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Abstract - This paper is concerned to study temperature 
distribution, thermal stresses and displacement 
components for a magnetothermoelastic problem of a half-
space subjected to (i) moving heat source and (ii) moving 
load. Classical Dynamical Coupled, Lord-Shulman and 
Green Lindsay theories of thermoelasticity are used for 
mathematical analysis.  It is found that the Lord-Shulman 
theory is more pronounced than coupled theory and Green 
Lindsay theories.  Numerical computations have been 
performed for computing temperature, stresses and 
displacement for these theories.  The results obtained using 
these theories are compared and depicted graphically. 
 
Keywords: displacement, moving heat source, moving load, 
temperature field. 

I. INTRODUCTION 

The classical theory of thermoelasticity is based on 
Fourier’s law of heat conduction, which predicts an 
infinite speed of heat propagation.  Many new theories 
have been proposed to eliminate this physical 
absurdity.   Lord and Shulman [1] first modified 
Fourier’s law by introducing into the field equations 
the term representing the thermal relaxation time. This 
modified theory is known as the generalized theory of 
thermoelasticity.  Later, Green and Lindsay [2] 
developed a more general theory of thermoelasticity, in 
which Fourier’s law of heat conduction is unchanged,  
whereas the classical energy equation and the stress-
strain temperature relations are modified by introducing 
two constitutive constants having dimensions of time.  
In the last five decades another domain has been 
developed, which investigates the interaction between 
the strain and electromagnetic fields.  This discipline is 
called magnetoelasticity. The problem of interaction 
between the elastic or thermoelastic field and the 
electromagnetic field has been a research topic for a 
number of investigations in recent years because of its 
utilitarian aspects in various branches of science and 
technology, like geophysics for understanding the effect 
of the Earth’s magnetic field on seismic waves, 
damping of acoustic waves in a magnetic field, 
emissions at electromagnetic radiation from nuclear 
devices, development of a highly sensitive super 
conducting magnetometer, electrical power engineering, 
optics and plasma physics. A comprehensive review of 
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the earlier contribution to the subject can be found in [3]. 
The contribution of some authors who had worked in 
this field is presented in [4-11]. The other studies 
performed is a coupled magnetothermoelastic problem 
in elastic half space [12], transient generalized  
magnetothermoelastic waves in a rotating half-space [13] 
and a coupled magnetothermoelastic problem in a 
perfectly conducting elastic half-space with thermal 
relaxation [14], magnetothermoelastic waves induced by 
a thermal shock in a infinitely conducting elastic half 
space [15] and generation of generalized magneto 
thermoelastic waves by thermal shock in a perfectly 
conducting half-space[16].  Recently, relaxation effects 
on thermal shock problems in an elastic half-space of 
generalized magneto thermoelasticity are studied in [17].  
In the present paper we have formulated a two-
dimensional magnetothermoelastic problem of a half- 
space subjected to moving heat source and moving load 
to study temperature field, thermal stresses and 
displacement components. 
 

II. THEORY 

Following Othman [17], for generalized 
thermoelasticity with two relaxation times, the 
linearized equations in non- dimensional form of 
electrodynamics in slowly moving medium and the non-
vanishing stress components are given by 
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0t  and  1t  are thermal relaxation times and other 

symbols having their usual meanings. In order to 
discuss the results from different theories of 
thermoelasticity, we shall take for:  

C-D theory, 010 == tt ; 

L-S theory, 0,0 10 ≠= tt ; 

G-L theory, 0,0 10 ≠≠ tt . 

In the above equations, the following non-dimensional 
quantities are used 
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where, primes denote dimensional variables.  If we 
introduce the function ϕ  defined by,    θϕ −= e  
Equations (1) and (2) take the form 
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The heat conduction equation given by (3) can be 
written as 
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and the stress components given by  (4) - (6) are written 
as 
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We change the co-ordinate system moving with input by 
shifting the origin to the position of input 
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where  ,
0c

v
p =  is the dimensionless loading speed 

and the co-ordinates x ′′ and y ′′  move in positive 

direction with speed p .  It follows from (14) that we 

may use the relation 
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to eliminate time derivatives.  In terms of the moving 
co-ordinates given by (14), (1) and (2) together with (7) 
and (8) become 
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Equations (9)-(10) together with relation (15), after 
omitting the primes on x  and y  are as follows: 

2

2
22

1
2

2

2 1

x
p

x
pt

x ∂
∂−









∂
∂∇+∇=

∂
∂ ϕθϕ

α
θ

               (18) 

( )[ ]ϕθεθ

θ

++×










∂
∂+

∂
∂−=∇

2

2
22

x
tp

x
p o

              (19) 

To obtain the expressions for ijvu σϕθ and,,,   let us 

assume that where, D is the (complex) frequency and a  
is the wave number in the x - direction and D is 
unknown quantity. Inserting  (20) into (18) and (19) to 
obtain: 
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Eliminating ( )y0θ  from equations (21)-(22), we obtain 
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The solution of  (23) is written as 
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Where, iθ are parameters depending upon a . 

Substituting equation (25) in (21) and we get: 
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Now, (16) and (17) together with (20) become as 
follows: 
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Substituting (25) - (26) in (27) (28), we get 
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In terms of the moving co-ordinates (14) and by making 
use of relation (15) the stress components given by (11)-
(13) become as follows 
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Upon using (20), (25), (26) and (29) into equations (31)-
(33), we get 
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PROBLEM I 

Consider a homogeneous isotropic thermoelastic solid 
occupying the region 

∞<<∞−∞<<∞−≥ zxy ,,0  

of the xy-plane and displacement ( )0,,vu=u
r

 and the 

temperature T  are function of yx,  and time t  which 

is subjected to moving heat source with following 
boundary 
conditions,
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where, h  is the surface heat transfer coefficient and f  
is arbitrary function and be the velocity of motion of 
heat source.  Equations (37) together with (25) and(36)  
gives following expression: 
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PROBLEM II 
 Consider a homogeneous isotropic thermoelastic solid 
occupying the region 

∞<<∞−∞<<∞−≥ zxy ,,0  of the xy-plane 
which is subjected to moving load with following 
boundary conditions, 
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Solving equations (44)-(46) for unknown constants
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III.  NUMERICAL RESULTS  

In order to study temperature field, thermal stresses and 
displacement components, we have computed them for 
a specific model.  The material chosen for numerical 
calculation is Copper.  The physical data for such 
material in SI units is, 

.01.2,5.3,0168.0,/381

,/10398.0,/1093.8
2
0

2

333

====

×=×=

ββε
ρ

CmWK

kgJCmkg
o

E

To compare the results obtained using classical 
Dynamic Coupled, Lord-Shulman and Green-Lindsay 
theories of thermoelasticity.  The value of thermal 
relaxation times   have  been taken as: 

C-D theory, 010 == tt ; 

L-S theory, 0,5.0 10 == tt ; 

G-L theory, 5.0,2.0 10 == tt . 

The graphs are drawn for different values of time, 

.5.0,2.0 1 == tt   The values of real part of 

temperature field and displacement components 
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),( txu and ),( txv  are evaluated on the plane y = 1, 

for moving heat source and moving load. 
Moving heat source: In Fig. 1-3, 3-D graphs shows the 
variation in temperature for C-D, G-L and L-S theories 
due to moving heat source at dimensionless time, t=0.2 
and Fig.4, three curves, predicted by the three theories, 
C-D, G-L and L-S for temperature distribution, are 
shown.  The graph in Fig. 5, is drawn to see the 
variation in temperature at time t=0.5 whereas the 
comparison for temperature variation, at time t=0.2 and 
t=0.5 due to moving heat source is shown in Fig. 6. The 
horizontal displacement for C-D, G-L and L-S theories 
respectively due to moving heat source at dimensionless 
time t=0.2 is shown in Fig. 7-9. and comparison of three 
theories  is given in Fig.10. The graph in Fig. 11, is 
drawn to see horizontal displacement at time t=0.5 
whereas the comparison for horizontal displacement, at 
time t=0.2 and t=0.5 due to moving heat source is 
shown in Fig. 12.  Also, 3-D graphs in Fig. 13-15, 
shows the vertical displacement due to moving heat 
source at dimensionless time t=0.2 and their comparison 
can be seen in Fig.16. The graph in Fig. 17, is drawn to 
see the vertical displacement at time t=0.5 and the 
comparison of vertical displacement at t=0.2 and t= 0.5 
all the three theories, is shown in Fig. 18. 
Moving load:  Similarly the results are obtained for the 
problem of moving load.  The variation in temperature, 
horizontal displacement and vertical displacement  at 
different values of time t=0.2 and t=0.5  and their 
Comparison is shown in Fig. 19-36, for C-D, G-L and 
L-S theories due to moving. Comparison, for C-D, G-L 
and L-S theories due to moving load are shown in 
Fig.10-18.   

IV. CONCLUSION 

It is observed that: 
i. Temperature variation is more in L-S theory 

than C-D and G-L theory with distance at small 
time due to moving heat source.  

ii. The same variation is observed in the case of 
horizontal and vertical displacement 
distribution. 

iii. As well as case of moving load source is 
concerned the variation in temperature and 
displacement occurs in same fashion. 
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Fig. 1, 3-D graph   for temperature distribution for C-D 
theory, due to moving heat source at t=0.2 
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Fig. 2, 3-D graph   for temperature distribution for G-L 
theory, due to moving heat source at t=0.2 
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Fig. 3, 3-D graph   for temperature distribution for L-S 
theory, due to moving heat source at t=0.2 
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Fig. 4, Temperature distribution for C-D, G-L and L-S 
theories, due to moving heat source, at t=0.2 
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Fig. 5, Temperature distribution for C-D, G-L and L-S 
theories, due to moving heat source, at t=0.5 
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Fig. 6, Comparison for temperature distribution for   C-
D, G-L and L-S   theories, due to moving heat source, 
times, t=0.2 and t=0.5. 
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Fig. 7, 3-D graph for horizontal displacement for C-D 
theory, due to moving heat source at t=0.2 
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Fig. 8, 3-D graph for horizontal displacement for G-L 
theory, due to moving heat source at t=0.2 
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Fig. 9, 3-D graph for horizontal displacement for L-S 
theory, due to moving heat source at t=0.2 
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Fig. 10, Horizontal displacement for C-D, G-L and L-S 
theories, due to moving heat source, at t=0.2 
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Fig. 11, Horizontal displacement for C-D, G-L and 
L-S theories, due to moving heat source, at t=0.5 
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Fig. 12, Comparison for horizontal displacement for   C-
D,  G-L and  L-S   theories, due to  moving heat source, 
times, t=0.2 and t=0.5. 
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Fig. 13, 3-D graph for vertical displacement for C-D 
theory, due to moving heat source at t=0. 2 
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Fig. 14, 3-D graph for vertical displacement for G-L 
theory, due to moving heat source at t=0. 2 
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Fig. 15, 3-D graph for vertical displacement for L-S 
theory, due to moving heat source at t=0. 2 
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Fig. 16, Vertical displacement for C-D, G-L and L-S 
theories, due to moving heat source  
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Fig. 17, Vertical displacement for C-D, G-L and L-S 

theories, due to moving heat source, at,  t=0.5 
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Fig. 18, Comparison for vertical displacement for   C-D, 
G-L and  L-S   theories, due to  moving heat source, 
times, t=0.2 and t=0.5. 
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Fig. 19, 3-D graph for temperature distribution for C-D 
theory, due to moving load at t=0.2 
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Fig. 20, 3-D graph   for temperature   distribution for G-
L theory, due to   moving load at t=0.2 
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Fig. 21, 3-D graph for temperature distribution for L-S 
theory, due to moving load at t=0.2 
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Fig. 22, Temperature distribution for C-D, G-L and L-S 
theories, due to moving load at t=0.2. 
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Fig. 24, Comparison for temperature distribution for   
C-D, G-L and L-S   theories, due to moving heat source, 
times, t=0.2 and t=0.5. 
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Fig. 25, 3-D graph for horizontal displacement for C-D 
theory, due to moving load at t=0.2 
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Fig. 26, 3-D graph for horizontal   displacement for G-L 
theory, due to moving load at t=0.2 
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Fig. 27, 3-D graph for horizontal  displacement  for L-S 
theory, due to  moving load at t=0.2. 
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Fig. 28, Horizontal displacement for C-D, G-L and L-S 
theories, due to moving load at t=0.2 
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Fig. 29, Horizontal displacement for C-D, G-L and L-S 
theories, due to moving load at t=0.2 
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Fig. 30, Comparison for horizontal displacement for   C-
D, G-L and  L-S   theories, due to  moving load, times, 
t=0.2 and t=0.5. 

IAENG International Journal of Applied Mathematics, 39:3, IJAM_39_03
_____________________________________________________________________

(Advanced on line publication:1 August  2009)



C-D theory

-5
-2.5

0

2.5

5

X

0

0.25

0.5

0.75

1

Y

-0.01

0

0.01

0.02

V

-5
-2.5

0

2.5

5

X

 

Fig. 31, 3-D graph for vertical displacement for C-D 
theory, due to moving load at t=0.2. 
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Fig. 32, 3-D graph for vertical displacement for G-L 
theory, due to moving load at t=0.2 
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Fig. 33, 3-D graph for vertical displacement for L-S 
theory, due to moving load at t=0.2 
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Fig. 34, Vertical displacement for C-D, G-L and L-S 
theories, due to moving load at t=0.2. 
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Fig. 35, Vertical displacement for C-D, G-L and L-S   
theories, due to moving load, at t=0.5. 
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Fig. 36, Comparison for vertical displacement for   C-D, 
G-L and  L-S   theories, due to  moving load at times, 
t=0.2 and t=0.5. 
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