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Abstract—This paper considers two general 0-1 random 

fuzzy programming problems based on the degree of necessity 
which include some previous 0-1 stochastic and fuzzy 
programming problems. The proposal problems are not well 
defined due to including randomness and fuzziness. Therefore, 
by introducing chance constraint and fuzzy goal for the 
objective function, and considering the maximization of the 
aspiration level for total profit and the degree of necessity that 
the objective function’s value satisfies the fuzzy goal, each main 
problem is transformed into a deterministic equivalent problem. 
Furthermore, by using the assumption that each random 
variable is distributed according to a normal distribution, the 
problem is equivalently transformed into a basic 0-1 
programming problem, and the efficient strict solution method 
to find an optimal solution is constructed. 
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I. INTRODUCTION 
  0-1 programming problems are the most important 
mathematical models in practical social problems such as 
project selection, scheduling and facility location problems, 
and there are many previous academic and practical 
researches (recent studies; Balev [1], Freville [5]).  

In the sense of standard mathematical programming 
problems involving 0-1 programming problems, the 
coefficients of objective functions or constraints are assumed 
to be completely known and dealt with constant values. 
However, in the real world, they should be treated as rather 
uncertain values than constant values due to probabilistic 
situations such as predictions of future profits or some 
machine troubles derived from historical data and ambiguous 
situations such as decision makers’ substitutions. In order to 
consider such uncertainty, some models for mathematical 
programming problems have been introduced; stochastic 
programming problem (for example, Beale [2], Dantzig [4], 
Vajda [18]), fuzzy programming problem (for example, 
Inuiguchi [10], Sakawa [17], Zimmermann [19]) and the 
applications of fuzzy logics in various real cases (for example, 
Cheng [3]). Furthermore, Hasuike [6] has considered a 0-1 
programming problem considering randomness and flexible 
goals for objective function and constraints. Katagiri [15] has 

considered a 0-1 programming problem involving both 
random and fuzzy conditions, i.e., fuzzy random 0-1 
programming problem. Then, Katagiri [12] has considered a 
random fuzzy programming model based on possibilistic 
programming. Most recently, Huang [9] has proposed a 
project selection model including random fuzzy variables. 
However, there are few researches considering a general 0-1 
random fuzzy programming problem at this time. Therefore, 
this paper particularly considers the more general random 
fuzzy 0-1 programming problem maximizing the objective 
function involving random fuzzy variables, considering both 
the objectivity derived from statistical analysis of data and 
decision maker’s subjectivity such as their subjectivities 
derived from wide-ranging experiences, simultaneously. In 
this paper, we deal fuzzy numbers with L-R fuzzy numbers 
and random variables with continuous random distributions, 
particularly normal distributions. 

 
Takashi Hasuike and Hiroaki Ishii are with Graduate School of 

Information Science and Technology, Osaka University, Japan 
(corresponding author to provide phone: +81-6-6879-7872; fax: 
+81-6-6879-7872; e-mail: {thasuike, ishii}@ist.osaka-u.ac.jp).  

Hideki Katagiri is with Graduate School of Engineering, Hiroshima 
University, Japan. (e-mail: Katagiri-h@hiroshima-u.ac.jp). 

On the other hand, generally speaking, solution methods of 
0-1 programming problems mainly divides into two types; (a) 
strict solution methods such as dynamic programming and 
branch-bound method, (b) approximate solution methods 
such as genetic algorithm, heuristic methods, etc.. 
Furthermore, in mathematical programming, 0-1 
programming problems with uncertainty become more 
complicate than the previous problems. Then, since these 
problems are not well defined due to including both random 
variables and fuzzy numbers, it is almost impossible to solve 
them analytically. Therefore, we need to set the target values 
for stochastic and fuzzy constraints and construct its efficient 
solution method. Most recently, Huang [9] considered a 
random fuzzy simulation based on approximate solution 
methods. However, through the development of information 
technology and improvement of computers, we solve 0-1 
programming problems more quickly using not only 
approximate solution methods but also strict solution 
methods even if they are little bit large scale problems. 
Therefore, in this paper, we propose the efficient strict 
solution method based on a hybrid method with 0-1 
relaxation problem and branch-bound method, and show the 
analytical efficiency comparing with previous strict solution 
methods. Particularly, considering the case that the decision 
maker is pessimistic with respect to present practical 
conditions, we deal with the necessity measure based on the 
fuzzy programming.  Furthermore, introducing the fuzzy 
goal to the object, we consider the 0-1 random fuzzy 
programming problem with the degree of necessity based on 
our previous study [7]. 

This paper is organized as follows. In Section 2, we 
formulate a general 0-1 random fuzzy programming problem 
and introduce the degree of necessity. Using the degree of 



 
 

 

necessity, in Section 3, we propose two random fuzzy 0-1 
programming problems whose objects are to maximize the 
aspiration level of total profit and the degree of necessity, 
respectively. Then, we perform the deterministic equivalent 
transformation and transform the original problem into a 
nonlinear 0-1 programming problem. It is difficult to solve 
this obtained problem analytically using previous strict 
solution methods, and so in Section 4, we develop the 
efficient solution method to combine the 0-1 relaxation 
problem with the strict solution method. Finally, in Section 5, 
we conclude this paper. 
 

II. FORMULATION OF GENERAL 0-1 RANDUM FUZZY 
PROGRAMMING PROBLEM 

A random fuzzy variable is one of the mathematical 
concepts dealing with randomness and fuzziness, 
simultaneously. In this paper, we deal with the random fuzzy 
variable based on the study of Liu [16]. 
 
Definition 1 (Liu [16]) 
A random fuzzy variable is a function ξ  from a possibility 

space ( )( ), , PoPΘ Θ s  to collection of random variables R . 

 
Then, we formally introduce the following 0-1 programming 
problem: 

{ }
Maximize  

subject to  0 1 n,≤ ∈A

rx

x b, x
 (1)

where each notation is as follows: 
A: m× n coefficient matrix 
b: m-dimensional column vector 
x: n-dimensional decision column vector (Decision variable) 
 
The coefficient vector of objective function is 

( 1 2, ,..., nr r r=r )  and each jr~  is a random fuzzy variable 

according to a normal distribution ( )2,j jN m σ  where jm  

is a mean value and 2
jσ  is a variance. Then, we represent the 

ijth element of variance-covariance matrix as . 

Furthermore, we assume that 
ijσ

jm  is a fuzzy variable 

characterized by the following membership function: 
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where ( )L x  and ( )R x  are nonincreasing reference 

function to satisfy  and 

the parameters 

( ) ( ) ( ) ( )0 0 1,  1 1L R L R= = = = 0

jα  and jβ  represent the spreads 

corresponding to the left and the right sides, respectively. 
Problem (1) is a random fuzzy 0-1 programming problem due 
to including random fuzzy variables. Then, its objective 

function Z = rx  is defined as a random fuzzy variable by 
the following membership function introducing a parameter 

 and an universal set of normal random variable Γ : γ j
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where  Furthermore, we discuss the 

probability that the objective function value is greater than or 
equal to an aspiration level f. Then, we represent the 

probability as 
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where . Due to these randomness and 

fuzziness, problem (1) is not a well-defined problem, and so 
it is necessary to interpret the problem from some point of 
view and to transform the problem into the deterministic 
equivalent problem. In this paper, we consider two cases; (a) 
the case where a decision maker prefers maximizing 
aspiration level f more than the degree of necessity for the 
probability, and (b) the case where a decision maker prefers 
maximizing the degree of necessity for the probability that 
the value of objective function satisfies the fuzzy goal, based 
on previous research Hasuike [8] and Katagiri [12, 13]. A 
fuzzy goal for the probability is characterized by the 
following membership function: 
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where ( )g p  is a monotonous increasing function. Using a 

concept of necessity measure, the degree of necessity that the 
objective function value satisfying a fuzzy goal G is as 
follows: 

( ) ( ) ( ){ }inf max 1 ,
Pp P Gp

N G p pμ μ= −  (7)

 

III. FORMULATION OF PROPOSED MODELS AND 
DETERMINISTIC EQUIVALNET TRANSFORMATIONS 

A. The case maximizing the aspiration level f 
First, we consider the fractile optimization model for 

problem (1) using the degree of necessity (7). In this paper, 
the proposed fractile optimization model means the 
maximization of the aspiration level f that the degree of 
necessity is more than the target level h .  This model is 
formulated as the following problem: 
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In problem (8), constraint ( )pN G h≥  is transformed into 

the following inequality based on the result obtained by 
Hasuike [8] and Katagiri [12, 13]: 
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where ( )L x∗  is a pseudo inverse function of ( )L x . From 

this inequality, problem (8) is equivalently transformed into 
the following problem: 

( ){ } ( )

( )( ) ( )

{ }

1

1

Maximize  f

subject to  Pr ,

                ~ 1 , ,

                 0 1

n

j j j
j

n

u f g h

u N m L h x V

,

ω ω

α

−

∗

=

≥ ≥

⎛ ⎞⎟⎜ ⎟− −⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠

≤ ∈

∑
A

x

x b, x

 
(10)

 
Furthermore, with respect to stochastic constraint 

( ){ } ( )1Pr u f gω ω −≥ ≥ h , by using the property of normal 

distribution, this constraint is equivalently transformed into 
the following form: 
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where ( )F ⋅  is the distribution function of the standard 

normal distribution and . Furthermore, each 

decision variable 

( )1
zK F z−=

jx  satisfies , we obtain {0,1jx ∈ }
2
j jx x=  and assume that each variance is independent, i.e., 
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Consequently, problem (10) is equivalently transformed into 
the following problem: 
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This problem is similar to the problem proposed in Hasuike 
[8], and so we construct the efficient solution method using 
the proposed approach in Hasuike [8]. 
 

B. The case maximizing  the degree of necessity 
Second, we consider the case maximizing the degree of 

necessity for problem (1). This model is transformed into the 
following problem: 
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This problem is equivalently transformed into the following 
problem introducing a parameter : h
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In a way similar to equivalent transformations (9), constraint 
( )pN G h≥  is transformed into the following inequality: 
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From this inequality, problem (14) is equivalently 
transformed into the following problem: 
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Furthermore, we also apply the equivalent transformation 
(11) to constraint ( ){ } ( )1Pr u f gω ω −≥ ≥ h , and problem 

(11) is equivalently transformed into the following problem: 
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It should be noted here that problem (17) is a nonconvex 
integer programming problem and it is not solved by the 
linear programming techniques or convex programming 
techniques. However, since a decision variable h is involved 
only in the first constraint, we introduce the following 
subproblem involving a parameter q: 

( )( )

{ }

1

2

1

1
Maximize  

subject to  0 1

n

j j
j

n

j j
j

n

m L q x f

x

,

α

σ

∗

=

=

− − −

≤ ∈

∑

∑
Ax b, x

j

 
(18)

 
In the case that we fix the parameter q , problem (18) is 
equivalent to a convex integer programming problem. 
Furthermore, let and ( )qx ( )Z q  be an optimal solution of 

problem (18) and its optimal value, respectively. Then, the 
following theorem is derived from previous study [8, 12, 13]. 
 
Theorem 1 

For  satisfying 0 1, q q< < ( )Z q  is a strictly increasing 

function of . q
 
Furthermore, let  denote  satisfying q̂ q ( ) ( )1ˆ ˆZ q g q−=  and 

the optimal solutions of main problem (17) be ( .Then 

the relation between problems (17) and (18) is derived as 
follows derived from previous study [14]. 

),h∗ ∗x

 
Theorem 2 
Suppose that 0< <1 holds. Then q̂ ( )( )ˆ ˆ,x q q  is equal to 

. ( ),h∗ ∗x
 
From these theorems, by using bisection algorithm for 
parameter q and comparing objective function ( )Z q  with 

( )1g q− , we repeatedly solve problem (18) for each q using 

branch-bound method, and finally obtain the optimal solution. 
This solution method is assured that its calculation times are 
infinite. However, it is not efficient due to increasing 
computational times voluminously with the increase of 
parameters and decision variables. Therefore, we need to 
construct the more efficient solution method. 

 

IV. CONSTRUCTION OF THE EFFICIENT STRICT SOLUTIOM 
METHOD 

In order to construct the efficient strict solution method for 
problem (17), first of all, we introduce the following 0-1 
relaxation problem of problem (17): 
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In a way similar to problem (17), this problem is also a 
nonconvex programming problem and it is not solved by the 
linear programming techniques or convex programming 
techniques. Subsequently, we introduce the following 
subproblem: 
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In this paper, it is assumed that there exists a feasible solution 

satisfying . This means that 

the probability that total future profit is more than target 
value 
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In the case we fix the parameter q,  since problem (21) is a 
nonlinear fractional programming problem due to including a 

square root term ∑
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2σ  in the objective function, it is 

difficult to solve this original problem directly. Therefore, we 
introduce the following parameters; 
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equivalent problem: 

( )( )

2

1

1

Minimize  

subject to  1 1,

                 0 ,  1, 2,...,

n

j j
j

n

j j j
j

j

y

m L q y ft

t y t j n

σ

α

=

∗

=

− − − =

≤ ≤ ≤ =

∑

∑
Ay b , 

 (22)

 

Since objective function ∑
=

n

j
jj y

1

2σ  is a monotonous 

increasing function, this problem is equivalently transformed 
into the following problem: 

( )( )

2

1

1

Minimize  

subject to  1 1,

                 0 ,  1,2,...,

n

j j
j

n

j j j
j

j

y

m L q y ft

t y t j n

σ

α

=

∗

=

− − − =

≤ ≤ ≤ =

∑

∑
Ay b , 

 (23)

 
Problem (23) is a linear programming problem in the case 
that  is fixed, and so we efficiently obtain the optimal 
solution using linear programming approaches and bisection 
algorithm for parameter . 

q

q
 
Furthermore, let the optimal value of parameter h  in 
problem (17) be . Then, the following lemmas hold: h∗

 
Lemma 1 
With respect to problem (17), there exists ranges 1,k kh h +⎡ ⎤⎣ ⎦  

( )1,2,...k =  that the optimal solution of problem (17) is 

unique for any  including in . h 1,k kh h +⎡ ⎤⎣ ⎦
 
Proof 
From the continuity of parameter h  and discreteness of 
decision variable , this lemma clearly holds. ∗x
 
Lemma 2 
Let the optimal value of problem (19) be h , the optimal 
solution of problem (17) be  and the optimal value be . 

Then in the case that we set a range 

∗x h∗

[ ],L Uh h satisfying 

[ ],L Uh h h∈ , [ ],L Uh h h∗ ∈  holds. 

 
Proof 
We consider the case that [ ],L Uh h h∗ ∉ and ,L Uh h h∗ ⎡ ⎤′ ′∈ ⎣ ⎦ . If 

, there exists the optimal solution  and the 

optimal solution  satisfying 
Uh h′ < L ′x

h′ [ ],L Uh h h′ ∈ . This contradicts 

the optimality of parameter h*. In a way similar to , if U Lh h′ <

L Uh h′ > , we obviously find that . This means that the 
optimal value of discrete problem is larger than that of 
continuous problem, and contradicts the optimality of 
parameter 

Lh h∗′ >

h h∗> . Consequently, this lemma holds. 
 
From these lemmas, the following theorem to the relation 
between problems (17) and (19) holds: 
 
Theorem 3 
Let the optimal solution of problem (19) be ( )h∗x  and the 

optimal value of parameter h  be h . Then, the optimal 
solution of the following problem; 

( )( )

{ }

1

2

1

1
Maximum  

subject to  0 1

n

j j
j

n

j j
j

n

m L h x f

x

,

α

σ

∗

=

=

− − −

≤ ∈

∑

∑
Ax b, x

j

 
(24)

is equivalent to that of problem (17). 
 
Consequently, in the case that we solve 0-1 relaxation 
problem (19) and obtain its optimal solution h , we obtain 
an optimal solution more efficiently than previous parametric 
approaches due to not using branch-bound method every 
value of parameter h  repeatedly. However, since the 
objective function of problem (24) is a nonlinear function, it 
is not easy to deal with several efficient solution methods for 
integer programming approaches. Therefore, in order to have 
the more general versatility for our proposed model, we 
consider the other deterministic equivalent transformations 
for main problem. 

∗

First, we equivalently transform main problem (17) into 
the following problem; 

( )( ) ( )

{ }

1
2

1 1

Maximum  

subject to  1 ,

                 0 1

n n

j j j j jg h
j j

n

h

m L h x K x f

,

α σ−
∗

= =

− − − ≥

≤ ∈

∑ ∑
Ax b, x

(25)

and introduce this 0-1 relaxation problem as follows: 

( )( ) ( )1
2

1 1

Maximum  

subject to  1 ,

                 0 1,  1, 2,...,

n n

j j j j jg h
j j

j

h

m L h x K x f

x j n

α σ−
∗

= =

− − − ≥

≤ ≤ ≤ =

∑ ∑
Ax b, 

(26)

 
This problem (26) is a nonlinear programming problem. 
However, this problem is much similar to problem (12). 
Therefore, in order to solve problem (26) analytically, we 



 
 

 

introduce the following subproblem in a way similar to the 
transformation from problem (19) into problem (20): 

( )( ) ( )1
2

1

Maximum  1

subject to  0 1,  1, 2,...,

n

1

n

j j j j jg h
j

j

m L h x K x

x j n

α −
∗

=

− − −

≤ ≤ ≤ =

∑
Ax b, 

j

σ
=
∑

(27)

 
Then, we consider the following auxiliary problem: 

( )( ) ( )1
2

1 1

Maximum  1

subject to  0 1,  1, 2,...,

n n

j j j j jg h
j j

j

m L h x K x

x j n

γ α −
∗

= =

⎛ ⎞⎟⎜ ⎟− − − ⎜ ⎟⎜ ⎟⎟⎜⎝
≤ ≤ ≤ =

∑ ∑
Ax b, 

σ
⎠ (28)

 
In the case that we fix parameter h, with respect to the 
relation between problems (27) and (28), the following 
theorem holds based on the previous research of Ishii [11]. 
 
Theorem 4 
Let the optimal solution of problem (27) be . Then, in 

the case 

( )hx

2

1

2
n

j j
j

xγ σ ∗

=

= ∑ , the optimal solution of problem 

(28) is equal to . ( )hx
 
From Theorem 4, in the case that parameter h is fixed, we 
obtain the optimal solution . Furthermore, we consider 

the following problem to deal with optimal value 

( )hx
h  of 

problem (19): 

( )( ) ( )1
2

1

Maximum  1

subject to  0 1,  1,2,...,

n

1

n

j j j j jg h
j

j

m L h x K x

x j n

γ α −
∗

=

⎛ ⎞⎟⎜ ⎟− − − ⎜ ⎟⎜ ⎟⎟⎜⎝
≤ ≤ ≤ =

∑
Ax b, 

j

σ
= ⎠
∑

(29)

 
Let this optimal solution be ( )h∗x . Subsequently, the 

following lemma with respect to each optimal solution for 
problems (17) and (25) holds. 
 
Lemma 3 
The optimal solution of problem (25) is equal to that of 
problem (17). 
 
Proof 
Since each problem is the deterministic equivalent problem 
for main problem (13), this lemma obviously holds. 
 
Therefore, we obtain ( )h ∗=x x . Then, the following 

theorem holds extending previous research of Hasuike. 
 
Theorem 5 

With respect to 2

1

2
n

j j
j

xγ σ∗

=

= ∑ ∗ , the optimal solution of the 

following problem; 

( )( ) ( )

{ }

1
2

1

Maximum  1

subject to  0 1

n

j j j g h
j

n

m L h x K x

,

γ α −
∗ ∗

=

⎛ ⎞⎟⎜ ⎟− − − ⎜ ⎟⎜ ⎟⎟⎜⎝

≤ ∈

∑
Ax b, x

1

n

j j
j

σ
= ⎠
∑

(30)

is equal to that of problem (13). 
 

From Theorem 5, we finally solve this linear 0-1 
programming problem.  It is more efficient to obtain its 
optimal solution of problem (30) using some efficient 
solution methods for integer programming approaches than 
that of problem (17). Furthermore, in the case using 
branch-bound method, we find that upper limited value for 
main problem becomes 

( )( ) ( ) ( ) ( )1
2

1 1

1
n n

j j j jg h
j j

m L h x h K x hα σ−
∗

= =

− − −∑ ∑ j
 

substituting optimal solution ( )hx  and optimal value h  of 

problem (19) and lower limited value becomes f. Therefore, 
by using these values in branch-bound method efficiently, we 
obtain the optimal solution of main problem more easily and 
rapidly. Consequently, we develop the following solution 
method. 
 
Solution method 
STEP 1: Elicit the membership function of a fuzzy goal for 

with respect to the probability and set each 
parameter. 

STEP 2: Solve 0-1 relaxation problem (19), and find the 
optimal solution  and optimal value ∗x h . 

STEP 3: Solve 0-1 programming problem (30) by using 
integer programming approaches such as 
branch-bound method.  

 
Furthermore, with respect to previous parametric integer 
programming approach for 0-1 random fuzzy programming 
problems, integer programming approaches such as the 
Branch-bound method have been used to every parameter 
value set by using the bisection method. Therefore, the 
computational time complexity has been ( ) ( )2logIPMK n⋅ , 

where  is the computational time complexity of integer 
programming approach. However, with respect to our 
proposed approach, the computational time complexity is 

IPMK

4 log IPMn n K+  due to not use integer programming 
approach repeatedly. Consequently, our proposed solution 
approach may be more useful in the case that the number of 
decision variables and constraints are larger. 
 

V. CONCLUSION 
In this paper, we have proposed two general 0-1 random 

fuzzy programming problems considering both random and 
fuzzy conditions based on the degree of necessity. Since our 
proposed models have been nonlinear 0-1 programming 
problems by introducing chance constraints and performing 
the transformation into the deterministic equivalent problems, 
we have constructed the efficient strict solution method by 
dealing with some 0-1 relaxation problems. Consequently, 
we have found that the number of using branch-bound 
method in our proposed method is much less than that in 
previous parametric solution methods.  

This solution method may be applicable to the general 
integer programming problems because our proposal model 
includes some previous models not considering uncertainty. 
However, in the case there are large number of decision 
variables and parameters, it takes much computational time 
to solve this 0-1 random fuzzy programming problem even if 



 
 

 

we use this efficient solution method due to the 
nonpolynomial time algorithm to branch-bound method. 
Therefore, as future studies, we need to construct its efficient 
solution method using not only strict solution method such as 
branch-bound method but also approximation methods such 
as genetic algorithm and heuristic approaches. 
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