergence  
We use three types of normal distribution to test the 

robustness of Eq. (28). They are ,  and 

, respectively. In each test, 1000 trials with 13 
samples in each trial were tested. In each trial, we first sorted 

the 13 samples to find the two endpoints  and . We 
then take the QMI transform using a pre-assumption pseudo 
mean, 

2(10,1 )N 2(12,1.3 )N
2(8,0.6 )N

su ,  to obtain 1:nξ  and :n nξ . Then, the estimate *σ  
was calculated by Eq. (28). We denoted it as *

pσ  . The final 

estimated mean was obtained by *
:

*
:p p n p p nu x σ ξ= − . Let us 

denote ( )* 2 * 2
1( ) ( ( ) ) ( ( ) ) /s n sTr i u i u u i u= − + − 2

1000

1
1/1000 ( )

i
Tr i

=
∑

 as the mean 

square error of pseudo mean for the i-th trial. Then the 
average MSE of pseudo mean for the 1000 trials was 

. We took the error between the pseudo 

mean and real mean, ( )su u− , as a reference.  It is noted that 

the inspection interval for ( )su u− was 

[( 1.5 / ) , (1.5 / ) ]n u n uσ σ− + + . Fig. 8 displays the 
average MSE of pseudo mean versus ( )su u− .  It can be 
clearly found from the figure that, for all the three tests using 
different normal distributions, the average mean square error 
of pseudo mean became smaller as the absolute value of 
( )su u−  decreased. This shows that the estimation will 
converge by recursive estimation.  

 

 
Fig. 8: Convergence curve for VT depending on different mean and 

standard deviation and STD is known, DOM= (
NJE

)su u− ,  is population 

mean and STD is population’s standard deviation 

u

B. Comparison of the different estimators 
We compared three different estimators in term of their 

stabilities and efficiencies. These three types of estimators 
are respectively derived by Cohen from Eq.(8) to Eq.(12), 
another is our VTNJE and the other is the complete data 
estimator which is the sample mean, the average of total 
samples. We generated 13 samples each trial which is 
submitted to the standard normal distribution,  and 
totally accounted to 5000 trials 

2(0,1 )N

In this scheme we apply three types of non-truncated 
intervals to force truncating the data outside the 
non-truncated intervals which represents the truncated 
percent from low, [-2, 3], to high, [-1.5, 1.75]. In such 
planning, we may easily to realize the results between the 
incomplete data, Cohen, VTNJE and complete data, sample 
mean.  
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The formulation derived by Cohen request of the initial 
searching points so that we divided the initial searching 
condition into two classes, bad and good. The bad condition 
indicating the initial searching position for mean, u , is 
outside the interval, [ 2 / , 2 / ]n u n uσ σ− + +  and good 
condition representing the initial searching position is inside 
the interval, [ 0.5 / ,0.5 / ]n u n uσ σ− + + . Table 1 is the 
average of the 5000 MSEs which is the square of the 
estimator subtracts the real population mean conditional on 
the bad initial and Table 2 is the same but conditional on the 
good initial.   In these two tables, it is obvious to conclude 
that our VTNJE is stable and outperforms the Cohen. 
Furthermore, it is little efficient to the sample mean.  

 
TABLE 1: COMPARISON WITH DIFFERENT ESTIMATORS IN ASSOCIATION 

WITH BAD INITIAL SEARCHING POINTS 
Non-truncated Interval Estimator [-2,3] [-1.8,2.5] [-1.5,1.75]

Cohen 1.439 1.420 0.991 
VTNJE 0.061 0.059 0.059 
Sample 
mean 0.078 0.075 0.076 

 
 

TABLE 2: COMPARISON WITH DIFFERENT ESTIMATORS IN ASSOCIATION 
WITH GOOD INITIAL SEARCHING POINTS 

Non-truncated Interval Estimator [-2,3] [-1.8,2.5] [-1.5,1.75]
Cohen 0.610 0.582 0.731 
VTNJE 0.061 0.060 0.059 
Sample 
mean 0.078 0.075 0.076 

 
 

VIII. DISCUSSIONS AND CONCLUSIONS 
This study develops the variably truncated normal joint 

 to attack the DM problem. We have discussed the DM 
problem to demonstrate the weakness of the classical 
truncated normal distribution when the sample size is less 
than 20. For coverage interval which is a macro view 
random variable, we address the  of coverage interval 
and show the merit of its shape (see 

pdf

pdf
Fig. 6).  This proofs the 

conclusion of Chen [6], who suggested taking the minimum 
value of coverage interval instead of the other possible ones. 
Moreover, it is worthy noting that the  of coverage 
interval, shown in Eq.

pdf
(20), is expressed as a result of general 

form by order statistics which is a non-parametric statistical 
method and the  of coverage, shown in Eq.pdf (16), is 
distribution-free. Hence the VTNJE is appropriate to 
formulate both the parametric and non-parametric coverage 
intervals. That is to say, we unify the framework for the 
parametric and non-parametric coverage intervals.  

We use Hermite polynomials to expand the coverage 
function accurately. It not only uses the high order 
polynomials to approach the real curve, but also guarantees 
the convergence for the condition when σ is known in 
advance (see Eqs.(28) and (29)). 

The new truncated normal estimator needs to know only 

one truncated point for estimation (see Eqs. (25) and (26)); 
thus it is superior to the old truncated normal estimator 
which needs a couple of endpoints to do iterations (see Eqs. 
(9) and (10)). 

The third goodness of the VTNJ is that it does not 
need any looking-up table for root-finding and it is 
expressed in an analytical closed form (see Eqs. 

pdf

(25) and 
(26)). This may save time for computation. Furthermore, in 
the default QMI test, we have showed that our 
coverage-based mean estimator follows the sample mean so 
that the VTNJ also solves the truncated normal 
problems with knowing only the possible information of the 
truncated points (see Eq. 

pdf

(21)). 
σLastly, we reformulate the equations for the case when  

is known. It works well if σ  is known in our estimation 
process. In the original MLE formulation derived by Cohen, 
the solving process often encounters the underflow 
problems. Since the coefficients of the variables are 
probability or cumulative probability of normal distribution. 
That is inconvenient for the inverse function representation. 
We have proofed the convergence if σ  is known in advance 
and show the corresponding convergence curve as Fig. 8.  
So, our truncated normal estimator outperforms the old one 
obviously. 

IX. APPENDIX : DERIVED THE ALGEBRAIC CLOSED FORM 
FOR VTNJE 

 
Our principal goal is to establish an analytical form of 

estimator for the truncated normal distribution so that some 
special skills will be applied to the whole schemes including 
marginal likelihood, withdraw certain terms in the derived 
equations and external adding a certain factor in the equation. 
If the posterior analysis takes the good performance, then 
these schemes are right. 

First of all, we take integration for the total macro view 
random variables 1:nx , ,  accumulating to the log 
likelihood . The complete marginal log likelihood can be 
expressed by 

r c
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where, 

( )2 1
t( ( 1)( ) (

2 v

n n
t t t

b aD n n Cc Cc w κ− −−
= − − × )P  

1: | , 1: | ,( | , ) ( | , )
n s sr n n s r c n s tQ p r n p r c Cc nξ ξ= ⋅ =  

 
| , ( | , )

sr c n s tp r c Cc n= : profile-conditional  of pdf sr  
 

We would like to use only one truncated point to process 
the estimation. Thus, we take the equation 1: 1:n nu x σξ= −  
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and Eq.(30) to make a simultaneous equation.  
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Taking the partial derivative of Eq.(34)  with respect to  
σ and setting it to zero, i.e., Here we prepared to withdraw the partial expression in 

Eq.(31) and it is the second term, 
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We have two reasons to make that decision. Once it is a 

transcendental function which is difficult to obtain an 
explicit expression for the variables. The second reason is 
that we have found 1: 1:( ) (n s nrξ ξΦ + − Φ  to be a coverage 
variable. Remember that we considered all the macro view 
random variables, 1:nx , , c  combined as a joint  and if 
we referred the Eq.

r pdf
(16), we would find the maximum power 

for coverage is in the pd  of coverage. That is, the 
dominant term has been present in the  of coverage and 
no care whether the coverage variable, 
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, 
is existing. 

 
Solving Eq.(35)

Take the expansion for the third term:     

1:

1:

2
1: 1:

2
1 1

21:

1 1

21:
1: 1:

( )
( ( (( ) )))

2
( )1( ( (( ( ( )

2
( )

                  2 )) )))

s n

s n

v n
i n n

t dr d
t i

v n
i n

t dr d
t i

i n
n n

x x
D Q

x x
D

x x
Q

ξ

ξ

σξ
σ

σ

ξ ξ
σ

= =

= =

− +
⋅ −

−
= ⋅ −

−
+ +

∑ ∑∫ ∫

∑ ∑∫ ∫

, we obtain an estimate of the standard 
deviation of the population: 
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?[.]Ε : take the expectation operator 
  

   When we withdraw the coverage term, the equation will 
become Eq.(33) and the other problem generated. If we 
inspect Eq.

Then, we consider to substitute σ  to u  in order to get a 
new quadratic equation of u. (33),  it will be found that there is going to no any 

coverage interval term, sr , to be left after integrating the 
variable 

 
1: 1:( ) /nx u nσ ξ= −By substituting sr . This result violates Eq.(12) derived by Cohen. 

Since our VTNJ estimator is the extending work of his 
truncated normal estimator so that we should preserve the 
information for sr .  Thus we take the suggestion by Chen [6] 
to select the minimum coverage interval , [ ]sMin r , 
representing the information for coverage interval, sr . The 
new simplified equation is Eq.(34).  
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1:

1:

1:

1 1:

1: 1:
1

2
2

1:2
1 1:

(.)

( ( (( log 2 log( )) )))
2

         ( ( (( log( ( ) ( ))

( )
                ) )))

2( )

s n

s n

v
n

t dr d
t n

v

t n sdr d
t

n
i

n
i n

MLL
x unD n

D n r

x u
Q

x u

ξ

ξ

π
ξ

ξ

ξ

=

=

=

−
= ⋅ − − ×

+ ⋅ − Φ + − Φ

−
− ×

−

∑ ∫ ∫

∑ ∫ ∫

∑

n

Q

ξ
 (37) 

 
Taking the partial derivative of Eq.(34)  with respect to 
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u where and set it to zero, i.e. 
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