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Backward Stochastic Differential Equation with
Monotone and Continuous Coefficient
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Abstract—In this paper, we consider a backward
stochastic differential equation(BSDE) with mono-
tone and continuous coefficient and obtain the exis-
tence and uniqueness of solution.
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1 Introduction

In 1973, Bismut first introduced the adapted solution for
a linear BSDE which is the adjoint process for a stochastic
control problem. Later Pardoux and Peng [6] obtained
the existence and uniqueness of solution for the following
nonlinear BSDE with Lipschitz coefficient f

T T
Yt = 5 + / f(s>y57 Zs)ds - / zsdWs (1)
t t

where (W;)o<s<7 is a standard d-dimensional Brownian
motion defined on a complete probability space (€2, F, P),
F; is the natural filtration. F; contains all P-null sets of
F. &is agiven Fp measurable random vector. Since then,
many researchers have devoted to obtaining its existence
and uniqueness of solution under weaker assumptions on
f. For example, Lepeltier [4] obtained the existence for
one-dimensional BSDE under the continuous assumption,
and Mao [5] obtained the existence and uniqueness under
the non-Lipschitz assumption. In this paper, using the
Yosida approximations (see for example Da Prato and
Zabczyk [1,2] or Hu [3]), we also obtain the existence and
uniqueness of solution for BSDE (1).
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2 Preliminary

Let M?(0,T;R") denote the set of all R™-valued F;-

progressively measurable processes v(+) satisfying F fOT |
v(s) |? ds < 4o0.

In this paper, () denotes the usual inner product in R";
We use the usual Euclidean norm in R™. For z € {%”Xd,
its Euclidean norm is defined by | z |= tr(z27)? and
its inner product is ((z!,22%)) = ). For u! =
(yl,Zl) c R" x RnXd, U2 — (yQ,ZQ) o 1:{77,><d7 we
denote [u',u?] = (y',5°) + ((z%,2%)) and | u* [*=[ y* |?
+ ‘ Zl |2.
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Definition 2.1 The solution of Eq.(1) is a couple (y, 2)
which belongs to M?(0,T; R™ x R™*?) and satisfies

Eq.(1).
Theorem 2.2 [6] If f/: Q x [0,T] x R® x R"*? — R" is
a progressively measurable function and satisfies

(i) f'(t,0,0)¢cq0,7) belongs to M?(0,T; R™);

(ii) There exists a constant K > 0 s.t.P-a.s., for all y;,
Y2 € Rn? Z1, ?2 € RnXda ‘f/(taylazl) - f/(tay2722)| S
K(lyr — w2l + |21 — 22|).

Then y; = &+ ftT 1 (8,ys, 25)ds — ftT 2sdW, has a unique
adapted solution (y(.), 2(.)) € M?(0,T; R™ x R™"*4).
Theorem 2.3 [6] If f/ : Q x [0,T] x R* x R**¢ — R
and ¢’ : Q x [0,T] x R" x R"*4 — R"*4 are progressively
measurable functions, and there exist constants A > 0
and a > 0 such that

| f(t oy, 20) = f(tye, 22) |+ ' (Eyns 21) — ¢ (8 2, 22) |

<My =2 [+ 21—22)
| 9'(ty,21) — g (ty,22) [ | 21 — 22 |

for all yi,y2 € R™, 21,20 € R"™ . Then the following
equation

T T
Y =& +/ 1 (8,ys, 25)ds — / g (8, s, zs)dws
¢ ¢

has a unique adapted solution (y(.), z(.)) € M?(0,T; R"x
RnXd).
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In this paper, we consider the following BSDE

T T
=6+ / F(5, s, 20)ds — / 2o W,
t t

Assumption 2.4 f is continuous in (y, z) for almost all
(t,w). f(,y,2)€ M?(0,T; R"). For all u = (y, z) € R™ x
R™*4_ there exist constants % < (C <1 and C; > 0 such
that P-a.s.,a.e.

(H1)
(H2)

| f(tw) [<] f(2,0) [ +Cr [ u|
(f(taylvzl) 7f(t7y2’22)7y1 7y2)
SA-0O) |2 =2 P -Cly' =y

We denote g(t,y,2z) = z. Then the equation (1) is equal
to

T T
Yt = €+/t f(S,ys,Zs)dS—/t 9(8,Ys, 2s)dW (1l)

Let F(t,u) = F(ty,z) = (f(t,y,2),—g(t,y,2)) =
(f(t,u),—g(t,u)). Then by the Assumption 2.4, F(t,.)
is also continuous, and (H2) is equal to

(H2') [F(t,u') = F(t,u?),u" —v’] < =C |u' —® |?

Lemma2.5[3]. Let ® : R* — R™ be a continuous
function, and there exists a constant ¢ > 0 such that
(®(z!)—®(2?), 2! —2?) < —c| 2t —2? |2, Val 2% e R™
Then for the Yosida approximations &% of ®, o > 0, we
have

(i) (@*(z!) — @ (2?),2! —2?) < —c| 2! —2? |2
0% (at) = 0% (a?) < (2 + 0) | 2t — 22 |
0% (2) |<] D) | +2¢ |« |

(ii) For any a, 8 > 0, we have

(@(2") = 2P (a?), 2" —2?) < (a+p)(| @(2") | + | 2(2?) |
telal [+ela? )2 —clal —a? 2

(iii) For any {2%}4>0 C R™, x € R", if limy_oz® = x,
then

lima—o®®(z%) = ®(x)

3 Main results

Theorem 3.1 Let Assumption 2.4 hold, then there exists
a unique adapted solution (y(.),2(.)) € M?(0,T; R™ x
R™*4) for Eq.(1).

Proof. First, we prove the existence. We divide the

proof into four steps.

Step 1. There exists a unique adapted solution for the
approximating BSDE.

For arbitrary a > 0, we consider the approximating
BSDE of (17)

T T
=t / (5,42, 2%)ds — / 0% (5, 22 ) (2)
t t

where F(t,yi',2¢) = (f*(t ' 20), —9* (L, yf', =) is
the Yosida approximation of F'(t,ys, z*).

Let v = (y!, 2!) and v? = (y?, 2?), then by Lemma 2.5,
we have

2
| F(t,0!) = Fo(t,0%) P< (= + O | o' —0® 7
«
hence

2| fo(t,0h) = £ (807 P 2] g%t 0h) — g% (8 07) P

2
< 2+ Oy -y P+ 2P
(| fa(tavl) - fa(t7v2) | + | ga(tvvl) - ga(t7v2) |)2
2
< 2+ Oy =y P+ -2 P)
therefore

| fa(t’ylvzl)_fa(t’QQ’Zz) | + | ga(t7y17zl)_ga(t)y2,22) |

IA

2 .
\/5(5 +O)|y' =P P+ =27 )2

IN

VEC 4Oy~ |+ 12 =2 ).3)

Let w! =
we have

(y,2') and w? = (y, 2?), then by Lemma 2.5,

(F(t,wh) — F*(t,w?),w' —w?) < —C | w' —w? ?

S0 (fa(tvyazl) - fa(tay7z2)7y - y) + (Qa(t7y72’2) -
ga(tayazl)vzl - 22) S = | Zl - Z2 |2

thus

(ty,2°) |- |2 =22 |2 C |2t =22 P

| g*(t,y,2") — g°
—g%(t,y,2%) |2 C | 2" = 2% | (4)

| g%(t,y,2")

By the above inequalities (3) and (4), f* and g% sat-
isfy the assumptions in Theorem 2.3. Hence, there exists
a unique adapted solution u® = (y%,z%) for Eq.(2) in
M2(0,T; R" x R"*9).
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Step 2. There exists a constant L, such that E fOT | ue |?
dt < L.

Applying the It6 formula to | y¢ |* and taking the expec-
tation, we get

T
EE =E |y |? —E/ 2(ye s f oy, 27))dt
0

+E/

E/ (ytafa(7yt72ta)7fa(t7070))dt
0

tyt,zt)|2dt

SO

—E/ (20, 9% (6, 52 28) — 97 (£,0,0)))dt + EE?

:—E/ (y&, f*(t,0,0) dt+E/ Oty 2) | dt
VE |y - / 2(( g% (b, =) — g (£,0,0)))dt
0
hence
T
E§2—E/ 2C | u™ |* dt
> By |2+E/ oty =) |2 dt
_E/ 2(y?7fa(t7070))dt
0
T
B / (2, g% (1,47 2%) — g°(£,0,0))) e
0
then
T
Elys |2+E/ 2C | u® |* dt
0
T
< E / 2y, 7 (£,0,0))dt
0

T
B / 2((=8, 6% (5, #2) — 6°(+,0,0)))dt

+EE? —E/

T
BEHE [ P
0

tyt,zt)\th

IN

T T
+E/ o (4,0,0) ] dth/ | gty =) 2 de
0 0

T T
‘B / (2,9 (1,4 2)))dt — E / |2 2 dt
0 0
T T
B / 2((=8, g™ (£,0,0)))dt + E / 2 2 dt
0 0

IN

T T
E / | F(4,0,0) P dt — B / 2((=, g% (£,0,0)))dt
0 0
T T
4B [ s Pae BB [ o P
0 0

T T
_ E/ | F2(£,0,0) |2 dt—E/ 2((2, g (¢, 0,0)))dt

_QE/
+2E/

+E/ | 2 |2dt+E£2+E/ |y |? at
0 0

“(t,0,0) |2dt—fE/ | 2 |2 dt

“(t,0,0) |? dt + E/ | 22 |2 dt

By | Fe(x) |<| F(z) | +2C | = |, we have | F*(0) |?<]

|
F(0) [*. Thus | f*(t,0,0) [* + | ¢*(t,0,0) [*<|
f(t,0,0) |2 + | g(t,0,0) |*=| £(¢,0,0) |>. Therefore we
get
T
E|yg |2+E/ 20 | u™ |? dt
0
T T
< E£2+E/ |y§‘|2dt+2E/ f(t,0,0) |* at
0 0
3 T o |2
+-F | z¢ |© dt
2 Jo
3 T T
< E£2+§E/ |ua|2dt—|—2E/ f(t,0,0) |2 dt
0 0

SO
’ 3
Bl P+ [ (0= | P
0

T
< E§2+2E/ | £(£,0,0) |* dt = M
0

Because 3 < C' < 1, then let L = we have EfoT |

1> 4C’ 39
u® |2 dt < L.
Step 3. u® = (y*, 2%) converges in M2(0,T; R" x R"*4).

Let @ > 0 and 8 > 0, applying the It6 formula to |
Yy — yf |2 and taking the expectation, we get

O—E/

+E/ gty 0) — g8ty =) P dt
0

_yw (t ytazt) Jm(t Yt 24 ))dt

+E|Z/0 _yo |2

hence

T
E/ | g% (5, 28) — gty 2F) 2 dt
0
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T
B / (2 — g% (b 22) — P (b, )t
0
+E | ys —y 2
T
= B[ 2 o £ ) - Pl e
0
T
B / (= — 2 g™ (b =) — gt ul 2)))d
0
T
= E/ 2[F(t,u®) — FP(t,uP),u® — u’]dt
0

T
< 72C'E/ | u® — P |2 dt+
0

Ao+ AE [} (| F(t,u) | + | F(t,u) | +C( u® | + |
u? |))2dt

therefore
T
Elys —yb 12 +2C’E/ | u® —u? |2 dt
0

<20a+ME [} (| F(t,u®) | + | F(t,u®) | +C | u® | +C |
uP |)2dt

T
" / (g — 22, (1 22) — P (b, 2P))) e
0
T T
—E/ | 20 — 2P |2dt+E/ | 20 — 20 |2 dt
0 0
T 5]
fE/ g () — ot 20 P dt
0

T
<8(a+ B)E / (| Ft,u®) 2+ | F(t,u?) 2

+C?% | u® |2 4C? | WP |P)dt

T T
+E/ |zf—zf|2dt+E/ Ly — gl 2 de
0 0
then
T
E|ys—yl |2+(2C—1)E/ | u® —uP |2 dt
0
T
< S(a+pB)E / (| F(tu®) |2 + | F(t,u®) |
0
+C? | u® \2 +C? | u? |2)dt
Because | F(t,u) P=| f(tw) P+ | = | f(t,u) <]

f(t,0) | +C1 | u | and EfOT | u|? dt < L, we deduce that
there exists a constant k£ > 0, such that

T
E|yd—yl |? +(2071)E/ | u® —uP |2 dt < k(a+3)
0

Because % < C < 1, then {u®,a > 0} is a Cauchy se-

quence in M?2(0,T; R x R"*%). We denote its limit by
u=(y,2) € M*(0,T; R" x R"*%).

Step 4. Taking weak limits in the approximating equa-
tions (2).

From Lemma 2.5 and Assumption (H1), there exist con-
stants [ and m such that

| Fo(t,u®) 2 < (| F(tu®) [ +2C [u®])?
< LLS0) P Am e 2

So, there exists a constant C; > 0 such that EfOT |
Fe(t,u®) |?> dt < C,. Therefore there exists a subse-
quences of {F*(.,u®),a > 0} converge weakly to limits
G = (H,—B) in the space M?(0,T; R" x R"*4). Taking
weak limits in the approximating equations (2) yields

Yy =

£+ /tT H(s)ds — /tT B(s)duw,

Similar to the proof of Hu[3], we can prove that G =
(H, 7B) = F(tﬂytazt) = (f(taytazt)7 7g(t7ytazt))~

Therefore
T T
Yt :g"_/ f(svysazs)ds_/ stWs
t t

We deduce that (y,z) is an adapted solution of Eq.(1).
The existence is proved.

Next, we prove the uniqueness of solution of Eq.(1).

Let u! = (y},2}) and u? = (y?,2?) be two solutions of
Eq.(1). 9: =y} —y? and 2; = 2} — 22, then we have

dge = (f(t,y7,27) — [ty 20))dt + (2f — 27)dw,

Applying the Ité formula to | §; |? and taking the expec-

tation, we get

T
OZE‘QO|2+E/ Q(Qtaf(tayfazz)7f(taytlvzt1))dt
0

T
+E/ | 2 — 22 |? dt
0

Hence by Assumption 2.4, we get
T
Eliol-E [ | -2 P
0
T
= B[ 20tk ) - St )
0
T
—2E/ | 2 — 22 % dt
0

T
20E / (2 P+ | 90 Pt
0

IN
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Then 2CE [ (| 2 | + | 4 [2)dt — E [ | 2 |2 dt < 0.
Because 3 < C' < 1, then we have EfOT | 9¢ |? dt = 0 and
E [l |2 |2dt=0.Sou' = u

Thus there exists a unique adapted solution (y(.), z(.)) for
Eq.(1)in M2(0,T; R™xR™*%). The proof is completed.

References

[1] G. Da Prato and J. Zabczyk, Stochastic equations
in infinite dimensions, Cambridge University Press,
Cambridge, 1992.

[2] G. Da Prato and J. Zabczyk, Ergodicity for infinite
dimensional systems, Cambridge University Press,
Cambridge, 1996.

[3] Hu,Y., “On the solution of forward-backward
SDEs with monotone and continuous coeffi-
cients,” Nonlinear analysis, v42,pp.1-12,2000

[4] Lepeltier,J.P., and Martin,J.S. , “Backward stochas-
tic differential equations with continuous coef-
ficient,” Statistics Probability Letters,v32, pp.425-
430,1997

[5] Mao,X. ,“ Adapted solutions of backward stochas-
tic differential equations with non-Lipschitz coeffi-
cient,” Stochastic Processes and their Applications,
v58, pp.281-292,1995

[6] Pardoux,E. and Peng,S., “Adapted solution of a
backward stochastic differential equation,” Systems
control Letter,v14, pp.51-61,1990

(Advance online publication: 12 November 2009)



