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Abstract—Linearly distributed-lag models as a time
series tool have very useful applications in many dis-
ciplines. In these models, the dependent variable de-
pends on one independent variable and its lags. The
specification of the lag coefficients is a crucial ques-
tion to the efficacy of a model. A new algorithm is
proposed for the estimation of lag coefficients subject
to the condition that the sequence of the coefficient
estimates consists of a certain number of monotonic
sections, where the positions of the extrema are also
unknowns. The algorithm is iterative, each iteration
taking a conjugate gradient step, then forming an esti-
mate of the coefficients and finally adjusting this esti-
mate to satisfy the given constraints. An immediate
advantage is that the inversion of an ill-conditioned
matrix that frequently occurs in practice is avoided.
Moreover, the constraints provide a realistic repre-
sentation of the prior knowledge and the calculation
results in a highly efficient time series estimation. The
algorithm and its convergence are described, results
from simulation experiments are presented and an
application of the algorithm on real annual macroe-
conomic data concerning the personal consumption
expenditures against the GDP for the U.S.A. during
1929 - 2006 is given.
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1 Introduction

The purpose of distributed-lag models is to estimate,
from time series data, values y that incorporate prior in-
formation of the independent variable x. These models
have useful applications in many fields such as economet-
rics, engineering (see, for instance, [8], [11], [15], [21],
[25]) etc. For example, in econometrics, if yt denotes
consumption expenditures and xt income, at time period
t, a change in xt will affect not only current consumer
expenditures yt, but also future expenditures yt+1, yt+2,
etc. Therefore we assume that yt depends not only on
xt but also on q past values of xt, giving the linearly
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distributed-lag model

yt =
q∑

i=0

βixt−i + εt, (1)

where q is a prescribed positive number representing the
lag length, {βi : i = 0, 1, . . . , q} are the unknown lag co-
efficients and εt is a random variable with zero mean and
constant variance. The issue of the q selection depends on
the data and may be decided with statistical means (see,
for example, [17]:p.119). Adopting matrix notation, the
unconstrained lag-distribution problem is to determine a
vector β = (β0, β1, . . . , βq)T that minimizes the objective
function

F (β) = (y −Xβ)T (y −Xβ), (2)

where y = (yq+1, yq+2, . . . , yq+n)T is the n-vector whose
components are time series observations and the n×(q+1)
matrix X of current and lagged values of xt is defined as

X =




xq+1 xq xq−1 · · · x1

xq+2 xq+1 xq · · · x2

xq+3 xq+2 xq+1 · · · x3

...
...

...
. . .

...
xq+n xq+n−1 xq+n−2 · · · xn




.

Note that the components of y in (2) correspond to
the last n observations of the time series data yt, t =
1, 2, . . . , q, q + 1, . . . , yq+n, because we lose q degrees of
freedom due to (1).

The unconstrained estimate of β, for a full rank X, is

β̃ = (XT X)−1XT y. (3)

The main drawback with this direct least-squares esti-
mation of β is that often there is high multicollinearity
among the xt’s giving a notoriously ill-posed inverse prob-
lem, which results in imprecise estimation for the β. If,
however, avoid severe distortions in the calculation of the
true lag distribution, then there appear discernible pat-
terns in the unconstrained estimate, which are affected
by the nature of the observations.

So far there have been several suggestions in the litera-
ture to put some structure on the βi’s in (1). They all
impose some a priori structure on the form of the lag,
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in order to combine prior and sample information in the
estimation of the regression coefficients. A popular ap-
proach is the Almon polynomial lag distribution [1]. In
this technique the q + 1 coefficients of the lagged vari-
ables are assumed to lie on a polynomial whose order is
predetermined. Shiller’s method [23], as a variant of this
model, assumes that the coefficients of the lagged variable
lie close to, rather than on, a polynomial. More models
are found in [6], [13], [14], [18], [19], [21], [24], etc. All
these models assume rather arbitrarily that the underly-
ing function of the lag coefficients can be approximated
closely by a form that depends on a few parameters. How-
ever, over the years, literature on the subject agrees that
some weak representation of the lag coefficients is a sensi-
ble requirement for a satisfactory model estimation (see,
for example, [13], [21] and references therein).

In [5], we proposed a new approach to lag coefficients esti-
mation by assuming that the lag coefficients β0, β1, . . . , βq

have at most k monotonic sections, where k is a pre-
scribed positive number. An advantage of this approach
to lag-coefficients estimation is that we impose conditions
to the coefficients that give properties that occur to a
wide range of underlying models. The user may try sev-
eral values of k if a particular choice does not suggest
itself. The conditions on β0, β1, . . . , βq avoid any param-
eterization and provide a rather weak though systematic
representation of the prior knowledge, as we are going to
explain in Section 3.

In the case when k = 1 the calculation is as follows.
Minimize the function (2) subject to

β0 ≥ β1 ≥ · · · ≥ βq, (4)

if we require monotonically decreasing coefficients, and

β0 ≤ β1 ≤ · · · ≤ βq, (5)

if we require monotonically increasing coefficients. Since
the constraints on β0, β1, . . . , βq are linear and consistent
and since the second derivative matrix of (2) with re-
spect to β is twice the matrix XT X, the calculation of β
is a convex quadratic programming problem. Given that
XT X is positive semidefinite, there is a global solution
and if XT X is positive definite the solution is unique. In
this paper, it is assumed that XT X is positive definite.
Thus several general algorithms are available for obtain-
ing the solution (see, for example, [7]). Further, it is
worth mentioning that the problem subject to the mono-
tonic decreasing constraints (4) generalizes the method of
Fisher [6], where the coefficients βi are imposed to decline
arithmetically.

When k > 1 the piecewise monotonicity constraints are
(see [4])

βtm−1 ≤ βtm−1+1 ≤ · · · ≤ βtm , if m is odd
βtm−1 ≥ βtm−1+1 ≥ · · · ≥ βtm , if m is even

}
, (6)

while the integers {tm : m = 0, 1, . . . , k} satisfy the con-
ditions

0 = t0 ≤ t1 ≤ · · · ≤ tk = q. (7)

The integers {tm : m = 1, 2, . . . , k − 1}, namely the in-
dices of the turning points of the estimated components
of β, are not known in advance and they are variables
in the optimization calculation. This raises the num-
ber of combinations of integer variables to about O(qk).
Therefore it is usually quite difficult to develop efficient
optimization algorithms for obtaining an optimal β by
minimizing (2) subject to (6), because the combinatorial
nature of the constraints defines a nonconvex calculation
with very many local minima. However, we address an
alternative form of the problem and develop an iterative
algorithm that implements a conjugate gradient method
with the piecewise monotonicity constraints on the lag
coefficients, which attempts to minimize (2).

The iterative algorithm and its convergence are presented
in Section 2. The piecewise monotonicity problem in dis-
tributed lag modeling is discussed in Section 3. Some nu-
merical results from a simulation that demonstrate the
performance of the method are presented in Section 4.
An example of an application of our method on real data
is presented in Section 5. Some concluding remarks are
given in Section 6. The Fortran program that implements
our algorithm when k > 1 for distributed-lag estimation
consists of about 1400 lines including comments, which
gives an idea of the size of the required calculation.

2 The algorithm and its convergence

We develop an algorithm that processes the lag coeffi-
cients iteratively. It starts from an initial estimate β(0) of
β that satisfies the constraints and generates a sequence
of estimates {β(j) : j = 1, 2, 3, . . .} to β in two phases. In
the first phase it takes a step from the current estimate
to a new estimate of β by applying the Fletcher-Reeves
version of the conjugate gradient algorithm with exact
line searches as described by [7], for instance. In the sec-
ond phase it conveys “prior knowledge” to the calcula-
tion through the replacement of the new estimate by its
best piecewise monotonic approximation. The contrac-
tion mapping theorem is used as a basis for establishing
convergence.

In the first phase specifically, the algorithm calculates a
new estimate of the form

β(j+1) = β(j) + αjd
(j), (8)

where αj is a step-length and d(j) is the search direction

d(j) = −XT (y −Xβ(j)) + γjd
(j−1), (9)

except that the last term is omitted if j = 1. The value of
γj is determined by the Fletcher-Reeves conjugacy con-
dition. The step-length αj is calculated to minimize the
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quadratic function of one variable F (β(j)+αd(j)). Besides
the advantages that we derive from the conjugate gradi-
ent algorithm (see, for example, [7], [10]), it is important
that this calculation involves matrix X only multiplica-
tively, so ill-conditioning of X is irrelevant here.

Having calculated β(j+1), the algorithm proceeds to the
second phase, which calculates a (q + 1)-vector β that
minimizes the function

g(β0, β1, . . . , βq) =
q∑

i=0

(β(j+1)
i − βi)2 (10)

subject to the piecewise monotonicity constraints (6),
where the integer variables {tm : m = 0, 1, . . . , k} satisfy
the conditions (7). Despite its formidable O(qk) complex-
ity, this problem is solved by [4] in only O(q2 + kq log2q)
computer operations, but in this paper we employ a
O(kq2) version of [2] that in practice seems to require
only about O(kq) operations. The main properties of
the problem, which provide this excellent complexity are
presented in Section 3.

The algorithm finishes if the vector β found at the second
phase satisfies the convergence condition

‖β − β(j)‖2/‖β‖2 ≤ ε, (11)

where ε is a small positive tolerance. This test is ap-
plied at every estimate β(j+1) including the first itera-
tion as well. When the test (11) fails, then the algorithm
replaces β(j+1) by its best piecewise monotonic approxi-
mation vector β, increases j by one and branches to the
beginning of the first phase in order to calculate at least
one new vector in the sequence {β(j) : j = 1, 2, 3, . . .}.
Therefore the convergence test is applied at consecutive
best piecewise monotonic approximations to the corre-
sponding estimates produced by the conjugate gradient
iteration. We present an outline of the algorithm dis-
cussed so far.

Algorithm 1 (k > 1)
Step 0 Set j = 0, β(0) = 0 and γ0 = 0.
Step 1 Calculate d(j) = −XT (y −Xβ(j)) + γjd

(j−1).
Step 2 Calculate αj and set β(j+1) = β(j) + αjd

(j).
Step 3 By employing Algorithm 2 of [2] calculate β,
namely a least squares approximation with k monotonic
sections to β(j+1).
Step 4 If criterion (11) is satisfied then quit, otherwise
replace β(j+1) by β, calculate γj , increase j by one and
go to Step 1. ¥

We show that Algorithm 1 terminates in a finite number
of iterations.

Theorem 1 Algorithm 1 meets the termination condi-
tion (11) for some finite integer j.

Proof At Step 0 the starting vector β(0) = 0 is not re-
strictive. If a more appropriate initial guess to β that sat-
isfies the constraints (6) is available, then set this guess

to β(0). Step 1 calculates the search direction d(j). Step
2 calculates the step-length αj and obtains the estimate
β(j+1). Step 3 calculates β, namely a least squares ap-
proximation with k monotonic sections to β(j+1). The
algorithm either terminates at Step 4 or it sets β to
β(j+1), calculates the parameter γj and then branches
to Step 1. If we drop Step 3, which provides the piece-
wise monotonic approximation, the remaining steps pro-
vide a conjugate gradient iteration, so in this case the
algorithm terminates at the minimum of (2). In view of
[20]:p. 180, conjugate gradient can be regarded as a gen-
eralization of the steepest descent method. Since steep-
est descent is a contractive operator (see, [9]:p. 29) and
the piecewise monotonic algorithm for a fixed sequence
of {tm : m = 0, 1, . . . , k} is a norm reducing operator
(see, [22]:p. 376), we have a sufficient condition (see, for
example, [16]) for the convergence of Algorithm 1. ¥

However, it is hard to determine the convergence rate of
Algorithm 1, because of the nonlinearity of the piecewise
monotonic procedure.

3 The piecewise monotonicity model

In this section we discuss some properties of the piecewise
monotonicity model that is employed by Step 3 of Algo-
rithm 1. It seems appropriate to begin by noticing that
the calculation of the unconstrained minimum of (2) due
to (3) is highly ill-conditioned and that the unconstrained
minimum allows so much freedom in the calculation of β,
that model (1) is almost useless in any estimation process.

We, instead, take the view that the calculation should
make the smallest change to the current estimate of β
that is necessary to satisfy constraints (6). The ratio-
nale for this choice is as follows. The sequence of the lag
coefficients {β(j)

i : i = 0, 1, . . . , q} may be attended as
measurements of an unknown function. Due to errors of
measurement in the time series data yt, t = 1, 2, . . . , yq+n,
it is possible that the number of turning points in β

(j)
i ’s is

substantially larger than the the number of turning points
in the true function values. Then the number of turning
points in β

(j)
i ’s may suggest that it would be advanta-

geous to smooth these estimates by requiring a certain
number of monotonic sections. Therefore, given a posi-
tive integer k < q, we seek a (q+1)-vector β that is closest
to β(j) in the least squares sense, subject to the condition
that the components of β consist of at most k monotonic
sections. By specifying that the first monotonic section
is increasing, we obtain the constraints (6), but the user
may well define it to be decreasing.

The following properties of the piecewise monotonic ap-
proximation problem are considered by [4]. The approx-
imation process is a projection, because if β(j) satisfies
the constraints then β = β(j). Therefore if β(j) con-
sists of more than k monotonic sections, as it is usu-
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ally expected in practice, then the constraints prevent
the equation β = β(j), so {tm : m = 1, 2, . . . , k − 1}
are all different. Further at the turning points of a best
fit, the equations βtm = β

(j)
tm

,m = 1, 2, . . . , k − 1 hold,
which directs the search for the tm’s among the indices
of the local maxima (i.e. β

(j)
m−1 < β

(j)
m ≥ β

(j)
m+1) of β(j)

if m is odd and among the indices of the local min-
ima (i.e. β

(j)
m−1 > β

(j)
m ≤ β

(j)
m+1) of β(j) if m is even,

which reduces the amount of required computation at
least by a factor of four. The most important property,
however, is that the monotonic sections in a best piece-
wise monotonic fit are distinct. Indeed, the components
{βi : i = tm−1, tm−1 + 1, . . . , tm} on [tm−1, tm] minimize
the sum of the squares

∑tm

i=tm−1
(β(j)

i − βi)2 subject to
the constraints βi ≤ βi+1, i = tm−1, . . . , tm − 1, if m
is odd, and subject to the constraints βi ≥ βi+1, i =
tm−1, . . . , tm − 1, if m is even. In the former case the se-
quence {βi : i = tm−1, tm−1+1, . . . , tm} is the best mono-
tonic increasing fit to {β(j)

i : i = tm−1, tm−1 + 1, . . . , tm}
and on the latter case the best monotonic decreasing one.
Therefore, provided that {tm : m = 1, 2, . . . , k − 1} are
known, the components of β can be generated by solving
a separate monotonic problem on each section [tm−1, tm]
in the cost of only O(tm− tm−1) computer operations. It
follows that an optimal fit β associated with the integer
variables {tm : m = 1, 2, . . . , k − 1} can split at tk−1 into
two optimal sections. One section that provides a best fit
on [t0, tk−1], which in fact is similar to β with one mono-
tonic section less, and one section on [tk−1, tk] that is a
single monotonic fit to the remaining data. Hence the
optimization problem of phase two can be replaced by a
problem, whose variables are the positions of the turning
points of the required fit and which is solved by dynamic
programming. The implementation of this idea includes
several options that are considered by [4] and [2], while a
versatile computer code has been written by [3].

4 Numerical results

This section presents results from simulation experiments
in order to demonstrate the performance of Algorithm 1.
The data were produced in two steps. First, the values
xt were chosen to be the daily U.S. Dollar/Euro Foreign
Exchange Rate derived from the Board of Governors of
the Federal Reserve System for the period 1/4/1999 -
5/8/2007, which amounts to 2099 observations. Second,
each component yt was generated from (1) after a func-
tion value φ(zi) was substituted for βi and a number from
the uniform distribution on [−r, r] was substituted for εt,
where r = 0.05, 0.1, and

φ(z) =
9π
2 − z

10
sin(z), z ∈ [π/2, 9π/2]. (12)

Function (12) was chosen because it is a sine wave that
quickly decays towards zero and its measurements ap-

pear particularly suitable for simulating possible sea-
sonal effects of the lag coefficients. It has five mono-
tonic sections. For the underlying function, we let the
lag length q have the values 25, 50 and 100 and for
each q the data points have the equally spaced values
{zi = π/2 + (4πi/q) : i = 0, 1, . . . , q}. Of course the val-
ues of r were selected to provide substantial differences
in the final form of the coefficients βi, i = 0, 1, . . . , q.

In the case when k = 1, vector β was obtained by min-
imizing the objective function (2) subject to the con-
straints (4). We have developed a special quadratic pro-
gramming method for this problem that takes account of
the fact that each of the constraint functions depends on
only two adjacent components of β, but we do not enter
into the details of our computation. In the cases when
k = 2, 3, 4 and 5, vector β was obtained by employing Al-
gorithm 1, where the first monotonic section in (6) was
let to be decreasing.

The actual values of q, the convergence tolerance ε in
(11), the number of monotonic sections k and the follow-
ing list of calculated parameters are given in Tables 1 and
2, one for each value of r:

1. Sφβ̂ = (
∑m

i=1 (φ(zi)− β̂i)2)1/2, the distance between
the function values φ(zi), i = 0, 1, . . . , q and the esti-
mated lag coefficients β̂i, i = 0, 1, . . . , q.

2. PRelError = max
q+1≤i≤q+n

|yi − β̂
T
ξ(i−q)|/( max

q+1≤i≤q+n
yi−

min
q+1≤i≤q+n

yi)× 100, the percent relative error of the

time series estimation, which relates the error to
the scale of values taken by the data, where ξ(i−q)

is the (i− q)th column of matrix X.

3. The number of iterations required by Algorithm 1
for k = 2, 3, 4 and 5 to calculate the lag coefficients.

4. The CPU time in seconds to perform the calculations
in single precision arithmetic using the standard For-
tran 77 compiler of Compaq Visual Fortran 6.1 on
a Personal Computer with an Intel 2.4 GHz proces-
sor operating in Microsoft Windows XP with 32 bits
word length.

The parameter 1 requires the a-priori knowledge of the
underlying function of the lag coefficients, so it can be
used only for testing purposes. The parameter 2 is the
actual time series smoothing quality indicator that the
user has available at the end of the calculation. The pa-
rameters 3 and 4 present the computational effort of the
method. A direct comparison of the number of iterations
and the CPU time indicates the work required by a single
iteration of Algorithm 1.

Each of the Tables 1 and 2 consists of a triplex of rows for
the cases q = 25, 50 and 100. Each row-triplex presents
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Table 1: Performance and CPU times when r = 0.05

q ε k Sφβ̂ PRelError Iterations CPU time (sec)

1 2.2833 26.3521 - 0.07
2 1.3342 24.4036 5 0.01

10−3 3 0.9283 17.6173 5 0.00
4 0.2166 11.1945 9 0.01

25 5 0.4196 12.7486 7 0.03
2 1.3847 27.3186 26 0.04

10−5 3 0.7618 15.1199 26 0.04
4 0.5019 11.1966 28 0.06
5 0.6264 11.6611 28 0.06
1 3.2477 34.5435 - 0.20
2 1.8148 32.2325 12 0.03

10−3 3 0.7418 12.9000 12 0.03
4 0.3555 6.7254 14 0.04

50 5 0.3731 6.7840 14 0.06
2 1.8918 34.2661 45 0.12

10−5 3 0.9533 14.1700 37 0.10
4 0.6830 7.1592 41 0.10
5 0.7258 7.1424 39 0.14
1 4.8319 42.7780 - 0.79
2 2.6640 43.0436 10 0.06

10−3 3 1.0613 14.2788 10 0.07
4 0.1483 3.2309 10 0.06

100 5 0.3112 3.2183 17 0.10
2 2.7581 44.3071 55 0.31

10−5 3 1.2796 14.9423 41 0.23
4 0.6952 4.0038 46 0.26
5 0.7301 3.4768 48 0.28

numerical results for ε = 10−3 and ε = 10−5 in order to
show the performance of Algorithm 1 at different stages of
the computation. For each q, a horizontal line separates
the results when k = 1 from those when k > 1. Some
smaller values of ε were tried too, but we do not consider
them, because they made little difference to the solution.

Moving along the rows of each row-triplex, for a specific ε,
we can see the individual performance of Algorithm 1 for
each value of k. Moving down the columns of each row-
triplex, for a specific ε, we can compare the performance
of Algorithm 1 for different values of k. In all cases, the
algorithm converged to the solution rapidly, in a number
of iterations that seldom exceeded q. It is worthy of note
that these results are by far better than those of [5] that
implements an analogue version to Algorithm 1 with the
steepest descent method.

The values of the coefficient error Sφβ̂ and the time series
error reduction PRelError, when k = 1, provided upper
bounds to the corresponding parameters when k > 1. It
seems that these parameters showed a tendency to de-
crease as k increased, because the calculated lag coeffi-
cients tend to follow the trend of the underlying function

(12) for an appropriate value of k.

As a general remark, the calculated lag coefficients for
ε = 10−5 get closer to the unconstrained coefficients than
the coefficients for ε = 10−3. In contrast, the latter co-
efficients provide smoother estimates. This remark is il-
lustrated in Figs. 1 and 2, one figure for each value of
ε, where the calculated lag coefficients with k = 4, de-
noted by (◦) on a continuous curve, do remarkably well
in capturing the shape of the underlying function. The
data for these figures are associated with the cases q = 5
and k = 4, for ε = 10−3, 10−5, of Table 2.

5 An example on consumption data

To illustrate our method we present an application on
real annual macroeconomic data derived from the Bureau
of Economic Analysis of the U.S. Department of Com-
merce for the period 1/1/1929 - 1/1/2006. The depen-
dent variable is the Real Personal Consumption Expen-
ditures (PCE) and the independent variable is the Real
Gross Domestic Product (GDP) for U.S.A., both mea-
sured in billions of chained 2000 dollars. The data of our
application are given explicitly in the relevant columns of
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Table 2: Performance and CPU times when r = 0.1

q ε k Sφβ̂ PRelError Iterations CPU time (sec)

1 2.3327 31.9851 - 0.07
2 1.3688 26.6767 5 0.01

10−3 3 1.0594 21.7691 5 0.00
4 1.0274 21.5515 5 0.01

25 5 1.0274 21.5515 5 0.01
2 1.6847 32.7452 42 0.07

10−5 3 1.2848 21.7943 36 0.06
4 1.3455 19.9306 36 0.07
5 1.3460 20.0997 36 0.07
1 3.2624 35.6179 - 0.23
2 1.8262 35.7775 12 0.04

10−3 3 0.7780 16.1560 12 0.04
4 0.2296 11.0936 12 0.04

50 5 0.2842 11.3168 12 0.04
2 2.0411 39.4993 51 0.15

10−5 3 1.2809 18.1565 30 0.09
4 0.9544 12.5077 30 0.09
5 1.1047 13.1880 51 0.15
1 4.8494 41.2454 - 0.83
2 2.6736 42.3965 12 0.07

10−3 3 1.0804 16.0402 12 0.07
4 0.1696 5.6775 12 0.07

100 5 0.1603 5.5867 12 0.07
2 2.8730 45.6307 99 0.56

10−5 3 1.5432 18.4490 51 0.29
4 0.9891 7.1667 51 0.28
5 1.0542 6.6939 51 0.29

0 10 20 30 40 50

-2

-1

0

1

2

Figure 1: The unconstrained (+) and the piecewise mono-
tonic lag coefficients with k = 4 (◦), when q = 50, r = 0.1
and ε = 10−3. Function φ(.) is denoted by the thin line

Table 3. We assume that a change in the GDP will affect
not only current consumption, but also future consump-

0 10 20 30 40 50

-2

-1

0

1

2

Figure 2: As in Figure 1, but ε = 10−5

tion for seven time periods. Therefore we estimate the
coefficients of the distributed-lag model with lag length
q = 7 subject to the piecewise monotonicity constraints
(6) on the components of β by considering separately the
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Table 3: The values of GDP and PCE for U.S.A. during the years 1929-2006 and the least squares estimates to PCE
from GDP when the lag coefficients consist of one, two and four monotonic sections

PCE GDP k = 1 k = 2 k = 4 PCE GDP k = 1 k = 2 k = 4
661.4 865.2 2310.5 3652.7 2474.8 2363.1 2361.3
626.1 790.7 2396.4 3765.4 2576.1 2460.5 2455.6
606.9 739.9 2451.9 3771.9 2642.7 2535.7 2533.2
553.0 643.7 2545.5 3898.6 2734.0 2635.9 2637.3
541.0 635.5 2701.3 4105.0 2848.2 2765.1 2761.8
579.3 704.2 2833.8 4341.5 2977.0 2910.0 2903.3
614.8 766.9 2812.3 4319.6 3033.6 2954.0 2946.1
677.0 866.6 580.7 603.0 599.9 2876.9 4311.2 3081.7 2993.7 2995.3
702.0 911.1 602.1 598.4 594.0 3035.5 4540.9 3188.5 3095.3 3096.6
690.7 879.7 605.9 582.4 580.4 3164.1 4750.5 3303.2 3222.6 3215.6
729.1 950.7 639.3 599.8 601.4 3303.1 5015.0 3447.7 3378.0 3371.7
767.1 1034.1 684.1 645.1 643.2 3383.4 5173.4 3568.7 3482.3 3473.2
821.9 1211.1 763.5 734.9 732.5 3374.1 5161.7 3634.4 3533.0 3527.3
803.1 1435.4 867.1 831.0 824.8 3422.2 5291.7 3727.8 3602.5 3604.2
826.1 1670.9 987.7 937.7 929.4 3470.3 5189.3 3755.2 3631.2 3628.4
850.2 1806.5 1088.7 1008.0 999.4 3668.6 5423.8 3871.3 3789.1 3795.2
902.7 1786.3 1146.2 1034.1 1029.9 3863.3 5813.6 4039.3 3972.6 3965.4

1012.9 1589.4 1139.7 1018.7 1020.8 4064.0 6053.7 4184.5 4136.2 4122.3
1031.6 1574.5 1163.4 1064.6 1074.1 4228.9 6263.6 4322.5 4238.8 4230.0
1054.4 1643.2 1203.4 1151.6 1154.2 4369.8 6475.1 4466.6 4329.6 4322.3
1083.5 1634.6 1218.0 1219.1 1217.9 4546.9 6742.7 4635.8 4480.0 4473.2
1152.8 1777.3 1267.5 1288.5 1288.9 4675.0 6981.4 4808.0 4631.3 4624.0
1171.2 1915.0 1317.9 1329.6 1323.4 4770.3 7112.5 4958.3 4789.0 4782.9
1208.2 1988.3 1356.5 1348.7 1342.8 4778.4 7100.5 5051.8 4895.0 4892.2
1265.7 2079.5 1407.8 1360.9 1358.3 4934.8 7336.6 5196.3 5052.3 5055.0
1291.4 2065.4 1437.7 1374.2 1371.2 5099.8 7532.7 5330.8 5206.0 5199.3
1385.5 2212.8 1512.2 1451.5 1452.8 5290.7 7835.5 5501.9 5402.3 5397.1
1425.4 2255.8 1561.6 1497.7 1493.3 5433.5 8031.7 5646.8 5539.5 5529.4
1460.7 2301.1 1612.1 1565.1 1564.5 5619.4 8328.9 5822.2 5705.1 5698.6
1472.3 2279.2 1634.1 1585.4 1584.3 5831.8 8703.5 6027.3 5881.2 5871.2
1554.6 2441.3 1704.5 1663.6 1665.0 6125.8 9066.9 6250.4 6079.8 6067.9
1597.4 2501.8 1750.5 1712.4 1706.8 6438.6 9470.3 6502.5 6314.3 6302.8
1630.3 2560.0 1798.5 1761.7 1760.2 6739.4 9817.0 6749.5 6534.1 6521.4
1711.1 2715.2 1874.7 1831.1 1829.3 6910.4 9890.7 6917.6 6686.8 6676.3
1781.6 2834.0 1946.1 1896.4 1890.9 7099.3 10048.8 7091.6 6851.9 6852.4
1888.4 2998.6 2036.6 1979.6 1975.7 7295.3 10301.0 7284.2 7061.8 7059.5
2007.7 3191.1 2144.6 2068.3 2063.1 7577.1 10703.5 7521.9 7345.4 7339.4
2121.8 3399.1 2267.9 2186.7 2180.2 7841.2 11048.6 7749.5 7592.3 7580.1
2185.0 3484.6 2359.3 2260.2 2253.4 8091.4 11415.3 7987.0 7828.8 7817.7

cases k = 1 and k > 1.

a) Monotonic lag coefficients (k = 1)
We require the estimated lag coefficients to be monotoni-
cally decreasing, so the problem is to minimize (2) subject
to the constraints (4). The optimal lag coefficients are
shown in the second column (k = 1) of Table 4, while the
unconstrained lag coefficients due to (3) are shown in the
fifth column (β̃) of this table. Fig. 3 displays these coeffi-
cients. Although the fluctuation of the unconstrained co-
efficients make them generally inadequate to the estima-

tion problem, the first unconstrained coefficient seems to
be more significant than the others. On the other hand,
the optimal monotonic decreasing coefficients follow the
main trend of the unconstrained coefficients and maintain
the importance of the first coefficient. Therefore, with the
monotonicity assumption, the resultant estimated values
of PCE are given in the third column (k = 1) of Table 3
and displayed in Fig. 4 together with the provided GDP
values. We see that the estimated PCE values via formula
(1), which actually involves the GDP values, fall close to
the observed PCE values. In particular, the current GDP
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Table 4: The estimated (k = 1, 2 and 4) and the uncon-
strained (β̃) lag coefficients in Section 5

k = 1 k = 2 k = 4 β̃

β0 0.2527 0.3097 0.3098 0.3105
β1 0.0688 0.0453 0.0073 0.0037
β2 0.0688 0.0453 0.0831 0.0862
β3 0.0688 -0.0454 -0.0452 -0.0455
β4 0.0688 0.0866 0.0883 0.1112
β5 0.0688 0.0866 0.0884 0.0915
β6 0.0688 0.0963 0.0967 0.0707
β7 0.0688 0.1167 0.1126 0.1127
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Figure 3: The unconstrained (+) and the monotonically
decreasing (o) lag coefficients of Table 4

value rather than past ones affects mainly the associated
PCE value. Indeed, in view of the monotonically decreas-
ing lag coefficients, GDP affects strongly consumption at
the beginning of the lags, while its action subsequently
is reduced and kept at a low level. Thus the constraints
(4) provide a plausible choice for the lag coefficients that
leads to a satisfactory estimation of the true PCE values.

b) Piecewise monotonic lag coefficients (k > 1)
In order to illustrate some features of Algorithm 1 we
performed two experiments. In the first experiment we
calculated the lag coefficients by employing Algorithm 1
with k = 2 and k = 4, while the first monotonic section
was let to be decreasing. The tolerance for the termi-
nation criterion (11) in Step 4 was set to 10−5 and the
estimated values of β are shown in the third and fourth
column of Table 4 and displayed in Fig. 5 together with
the unconstrained lag coefficients. The algorithm termi-
nated in 13 and 18 iterations, with PRelError = 3.5416
and PRelError = 3.6911 with respect to k = 2 and k = 4.
As can be seen, these estimates follow the trend of the
unconstrained lag coefficients, although the latter are not
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Figure 4: Least squares estimation (grey line) to the PCE
values (+) with the monotonically decreasing lag coeffi-
cients (k = 1) of Table 4 on the GDP values (thin line)
of Table 3

explicitly available. The k = 2 case has introduced one
turning point at β3, but the extra turning points of the
k = 4 case that were added automatically at the 2nd
and 3rd data point gave an estimate that is closer to
the unconstrained one. The result suggests that the user
may apply Algorithm 1 with increasing values of k until
a satisfactory time series estimation is obtained (which
can be checked by the change of PRelError as k changes).
Of course, the prior knowledge parameter k may give
the calculation valuable information. Further, the corre-
sponding estimated values of PCE are shown in columns
k = 2 and k = 4 of Table 3 and displayed in Fig. 6 to-
gether with the GDP values. Again, it is remarked that
the estimated PCE values fall close to the observed PCE
values providing very satisfactory estimations of the true
PCE values.

In the second experiment we derived approximations to
the lag coefficients by employing Algorithm 1 with k = 2,
for ε = 10−3, 10−4 and 10−5. The calculated values of β,
which are identical for the last two values of ε, are shown
in Table 5 and displayed in Fig. 7. As before, these
approximations capture the pattern of the unconstrained
lag coefficients. Moreover, the smaller the value of ε, the
closer the approximation components are to the uncon-
strained coefficients, while these components cannot be
worse than the unconstrained lag coefficients, due to the
employed piecewise monotonicity constraints. Thus the
user may decide to monitor the smoothing performance
of the method by means of the tolerance magnitude in
(11). In addition to smoothness, this is a helpful con-
sideration for the convergence of the method, because
due to degeneracy or near degeneracy of matrix X, a
line search, sometimes, may have to choose a tiny step-
length αj , which implies that the algorithm may make
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slow progress to the solution.
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Figure 5: The unconstrained (+) and the piecewise mono-
tonic lag coefficients with k = 2 (¦) and k = 4 (◦) of Table
4
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Figure 6: Least squares estimations (grey and dashed
line) to the PCE values (+) with the piecewise monotonic
lag coefficients (k = 2 and k = 4) of Table 4 on the GDP
values (thin line) of Table 3

6 Conclusions and future work

We have developed a new method for calculating
distributed-lag coefficients in time series data subject to
the condition that the coefficient estimates are composed
of a certain number of monotonic sections.

The method seems to be both effective in computation
and competent to its modelling task. Three distinctive
features of this process are to be noted: (1) The pro-
cess is designed to overcome the multicollinearity prob-
lem that frequently occurs in practice, (2) the piecewise
monotonicity model provides a rather weak, nonetheless

Table 5: The lag coefficients with k = 2 monotonic sec-
tions, for ε = 10−3, 10−4 and 10−5 in Step 4 of Algorithm
1

ε = 10−3 ε = 10−4, 10−5

β0 0.2129 0.3097
β1 0.1312 0.0453
β2 0.0596 0.0453
β3 0.0182 -0.0454
β4 0.0343 0.0866
β5 0.0690 0.0866
β6 0.0980 0.0963
β7 0.1198 0.1167
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Figure 7: The unconstrained (+) and the lag coefficients
with k = 2 monotonic sections, for ε = 10−3 (¦), 10−4

(◦) and 10−5 (◦) of Table 5

realistic representation of the lag coefficients and, (3) the
calculation benefits from the excellent complexity of the
piecewise monotonicity method and the fast convergence
of the conjugate gradient technique. In particular, the
choice of the prior knowledge parameter k gives the time
series estimation valuable flexibility.

For the piecewise monotonic model we have used a For-
tran package that has been developed recently [3], which
indeed is a major part of our calculation. For the spe-
cial problem that minimizes (2) subject to the monotonic
constraints (4) we have used Fortran codes developed by
one of the authors (EEV).

The calculations performed so far on real data show that
our method overcomes some severe shortcomings of tradi-
tional lag estimation techniques, while it provides a weak
representation of the lag coefficients. Still, there is plenty
of room for much empirical analysis on this method. The
algorithm due to employing the conjugate gradient tech-
nique seems to be very fast for interactive computation.
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It is expected that the algorithm will find useful applica-
tions to real problems, so work is under way in order to
provide a Fortran package that will be accessible through
a public software library.

References

[1] Almon, S., “The Distributed Lag between Capital
Appropriations and Expenditures”, Econometrica,
V33, N1, pp. 178-196, 1965.

[2] Demetriou, I. C., “Discrete Piecewise Monotonic Ap-
proximation by a Strictly Convex Distance Func-
tion”, Mathematics of Computation, V64, N209, pp.
157-180, 1995.

[3] Demetriou, I. C., “Algorithm 863: L2WPMA, a For-
tran 77 Package for Weighted Least Squares Piece-
wise Monotonic Data Approximation”, ACM Trans-
actions on Mathematical Software, V33, N1, pp. 1-
19, 2007.

[4] Demetriou, I. C., Powell, M. J. D., “Least Squares
Smoothing of Univariate Data to Achieve Piecewise
Monotonicity”, IMA Journal of Numerical Analysis,
V11, pp. 411-432, 1991.

[5] Demetriou, I. C., Vassiliou, E. E., “A Distributed
Lag Estimator with Piecewise Monotonic Coeffi-
cients”. In: Proceedings of the World Congress on
Engineering, V II (Eds. S. I. Ao, L. Gelman, D. W.
L. Hukins, A. Hunter, A. M. Korsunsky), London,
U.K., 2-4 July, 2008, International Association of
Engineers, pp. 1088-1094.

[6] Fisher, I., “Note on a Short-Cut Method for Cal-
culating Distributed Lags”, International Statistical
Institute Bulletin, pp. 323-327, 1937.

[7] Fletcher, R., Practical Methods of Optimization,
Second Edition, Chichester: J. Wiley and Sons,
2003.

[8] Gershenfeld, N., The Nature of Mathematical Mod-
elling, Cambridge: Cambridge University Press,
1999.

[9] Goldstein, A. A., Constructive Real Analysis, New
York: Harper, 1967.

[10] Golub, G., van Loan, C. F., Matrix Computations,
Second Edition, Baltimore and London: The John
Hopkins University Press, 1989.

[11] Gray, R. M., Toeplitz and Circulant Matrices: A Re-
view, Stanford: Department of Engineering, http://
ee.stanford.edu/∼gray/toeplitz.pdf, 2006.

[12] Griliches, Z., “Distributed Lags: A Survey”, Econo-
metrica, V35, N1, pp. 16-49, 1967.

[13] Hannan, E. J., “The Estimation of Relations Involv-
ing Distributed Lags”, Econometrica, V33, N1, pp.
206-224, 1965.

[14] Jorgenson, D., “Rational Distributed Lag Func-
tions”, Econometrica, V34, N1, pp. 135-149, 1966.

[15] Kailath, T. (editor), Linear Least-Squares Estima-
tion, Stroudsburg, Pennsylvamia: Dowden, Hutchin-
son and Ross, Inc., Benchmark Papers in Electrical
Engineering and Computer Science, V17, 1977.

[16] Katsaggelos, A. K., “Iterative Image Restoration Al-
gorithms”, Optical Engineering, V28, N7, pp. 735-
748, 1989.

[17] Koop, G., Analysis of Economic Data, Chichester:
J. Wiley and Sons, 2000.

[18] Koyck, L., Distributed Lags and Investment Analy-
sis, Amsterdam: North-Holland Pub. Co., 1954.

[19] DeLeeuw, F., “The Demand for Capital Goods by
Manufactures: A Study of Quartely Time Series”,
Econometrica, V30, 407-423, 1962.

[20] Luenberger, D. G., Introduction to Linear and
Nonlinear Programming, Reading, Massachusetts:
Addison-Wesley Pub. Co., 1973.

[21] Maddala, G. S., Econometrics, London: McGraw-
Hill Book Co., 1977.

[22] Robertson, T., Wright, F. T., Dykstra, R. L. Order
Restricted Statistical Inference, New York: J. Wiley
and Sons, 1988.

[23] Shiller, R. J., “A Distributed Lag Estimator De-
rived from Smothness Priors”, Econometrica, V41,
N4, pp. 775-788, 1973.

[24] Solow, R. M., “On a Family of Lag Distributions”,
Econometrica, V28, N2, pp. 393-406, 1960.

[25] Tsay, R. S., Analysis of Financial Time Series, New
York: J. Wiley and Sons, 2002.

[26] Zellner, A., Geisel, M. S., “Analysis of Distributed
Lag Models with Applications to Consumption
Function Estimation”, Econometrica, V38, N6, pp.
865-888, 1970.

IAENG International Journal of Applied Mathematics, 39:1, IJAM_39_1_09
______________________________________________________________________________________

(Advance online publication: 17 February 2009)


