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On a Subclass of Multivalent G-Uniformly
Starlike and Convex Functions defined by a

Linear Operator
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AbstractIn this paper we introduce the subclass
K(u,v,n,a,3) of f-uniformly convex and (-uniformly
starlike functions which are analytic and multivalent
with negative coefficients defined by using fractional
calculus operators. Characterization property exhib-
ited by the functions in the class and the results
of modified Hadamard product are discussed. Con-
nections with the popular subclasses like G-uniformly
starlike and convex, pre-starlike, parabolic starlike
Results
on growth and distortion theorems, closure property,

and convex functions are also pointed out.

extreme points, class preserving integral operators,
region of p-valency and other interesting properties
of the class are also included.
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1 Introduction, Definitions and Motiva-
tion

Let A, denote the class of functions of the form

oo

flz)=2P+ Z arz®  (p,n € IN)
k=p+n

(1.1)

which are analytic and multivalent in the open disc F =
{z:2z € C and |z| < 1}. Also denote T}, the subclass of
A, consisting of functions of the form

E akzk

k=p+n

(p,n e IN; a,>0). (1.2)
A function f(z) € A, is said to be S-uniformly starlike

of order o, (—p < a < p), > 0 and z € F, denoted by

UST(a, B,p), if and only if
f'(2) } ’ f'(2)
Re{z —ap >0z —pl. (1.3)
f(2) f(2)
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A function f(z) € A, is said to be S-uniformly convex
of order o, (—p < a < p), > 0 and 2z € F, denoted by
UCV(a, B, p), if and only if

2f"(2) f"(z)
S RO C R
Notice that, UST («, 8,1) = UST (e, 8), UCV (e, 8,1) =
Ucv(a,pB),
UST(a,0) = S*(a) and UCV(a,0) = K(«), where

UST(a,8) and UCV («
starlike and J-uniformly convex functions of order
a, (-1 <a < 1). S(a) and K(a) are the popular classes
of starlike and convex functions of order «, (0 < av < 1).
We also note that f € UCV («, 5, p), if and only if zf’ €
UST(a, 8,p). The incomplete beta function ¢,(a,c; z) is
defined by

, B) are the classes of S-uniformly

— P (@) \k—p k
dpla,c;z) = 2P + Z (O (1.5)
k=p+n
for a € IR and ¢ € IR\ Zp where Zo = {0, — hz €
E. (a)y is the Pochhammer symbol dcﬁncd by
(@) _Tla+k) 1 k=0
b (@) | ala+1l) - (a+k—1) keIN

Next consider L,(a, c) which is motivated from Carlson -
Shaffer operator [1] defined by

Ly(a,c)f(z) = opla, C'Z) f(z), for feA,
= 2P+ Z EZ)) K zeE.
k=p+n

Definition 1 : Let ¢ > 0 and v,n € IR. Then in terms of
the Gauss hypergeometric function oF; the generalized
fractional integral operator )" of order i of a function

f(2) is defined by

- R z B
B2G) = / (= =10 £(1)
2 Fy(p+ 7, —n; ;1 )dt (1 >0)
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where the function f(z) is analytic in a simply-connected
region of the z-plane containing the origin and the mul-
tiplicity of (z — t)#~! is removed by requiring log(z — t)

to be real when (z —t) > 0, provided further that

f(z) =0(z[), z2—0 (1.7)
for

e > max{0,v —n} — 1. (1.8)

Definition 2 : Let 0 < p < 1 and 7v,n € IR. Then the
generalized fractional derivative operator J§7"
w of a function f(z) is defined by

d

"y 'v n _ 1 “
Jo2 (=) = T'(1—p)dz

{Z“’_”/ (z=t)""f(t) 2F1(y —p, 1 =31 — 31 — :)dt} (1.9)
0

where the function f(z) is analytic in a simply-connected
region of the z-plane containing the origin, with the order

of order

as given in (1.7) and multiplicity of (z —t)~# is removed
by requiring log(z — t) to be real when (z —t) > 0.

Notice that

P
Ly(m+1,1)f(z) = m*f(z)
_ (m+4Dep &
z —l—k;n Dy aiz
= D™TPTLf() (1.10)

is the Ruscheweyh derivative of order m. Also note that,
1 (2)

T " f(2)

= Do f(2)

= Dg.f(2)

where Dy _f(z) (u € IR) is the fractional calculus
operator considered by Owa [7] and subsequently by

Owa and Srivastava [8]. Consider
U f(2) =

(1 >0)

O<p<1) (1.11)

F(1+p77)1“(1+p+n*u) ;m,n
{ PR et ) o Dkl (1.12)
p—7 ptn—p um :
T =) 2 lo, —00<p<0

Let
My " f (= )‘%(a ¢, z) x Uy f(2)
(1 1
g Z a)p—p(1+D)k—p(l+p+1—7)—p akzk
Epin r—p(L+D = Ni—p(L+p 41— 1)r—p
=2+ Z g(k)ayz" (1.13)
k=p+n
where
a)k—p(1+P)k—p(l+p+n—7)k-

(Dk—p(A+p=Vip(l+P+1—pe—p

for a,€ R,c € R\ Zp,zo = {0, —1,—2,---}.

Denote S(,7,1,a, 8) subclass of functions f € A, sat-

isfying
e {ZOBITIEY | ORI
METTIG) RO
(1.15)

(o <p<li—co<y<Lne R —p<a<pf>
0;a € R;ce R\ Zp; 2z € E) (1.16)

Let K(p,7v,m, o, 8) = S(p,7v,m, o, B) VT It is also inter-
esting to note that K(u,~,n,a,3) extends to the class
of starlike, convex, [-uniformly starlike, A-uniformly
convex, (-uniformly pre-starlike, parabolic starlike and
parabolic convex functions for suitable choice of the pa-

rameter a, c, u,7y,n,a and §. For instance;

1. For a = ¢p = v = 0 the class reduces to
UST(a, B,p).
2. For a = cgu = v = 1 the class reduces to

UCV(a,B,p).

3. For a =2 — 2a,¢c = 1; u = v = 0 the class reduces to
(B-prestarlike functions.

4. Fora =c,p =7 =0,a=2p—1,(0 < p < 1) the
class reduces to parabolic starlike of order p.

5. Fora=cu=v=1La=2p—1,(0 < p < 1) the
class reduces to parabolic convex of order p.

Several other classes studied by different authors can be
derived from K (u,~,n, a, 3).

2 Coeflicient Estimates

Theorem 2.1 : A function f(z) defined by (1.1) is in
Sy, m, a0, B) if

o0

> k(A+p) -

k=p+n

(a+pB)lg(k)lar| <p—a  (2.1)

with the limits for the parameters given in (1.16) and

(@r—p(L+Plk—p(L+p+17—Vk—p
(r—p(I+p—=Ykp(l+p+n—p)rp

- p} <p—a.

g(k) =

(2.2)

Proof : It suffices to show that

R {

2(Mg " f(2))
M(igm (Z)

2(Mg " f(2)

B -p TR R
Mg f(z)
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Notice that

AMEIFE) L [T
METTE(z) N 77z !
A(METf(2))
<(1+p9) W— '
1+8) > (k—pgk)ax
k=p+n

< =
1= 3 g(k)|ax|
k=p

where g(z) is given by (2.2). The last inequality above is
bounded above by (p — a) if

o0

S k(14 8) — (a+ pB)lg(k)lax] < p — o

k=p+n

This completes the proof.

Next, we state and prove the necessary and sufficient con-
dition for f(z) € K(u,v,n,a, B).

Theorem 2.2 : A function f(z) given by (1.2) is in the
class K(u,7,n,«, ), if and only if

o0

Y k(1 +8) — (a+pBlg(k)ar <p—a

k=p+n

(2.3)

with limits for the parameters given by (1.16).

Proof : In view of Theorem 2.1, we need only to prove
the sufficient part. Let f(z) € K(u,v,m,a,0) and z be
real. Then by relation (1.15)

(MY f(2)) A(MYTf(2))
R B T I (e W Ve T R
p— > kg(k)arzF=? > (k—p)glk)apzFP
k:;;:n —0625 k=p+n _
1= 30 g(k)apzk—r 1— Y g(k)agzkr

k=p+n k=p+n

Allowing z — 1 along the real axis, we obtained the de-
sired inequality. The result (2.3) is sharp for

p—«

T OO

(2.4)

fle) =7 -

Corollary 1 : Let the function f(z) defined by (1.2) be
in the class K(u,v,n,«,3). Then

p—
[k(1+ 8) — (a+pB)lg(k)
with equality for the function f(z) given by

flz) = 2% -

ag <

(k>p+n,nelN)

p—«
[k(1+ 8) — (a+pB)lg(k)

T (n e IN).

3 Connection with other Integral Opera-
tors

Tt _a(+p)(1p+n—7) .
Theorem 3.1 : Let c(1+pf'y)(1ipznzu) < 1 for the limits

on the parameters given by (—oco < u < 1;—00 < v <
LmeRY—p<a<pf>0a€RcelR\Zy;z€E).

Also let the function f(z) defined by (1.2) satisfy

i [k(1+5) —p(cinﬂ)]g(k)ak
k=p+n

cltp=—7+ptn—p

— a4+ p)(I+ptn—7)
Then M{")"f(z) € K(u,7v,n,a,) where g(k) is given
by (2.2).

(3.1)

Proof : We have

My " f(2)
— P _ i (a)k‘fp(l‘*‘]?)k—p(l +p+n—’y)k,p akzk
k=p+n (Dk—p(L+p = Vk—p(L+p+ 17— 1)k—p
=2P - Z g(k)ax2* (3.2)
k=p+n
where
(L4 (1 A

(@ k—p(L+D = Ni—p(L+p+1— @s—p
Under the hypothesis of the theorem, we observe that
the function g(k) is a non-increasing function, that is,
gp+n) <g(lp+1) for all n € IN. Thus,

a(l+p)(1+p+n—")

I+p—7)A+p+n—p)
(3.4)

0<glp+n)<glp+1)= -

Using (3.1) and (3.4), we get

— k(1 +8) — (e +pB)lg* (k)
2 (p—a)

Qg

< 9(2) Z [k(l +ﬁ) — (O‘_Fpﬁ)]g(k) <1.

k=p+n (p N a)

Therefore, by Theorem 2.2 we conclude that

MY f(z) € K(p,v,m, ., B).

Remark : The equality in (3.1) is attained for the func-

tion
o, p—a)Q+p—y)A4+p+n—p)
flz) = 2P — 2P
al+p+pB—-a)l+p)(l+p+n—17)
(3.5)
Corollary 2 : Let u,vy,n € IR such that
— 2+
p= 0,7 < 1+p,max{p, v} —(1+p) <n < wy=(2+7)
(3.6)
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also let the function f(z) defined by (1.2) satisfy

o0

Proof : The Corollary 5 follows from Theorem 2.2 by
setting u =~ and a = c.

A+p—y) 1A +p+n—p)

[k(1+ ) — (a+pB)]
$ Ben ),
k=p+n

(3.7)
for —p <o <p,B>0. Then My)"f(z) = J§"f(2) €
UST(a, B,p).

Proof : The corollary follows from Theorem 2.2 by set-
ting a = c.

Remark : In Corollary 2 if f(z) is given by (1.2) and p =
1 we get, corresponding result due to Jamal M. Shenan
[11, page 184, Corollary 2].

Corollary 3 : Let u,y,n € IR such that

p(y —(2+p))
Y

also let the function f(z) defined by (1.2) satisfy

p >0,y < 1+p,max{u,v}—(1+p) <n <

oo

Elk(L+08) — (a+pp
Z [k( p)_of pB)]

ay

k=p+n

c(I+p—y)A+p+n—p)
a(l+p)(1+p+n—17)

for -p < a<p,f>0,a=c Then

(3.8)

Mg f(z) = Iy f(2) € UCV (s, B, p).

Proof : The corollary follows from Theorem 2.2 by set-
ting a = c.

Remark : In Corollary 3, if f(z) is given by (1.2) and
p = 1, we get the corresponding result due to Jamal M.
Shenan [11, page 184, Corollary 3].

Corollary 4 : Let —oco < p,v < 1 and n be real. Also
let the function defined by (1.2) satisfy

c(l+p—p)
kS a(l+p)

i (p—a)

for —p < a < p,B > 0. Then Méf’]’”f(z) = Dé‘,zf(Z) €
UST(a, 3, p)-

Proof : The Corollary 4 follows from Theorem 2.2 by
setting u =7y

Corollary 5 : Let —oco < p,v < 1 and n be real. Also
let the function defined by (1.2) satisfy

(1+p—p)
=T (M +p)

f: k[k(1+ B) — (a + pB)]

b —a) (3.10)

k=p+n
for —p < a < p,B > 0. Then Méf’]’”f(z) = Dé‘,zf(Z) €
UCV (e, B,p).

ST A+pAtptn—7)

Corollary 6 : Let —oo < p,7 < 1 and 71 be real such
that a € R,c € R\ Zo,Zo = {0,—1,—2,---}. Also let the
function defined by (1.2) satisfy

oo

S k1D -+,

c
p—a« a

(3.11)

k=p+n
for —p < o < p, > 0. Then M§""f(2) = ¢p(a,c; 2) *
f(z) e UST (e, B, p).

Proof : The Corollary 6 follows from Theorem 2.2 by
setting u =y = 0.

Corollary 7 : Let —oco < p,y < 1 and 7 be real such that
a € R\ Zy,zo = {0,—1,—2,---}. Also let the function
defined by (1.2) satisfy

o0

S HEO+D) (ol

c
p—« a

(3.12)
k=p+n

for —p < o < p, > 0. Then My " f(2) = ¢p(a,c; 2)
f(z) eUCV(a, 3, p).

Proof : The Corollary 7 follows from Theorem 2.2 by
setting =y = 0.

4 Results on Modified Hadamard Prod-
uct

Theorem 4.1 : Let the functions f(z) and g(z) defined

by
flz)=2F — Z arpz®  and (4.1)
k=p+n
g(z) = 2P — Z by z* (4.2)
k=p+n

belongs to the class K(u,v,n,«,8) and K(u,v,n,€,0),

respectively. Also assume that % < 1.

Then (f * g)(2) € K(u,7,n,6, ) where

1+8)p—a)p—¢)

R G S B TR EeSy; Qs gy gy ey  pogys:

(4.3)

and the result is sharp for
(r—a)
(n(1+8)+p—a)glp+1)

(p—2¢)
1+8)+p—E&gp+1)

Zp+1

f(z) =27 -

P any

g(Z) =2P - (’I’L(

Proof : To prove the theorem it is sufficient to show that

[k(1 4 8) — (. + pp)]
(p—9)

(oo}

2.

k=p+n

g(k)arbe <1 (4.4)
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where g(k) is defined by (2.2) and § is defined in (4.3).

Now, f(z) € K(u,7v,m,a,p) and g(z) € K(u,7v,n,¢,8)
and thus, we have

i [ (1 +6) aa—’_pﬂ)]g(k)ak <1 (45)
k=p+n
i p— 5

By applying Cauchy-Schwarz inequality to (4.5) and
(4.6) we get

i VIEQ+B) — (a+pB)]k(1+ 5) — (€ + pB)]
kepin (p—a)p—8
g(k)v/ arbr < 1. (4.7)
In view of (4.4) it suffices to show that
_p+n
Z VI +5) — (a+ pA)Ik(1 + ) — (€ +pP)]
kpin (p—a)(p—2¢)
9(k)/ ayby
or equivalently
— . VAT 5) — (a5 pI(1+ 5) ~ €+ D)
(_ " (p—a)(p—¢)
D
KT8 -G rp] O FEPTL (45

In view of (4.7) and (4.8) it is enough to show that

(p—a)lp—¢)
g(k) /(L + B) — (a + pB)][k(L + B) — (€ + pB)]
_ VIEQ+5) —(a+pA)k(L + 8) — (€ +pB))(p — 9)
- V= a)p= k(L +5) — (5+ pB)]

which simplifies to

5<pe 1+B)k=—p)(p—a)p -8
T [k +8) = (a+ B[+ B) — (& +pB)]g(k) — (p— a)(p(; g;
where '
(k) = ()k—p(1+P)k—p(L+P+1—V)k—p for k>p+1.

@r—pA+p=Mr—p(I+p+n—p)k—p
Notice that g(k) is decreasing function of & (kK >p+1)
and thus ¢ can be chosen as below.

A+8)p—-a)p-2§
(I+p+B8—a)d+p+B8—E&g(p+1) —

b=r- Py T
(4.10)

where

a(l+p)(L+p+n—1)
c(+p—y)A+p+n—p)

This completes the proof.

glp+1) = (4.11)

Theorem 4.2 : Let the function f(z) and g(z) defined
as in Theorem 4.1 be in the class K(u,v,n,a,3). Then

(f*9)(2) € K(p,v,n,9,3), where

(1+8)(p—a)?
(I+p+B—a)gp+1)—(p—a)?

d=p—
for g(p + 1) given by (4.11).

Proof : Substituting @ = € in Theorem 4.1, the result
follows.
Theorem 4.3 : Let the function f(z) defined by (1.2) be

in the class K (11,7, 7, , 3) and let g(z) = 2P — Y bpz®
k=p+n
with |bg| < 1. Then (f x g)(2) € K(u,v,n, o, 3).

Proof : Notice that

Z [k(1+B) = (a+pB)lg(k)|arby|
k=p+n
= Y [k(1+8) = (a + pB)]g(k)ax|bx|
k=p+n
< Z (1+ ) — (a + pB)lg(k)ax
k=p+n
<p—a using Theorem 2.2.

Hence (f x g)(z) € K(p, 7,1, B).

Corollary 8 : Let the function f(z) defined by (1.2) be

in the class K (p, 7,1, , 3). Alsolet (z) = 2P— Y bpz®
k=p+n
with 0 < by < 1. Then (f * g)(2) € K(u,7,n,a, 5).

5 Inclusion Properties

In this Section we give the inclusion theorems for func-
tions in the class K(u,~,n, a, 5).

Theorem 5.1 : Let the function f(z) and g(z) defined
by (4.1) and (4.2) be in the class K(u,v,n,a,3). Then
the function h(z) defined by

o0

h(z) = 2P — Z (a2 + b2)2F

k=p+n

is in the class K (u,v,n,0,3) where

201+ 6)(p — )?
(1+p+B8—a)gp+1)—2(p —a)?

0=p—
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with g(p + 1) given by (4.11). The result is sharp with
fi(2)(j = 1,2) defined by

p—a«
[k(1+B) — (a+pB)lg(k)

2Pt

fi(z) =27 —

Proof : In view of Theorem 2.2 it is sufficient to show
that

Z [k(l +ﬂ;_é€ +pﬁ)]g(k)(a% + b%) < 1. (51)
k=p+n

Notice that f(z) and g(z) belong to K (u, v, n, o, 5) and so

2[R+ 8) = (a+pR))g(k)]”
k;[ - ) } o

. [ S (k(1+ﬂ)—(a+Pﬂ))9(k)ak] <1 (52)

p—«

k=p+n

(oo}

3 [<k<1 +6) ~ (a +p6))g(k)} T2

(p—a) ¥

k=p+n

. [ i (k(1+ﬁ)—(a+p5))g(k>bk] =1 (5:3)
k

-«
=p+n p

Adding (5.2) and (5.3), we get

s 1 [<k<1 +8) = (a +p3)g(k)

(p—a)

2
| @+m<t
k=p+n
(5.4)

Thus, (5.1) will hold if

k(1+8) = (0+pB) _ 1g(k)[E1+5) — (o +pB))?
(»—0) T2 (p—a)? '
That is, if

214 B)(k — p)(p — a)?
PSP T H) (ot DP9 20— )

Notice that, 6 can be further improved by using the fact
that g(p +n) < g(p+ 1) for n € IN. Therefore,

20+ 8)(p — a)?
(1+p+B—a)gp+1)—2(p—a)?

where g(p + 1) is given by (4.11).

0=p—

Theorem 5.2 : Let the function f and g belong to the
class K(p,7v,n,a,8). Then for A € [0,1], the function
h(z) = (1—=X)f(z) + Ag(z) is in the class K (u,~,n,a, ).

Proof : Since f(z) and g¢(z) are in the class

K(u,7y,7m,a,3) they satisfy inequality (2.2). Therefore,

h(z) defined by
Bz) = (1= NI(E) +Agle) =2 — S et
k=p+n

where ¢, = (1 — MNag + Aby > 0 is in the class
K(p,v,m, @, ).

Hence, K(u,7,n,«, ) is indeed a convex set.
Theorem 5.3 : Let f;(z) be defined as

fil)=2" = > apja¥, j=1,2,-- .0
k=p+n

belong to the class K (p,~,n, a, 8). Then the function
1
h(z) = 7 > filz)
j=1

is also in the class K (u,vy,n, a, 3).

Proof : Since f;(z) € K(u,7v,n,, ), in view of Theo-
rem 2.2, we have

i k(1 + 8) — (o + pB)lg(k)

it (»—a) !
Now,
1 £ 1 £ 0 o
460 = # Y S aptee 3 ad
J=1 Jj=1k=p+n k=p+n

¢
where e, = § > ax,;. Notice that
j=1

i [k(1+ B) — (e +pB)lg(k

¢
)1 ,
- g ag,; <1 using (5.5).
(p— ) C=

k=p+n

Thus, h(z) € K(u,7v,n, o, 5).

6 Extreme Points of the Class

K (.m0, )
Theorem 6.1 : Let f,(z) = 2P and

(p—a)
[k(1+ B) — (o + pB)lg(k)

Then f(z) € K(u,v,n,a,8) if and only if, f(2) can be
expressed in the form

fre(z) =2P — 2", (k>p+1).

F(2) =) Aefu(2) (6.1)
k=p

where A > 0 and > Ay =1.
k=p
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Proof : Let f(z) be expressible in the form

f(z) = Z Ak fr(2).
k=p

Then
z)=2F — N (p—a) Sk
= ; R+ 5) — (a+pB)Jgth)
Now
- (P — )k
2 A Gt pIled
[k(1 4+ 8) — (o + pB)]g(k) =

= Z Ae=1-X, <1

(p N a) k=p+1

Therefore, f(z) € K(u,v,n, a, B).

Conversely, suppose that f(z) € K(u,7,n,«, ). Thus
p—a
[k(1+ ) — (a+pB)lg(k)

a <

Setting

1+ 8) — (@ +pA)lg(h)
k ag

(p—a)

and A\, =1— > A, we see that f(z) can be expressed
k=p+1
in the form (6.1).

Corollary 9 The extreme points of the class
K(:u’v Y, M, &, 5) are fp(z) = zP and

fu(2) P—a F

[k(1+B) — (a+ppB)lg(k)
7 Growth and Distortion Theorems

Theorem 7.1 : Let the function f(z) defined by (1.2)
be in the class K(u,~,n,«, 3). Then

1M f(2)] = |2/

z

cp—a)l+p—7)1+p+n—p

Zerl )
Sdi+p+prn—n0tp+s-a T
and
(Mg f(2))'] = pllP
cp=a)(l+p—7( +p+n—u)|z|p. (72)

al+p+n—7)(1+p+8—a)

Remark : The results (7.1) and (7.2) are sharp for the
extremal function f(z) given by

cp—a)l+p—y)1+p+n—pu)

_ p+1.
al+p)L+p+n—7)1+p+6—a)

flz) = 2P

(7.3)

Corollary 10 : Let My f(z) € K(u,v,m,a,() then
the disc |z| < 1 is mapped onto a domain that contains

the disc

cp—a)l+p—7)A+p+n—p)
A+p)A+p+n—7)(A+p+B8—a)

lw| <1+
a

Also (M§""" f(2))" maps the disc |z| < 1 onto a domain
that contains the disc

cp—a)l+p—y)1+p+n—p

w| <p+
il oAt prn—0+p+i—a)

Remark : We can obtain the growth and distortion the-
orems for J§ " f(2), Dy . f(2) and ¢, (a, ¢, z) by accord-

ingly initializing the parameters.
8  Family of Class Preserving Integral
Operators

Here, we discuss some class preserving integral operators.
Consider F(z) defined by

FE) = U =20 [T
for (f € Ap;e> —p) (8.1)
Let G(z) be defined by
G(z) =221 /OZ %dt. (8.2)

The Komatu operator [5] is defined by

uézt&”-Oogj)d_lf(wdt

(8.3)

(c+p)?
L(d)z¢

H(z) = P, f(2) =

(d>0,c>—p,z€eE).

Another integral operator I(z), which is the generalized
Jung-Kim-Srivastava integral operator defined by

) = et = (T
d % ._ tog
) L Gl OL

(d>0,c>—p,z € E) (8.4)

Theorem 8.1 : Let d > 0,¢ > —p and f(z) belong to
the class K (u,v,n, «, 3). Then the function H(z) defined
by (8.3) is p-valent in the disc |z| < Ry, where

_ iy [ PR+ B) = (@ + pB)](c + k) g (k) =
Ry = f{ k(c+p)i(p — ) } .
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Proof : Notice that H(z)

form
0o c—l—p d .
H(z) =2 — .
(2) == Z (c—!— k) agz
k=p+n

€ K(u,v,n,a,0) and has the

(8.6)

In order to prove the assertion it is enough to show that

H'(z)

2P—

(8.7)

—p‘<p in |z] < R;.

Now,

H'(2) > crp\' i,
2p—1 p‘ B Z k(c—i—k: s

k=p+n

> c+p _
< 2 k( +k> ="

k=p+n

The last inequality is bounded above by p if

d
> k(2) anlalr
p

k=p+n

<1. (8.8)

Given that f(z) € K(u,v,n,a,0) and so, by Theorem

2.2

oo 1 _

Z [k( +ﬂ) (a+pﬂ)]g(k)ak <1. (89)

p—«
k=p+n
Thus inequality (8.8) will hold if
d
c+k p—a«

for k>p+n.

That is, if

plk(1 + B) — (o + pB))(c + k)g(k)  ©7
ol < { Het P —a) }
for k>p+n, ne IN.

The result follows by setting |z| = Ry

Theorem 8.2 : Let d > 0,¢ > —p and f(z) belong to
the class K(u,~,n,«, ). Then the function I(z) defined
by (8.4) is p-valent in the disc |z| < Ra, where

R2 = inf
k

{p[k(l +8) — (a+ pB)|T(d + ¢+ k)T(c+ p)g(k) }klp
k(p — a)T(c+ k)T(d + ¢+ p) :

Proof : Notice that I(z) € K(u,~,n,a,
form

B3) and has the

Llc+k)I(d+c+p) 4
apz
D(d+c+k)I(c+p)

Following arguments similar to those in Theorem 8.1 we

get
|Z| < {p[k(l + ﬁ) - (a +p5)]T(d+ c+ k)F(C+p)g(k) }klp
. k(p— a)l(c+ k)L +c+p)
for k>p+n,ne .

9 Radius of Uniform Starlikeness, Con-
vexity and Close-to-Convexity

Theorem 9.1 : Let the function f(z) defined by (1.2)
be in the class K(u,v,n,a,3). Then f(z) is p-valently
starlike of order s, (0 < s < p) in the disc |z| < R3, where

[ =9k +8) — (a+pB)g(k) | 77
RS‘kf{ (k=s)p—a) } '

the result is sharp with the extremal function given by
(2.4).

Proof : It is sufficient to show that
!
£

)—1‘<1—s for 0<s<p

and |z| < Rs. With fairly straightforward calculation we
can easily show that

(p = 5)[k(L+8) — (a+pB)g(k)] | =7
|z|S{ CEDICED) } .

= R3 we get the desired result.

Setting |z|

Next, we state the theorems for radius of convexity and
close-to-convexity.

Theorem 9.2 : Let the function f(z) defined by (1.2)
be in the class K(u,v,n,a,3). Then f(z) is p-valently
convex of order s, (0 < s < p) in the disc |z| < R4 where

[0 = SR+ ) — (o +pB)lgk) | T
R“kf{ k(k—5)(p — ) } |

The result is sharp with the extremal function given by
(2.4).

Theorem 9.3 : Let the function f(z) defined by (1.2)
be in the class K(u,v,n,a,83). Then f(z) is p-valently
close-to-convex of order s, (0 < s < p) in the disc |z| < Rs
where

:.f
R;5 1rkl

{ (p— s)[k(1+ B) — (o + pB)lg(k)] }’”’
k(p—a)

The result is sharp for the extremal function given by

(2.4).
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