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Abstract—Consider the problem of solving, approx-
imately, a Wiener-Hopf integral equation

∫∞
0

g(θ)k(x−
θ)dθ = f(x), x ≥ 0 in g, with certain conditions on k
and f (see below). We use the well known and pow-
erful Riemann-Hilbert problem to develop two tech-
niques to solve, approximately, the Wiener-Hopf in-
tegral equation. One of the approximations is based
upon the Shannon sampling theorem, which provides
a sharp approximation, when applicable. Estimation
bounds and application in statistics are given.

Keywords: Padé approximant, continued fraction,

Shannon sampling theorem, Fourier transform, Hilbert

transform.

1 Introduction

Consider solving a Wiener-Hopf integral equation with
form

∫ ∞

0

g(θ)k(x− θ)dθ = f(x), (1)

where g is to be determined and f and k are two given
functions that both go to zero faster than some power
(i.e., f(ω) = o(|ω|−α), g(ω) = o(|ω|−β), for some posi-
tive α, β, as |ω| → ∞), real parts of both functions are
bounded by positive value, and their the Fourier trans-
forms satisfy the Hölder condition on R. The Wiener-
Hopf integral equation is an integral equation, which
in 75 years of its history has been impressed all who
use it to almost all branches of engineering, mathemat-
ical physics, and applied mathematics. The technique
to solve a Wiener-Hopf integral equation, named the
Riemann-Hilbert technique, still, remains an extremely
important tool for modern scientists, and the areas of
application continue to broaden, a good review may be
found in [10], among others. The Riemann-Hilbert tech-
nique is theoretically well developed. However, to over-
come problem caused by slow evaluation and existence
singularises near the integral contour some approximate
methods have to be considered, which do not receive
enough attention from authors. Until 2000, there does
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not exist any broadly applicable method to produce an
approximate solution for a Wiener-Hopf integral equa-
tion. Abraham in 2000, [9], considered solving Wiener-
Hopf equation

∫∞
0

g(θ)k(x− θ)dθ = f(x), x ≥ 0 in g. He
suggested to replace the Fourier transform of given kernel
k by a Padé approximant which uniformly approximates
the Fourier transform of original kernel in an infinite
strip about R. The approximation conditions suggested
by Abraham are quite strong and in many cases cannot be
achieved, see [11]1 generalized Abrahams’ results by in-
troducing (i) a weaker approximate technique, Lp(R), to
solve a Wiener-Hopf equation; and (ii) a new methods,
based upon the Shannon sampling theorem, to solve a
Wiener-Hopf equation. This paper deals with theory and
numerical treatment to solve, approximately, a Wiener-
Hopf integral equation, with even (or odd) kernel, k. We
begin by improving results of [11], in L2(R). Namely, (i)
using Parseval’s identity (see Lemma 2) shaper results
regarding to Theorem (4) of [11] are given; (ii) estimate
bounds for Theorem 5, which in [11] misspecified, are
given, (iii) and provides a practical method to solve a
class of Wiener-Hopf equations, which motivated by a
statistical problem.
This paper develops as following. Section 2 collects and
establishes some useful elements of the Riemann-Hilbert
problem and properties a function in L2(R) space. Sec-
tion 3 presents two techniques to solve, approximately a
class of Wiener-Hopf integral equation with even (or odd)
kernel. An application in statistics is given.

2 Preliminaries

Now, we collect and establish some useful elements about
the Riemann-Hilbert problem and some properties of
function in L2(R) space.

Definition 1 Suppose q is a complex-valued smooth
function defined on a smooth oriented curve Γ. If q(Γ) is
closed and compact, then the index exists and is defined
to be the winding number of q(Γ) about the origin.

Computing the index of a function is usually a key step
in determining the existence and number of solutions of

1More precisely, [11] considered the Riemann-Hilbert problem
which has close relation with the Wiener-Hopf integral equation.
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a Riemann-Hilbert problem. We are primarily interested
in the case of index zero, since a positive and continuous
function r which goes to zero faster than some power has
zero index [7].

The Sokhotskyi-Plemelj integral of a function s is defined
by a principal value integral, as follows.

φs(λ) :=
1

2πi
−
∫

R

s(ω)
ω − λ

dω, for λ ∈ C. (2)

In the boundary-value literature, it is well known that
the radial limit φ±s (ω) = lim

λ→ω+i0±
φs(λ) has the property

(jump formula) that φ±s (ω) = ±s(ω)/2 + φs(ω), where
ω ∈ R. Moreover, the radial limits φ±s may be understood
as φ±s (ω) = ±s(ω)/2 + H(s, ω)/(2i), where H(s) is the
Hilbert transform of s and ω ∈ R [7].

The Riemann-Hilbert problem is the function-theoretical
problem of finding a single function which is analytic sep-
arately in upper and lower half-plane (called sectionally
analytic), bounded, and having a prescribed jump discon-
tinuity on the real line. (One can replace the real line by
other curves, but the case of the real line is the one stud-
ied here; more general versions of the Riemann-Hilbert
problem can be found in [7].

Definition 2 The Riemann-Hilbert problem with index
υ is to find a sectionally analytic and bounded function
Φ such that the upper and lower radial limits Φ± satisfy

Φ+(ω) = r(ω)Φ−(ω)− s(ω), for w ∈ R, (3)

where kernel and nonhomogeneous parts r and s respec-
tively, are given, bounded, and continuous functions such
that

i) s and r satisfy a Hölder condition on R, and both go
to zero faster than some power,

ii) r does not vanish on R and has index υ.

In case of r vanishes at α, with order 1, [7] suggests to
set up a new Riemann-Hilbert problem Φ+(ω)/(ω−α) =
r(ω)/(ω − α)Φ−(ω) − s(ω)/(ω − α), for w ∈ R, which
meets all desire condition of a Riemann-Hilbert problem.
For convenient in presentation hereafter, we call above
suggestion as Gakhov’s suggestion in [7]. Moreover, we
denote the upper and lower half-plane respectively with
D+ and D−.

To solve the Riemann-Hilbert problem (3), it is usual to
define auxiliary functions

X+(ω) = lim
λ→ω+i0+

exp{φf (λ)},

X−(ω) = lim
λ→ω+i0−

λ−υ exp{φf (λ)},

ψ±(ω) = lim
λ→ω+i0±

φg(λ),

where f(ω) = ln(ω−υr(ω)) and g(ω) = −s(ω)/X+(ω),
for ω ∈ R and λ ∈ C.

A Riemann-Hilbert problem always has a family of solu-
tions. But, unique solutions can be obtained with further
restrictions. Solutions vanishing at infinity is the most
practical restriction considered in mathematical physics
and in engineering applications. With this restriction,
the solution may be found with the following Sokhotskyi-
Plemelj method, proof may be found in [7].

Lemma 1 Suppose Φ±(ω) vanish at infinity, the
Riemann-Hilbert problem (3) with index υ has

i) υ linear independent solutions, whenever υ > 0,

ii) a unique solution if υ = 0,

iii) a unique solution, whenever υ < 0, and
−
∫

R
s(ω)ωn−1

X+(ω) dω = 0, for n = 1, 2, ...,−υ; and no solu-
tion otherwise.

If a Riemann-Hilbert problem has solutions, they can be
found by

Φ±(ω) = X±(ω)(ψ±(ω) + Pυ(ω)/ωυ), ω ∈ R,

where Pυ(ω) is a polynomial of degree υ, with arbitrary
coefficients, and P0(ω) = 0.

Hereafter, we study the Riemann-Hilbert problem with
index zero.2

Due to numerical problems caused by singularities near
the integral contour and slow evaluation, the implemen-
tation of the above lemma is very difficult. There is an
alternative method to solve a Riemann-Hilbert problem
named Carlemann’s method, which amounts to solution
by inspection. Carlemann’s method in two steps pro-
vides solutions of a Riemann-Hilbert problem. In the
first step, the kernel r must be decomposed into a prod-
uct of two sectionally analytic and bounded functions r+

and r− in D+ and D− respectively. In the second step,
ratio s/r+ decomposes into a summation of two section-
ally analytic and bounded function s+ and s− in D+ and
D− respectively. Then, the solutions of above Riemann-
Hilbert problem are obtained.

The key step to solve a Riemann-Hilbert problem is deter-
mining terms r+, r−, s+, and s−, satisfying the proper-
ties given earlier (Carleman’s method). In most cases,
these functions cannot find explicitly and the original
functions have to be approximated by simpler functions.

2Conditions on the kernels of the Riemann-Hilbert problem that
are considered in this paper (positivity, continuity, and goes to
zero faster than some power) force the associated Riemann-Hilbert
problem to have zero index, see Ghakhov (1990) p. 86.
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Abrahams (2000) considered the homogenous Riemann-
Hilbert problem Φ−(ω) = r(ω)Φ+(ω) with index zero. He
assumed that one could replace the given kernel r with
a simple kernel, say r0, which in a strip about the real
line, uniformly approximates r. Then, he showed that
solutions of the approximate Riemann-Hilbert problem
Φ−0 (ω) = r0(ω)Φ+

0 (ω) uniformly approximate solutions
of the original Riemann-Hilbert problem. Since such uni-
form approximations cannot always be found (see [11]
Abrahams’ result is sometimes inapplicable. Moreover,
Abrahams’ result does not apply to the nonhomogeneous
Riemann-Hilbert problem.

Φ+(ω) = −r+(ω)s+(ω),
Φ−(ω) = s−(ω)/r−(ω).

The most favorable situation for the Carlemann’s method
is probably the case where r and s are rational functions.
It would be worth to recall that [3] established the fol-
lowing class of functions as rational Fourier transform.

P = {p(x) : p(x) =
N∑

k=1

ak[sin(bkx) + cos(ckx)]e−dkx}, (4)

where N and M are some positive and integer numbers,
ck and gk are two positive real value numbers, and ak,
bk, dk, and ek are in R.
In most cases exact solutions cannot be found and so-
lutions have to approximate. Probably, [2] was the first
author who attempted to solve the homogenous Riemann-
Hilbert problem Φ+(ω) = r(ω)Φ−(ω), approximately. He
suggested two methods, both are based on an approxima-
tion of the kernel of a homogenous Riemann-Hilbert prob-
lem by a rational function. In the first method the kernel
r is approximated by the function rn(ω) =

∑n
k=−n akωk.

In the second method, by taking logarithms, the ho-
mogenous problem is reduced to the jump problem (i.e.,
lnΦ+(ω) − ln Φ−(ω) = ln r(ω)); ln r(ω) is then approx-
imated by the same rational function rn(ω). [1,4] pro-
posed replacing a complicated kernel, r, in a homoge-
nous Riemann-Hilbert problem with a simple one, say,
r0, that uniformly approximates r in a strip about the
real line. Until 2000 there did not exist any broadly ap-
plicable method to produce an approximating kernel r0.
Abrahams in 2000 introduced a new scheme for generat-
ing a rational approximation for a homogenous Riemann-
Hilbert problem with zero index (named the Wiener-Hopf
problem). He suggested to replace the given kernel r by
a Padé approximant of r that uniformly approximates
the original kernel in an infinite strip. The conditions on
the approximate kernel that are suggested by Abrahams
are quite strong and in many cases cannot be achieved,
(see [11]). Moreover, Abrahams’ result does not apply
to the nonhomogeneous Riemann-Hilbert problem. Re-
cently, [11] provide two techniques to solve a subclass of
nonhomogeneous Riemann-Hilbert problem.
An useful result is the Parseval’s identity, proof may be
found in [8].

Lemma 2 (Parseval’s identity) Suppose f ∈ L1(R) ∩
L2(R). Then ||f̂ ||2 = ||f ||2.

From the Parseval’s identity, one can observe that, if {sn}
is a sequence of functions converging in L2(R), to s, then
the Fourier transforms of sn converge in L2(R) to the
Fourier transform of s. Another immediate conclusion of
the Parseval’s identity can be the following.

Lemma 3 Suppose f ∈ L1(R) ∩ L2(R). Then
||H(f)||2 = ||f ||2, where H stands for the Hilbert trans-
form.

Proof. This readily can be observed from the fact that
the Hilbert transform of f can be rewritten as H(f, λ) =
if̂(sgn(·)f̂−1(·), λ). The Parseval’s identity completes the
desired proof.

The following recalls some further useful elements, from
[11], for the next section. Their result using Lemma (3)
can be improved for L2-norm as the following.

Theorem 1 Suppose r and rn are positive and contin-
uous functions which go to zero faster than some power
and have zero index; s and sn satisfy the Hölder condition
and go to zero faster than some power. Then solutions of
Riemann-Hilbert problems Φ+

n (ω) = rn(ω)Φ−n (ω)−sn(ω)
and Φ+(ω) = r(ω)Φ−(ω)− s(ω), satisfy

||Φ+
n − Φ+||2 ≤ B

2b2

[
1 +

A
√

b√
B

]
||rn − r||2

+
√

B√
b
||sn − s||2,

||Φ−n − Φ−||2 ≤ 3A

2b2
||rn − r||2 +

1√
Bb
||sn − s||2,

b, B, and A are positive values such that b := inf{r, rn},
B := sup{r, rn}, and A := sup{|s|, |sn|}.

Remark 1 It is worth recalling that the above Theo-
rem apply only to Riemann-Hilbert problems with zero
index and a real-valued kernel. But one can extend it
to handle Riemann-Hilbert problems with a scalar multi-
ple of real-valued kernel (i.e., given kernel r in Riemann-
Hilbert problem (2) satisfies r(ω) = (a + ib)r∗(ω), where
r∗ is a real-valued function and a and b are real-valued
constants). This can be readily observed by dividing
both sides of corresponding Riemann-Hilbert problem by
imaginary constant a + ib to obtain a Riemann-Hilbert
problem with real-valued kernel.

To use the pervious Theorem, we suggest to replace r and
s with two sequence of rational functions, say respectively
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rn and sn, which produced by the Padé approximant or
a continued fraction expansion and satisfy condition of
Theorem. Also, form the above theorem, one can observe
that solutions of Riemann-Hilbert problems Φ+

n (ω) =
rn(ω)Φ−n (ω) − sn(ω) converge in L2(R) to solutions of
Riemann-Hilbert problem Φ+(ω) = r(ω)Φ−(ω) − s(ω),
whenever rn − r and sn − s both converge to zero in
L2(R) sense.
As pointed out above, due to numerical problems caused
by singularities near the integral contour and slow evalu-
ation, a Riemann-Hilbert problem usually cannot solve
explicitly and has to be approximated. To approxi-
mate solutions of a Riemann-Hilbert problem, we sug-
gest to replace two complicated given functions r and s
in (2) by two rational functions r0 and s0 which gen-
erate using the Padé approximant or continued frac-
tion techniques and that approximate original functions
in L2(R), see [6] for more detail. Result of Theo-
rem (1) warrants that solutions of a Riemann-Hilbert
problem Φ+(ω) = r(ω)Φ−(ω) − s(ω) approximated, in
L2(R) sense, by solutions of a Riemann-Hilbert problem
Φ+

0 (ω) = r0(ω)Φ−0 (ω)− s0(ω).
Also, [11] used the Shnnon sampling theorem and pro-
vided exact solutions of a Riemann-Hilbert problem, see
Theorem (6) of [11]. Their condition on given functions,
r and s, are strong and difficult to achieve. To over-
come this difficulty, one has to use approximate tech-
nique. The following theorem provides an approximate
version of [11].

Theorem 2 Suppose r and rn are positive and contin-
uous functions which go to zero faster than some power,
have zero index, and rn ≡ r+

n r−n , where r+
n and r−n , re-

spectively, are analytic and bounded in D+ and D−.
Moreover, suppose that s satisfy the Hölder condition,
go to zero faster than some power (i.e., s(ω) = o(|ω|α),
whenever α < −1 as |ω| → ∞), and the Fourier trans-
form of s/r+

n vanishes outside of the interval [−T/2, T/2].
Then, solutions of Riemann-Hilbert problem Φ+(ω) =
r(ω)Φ−(ω)− s(ω)

i) can be approximated, in L2(R), by Φ+
n (ω) =

−r+
n (ω)t+N (ω) and Φ−n (ω) = −t−N (ω)/r−n (ω);

ii) approximated solutions Φ+
n and Φ−n satisfy

||Φ+
n − Φ+||2 ≤ B

2b2

[
1 +

A
√

b√
B

]
||rn − r||2

+
2
√

B

Tα
√

b

∞∑

j=N+1

jα,

||Φ−n − Φ−||2 ≤ 3A

2b2
||rn − r||2 +

2
Tα
√

Bb

∞∑

j=N+1

jα;

where t−N (ω) =
+N∑

j=−N

tn(
j

T
)
exp{−iπ(Tω − j)} − 1

2iπ(Tω − j)
,

t+N (ω) =
+N∑

j=−N

tn(
j

T
)
exp{iπ(Tω − j)} − 1

2iπ(Tω − j)
, and tn =

s/rn and N, b, B, and A are positive values which
for all ε > 0, |tn − (t+N − t−N)| < ε, b := inf{r, rn},
B := sup{r, rn}, and A := sup{|s|}.

Proof. Solutions of Riemann-Hilbert problem Φ+(ω) =
r(ω)Φ−(ω) − s(ω) can be approximated by solutions
of Riemann-Hilbert problems Φ+

n (ω) = rn(ω)Φ−n (ω) −
r+
n tN (ω), where tN = t+N − t−N . Results of [11] finishes

proof of part (i). To establish part (ii), suppose firstly one
approximates solutions of the desired Riemann-Hilbert
problem by solution of the Riemann-Hilbert problems
Φ+∗

n (ω) = rn(ω)Φ−∗n (ω)− s(ω) and secondly by solutions
of Riemann-Hilbert problems Φ+

n (ω) = rn(ω)Φ−n (ω) −
r+
n tN (ω). Now, using the Hölder inequality, one can es-

timate error bounds of two approximation steps as the
following

||Φ+ − Φ+
n ||2 ≤ ||Φ+ − Φ+∗

n ||2 + ||Φ+∗
n − Φ+

n ||2

≤ B

2b2

[
1 +

A
√

b√
B

]
||rn − r||2

+
|r+

n |
√

B√
b

|| s

r+
n
− tN ||2

≤ B

2b2

[
1 +

A
√

b√
B

]
||rn − r||2

+
|r+

n |
√

B√
b

∑

|j|>N

||tn(
j

T
)
sin(π(Tω − j))

π(Tω − j)
||2

≤ B

2b2

[
1 +

A
√

b√
B

]
||rn − r||2

+

√
B√
b

∑

|j|>N

|s( j

T
)|

≤ B

2b2

[
1 +

A
√

b√
B

]
||rn − r||2

+
2
√

B

Tα
√

b

∞∑

j=N+1

jα.

The second, third, last inequalities, respectively, follow
from Theorem (1), the Shannon sampling theorem, and
fact that s goes to zero faster than some power, i.e.,
s(ω) = o(|ω|α), whenever α < 1 as |ω| → ∞. Proof of
the second part is quite similar.

3 Application to the Wiener-Hopf inte-
gral equation

This section introduces two new schemes to approximate
solution(s) of a class of Wiener-Hopf integral equation
with odd or even kernel, in L2(R) sense.
To state a Wiener-Hopf integral question as a Riemann-
Hilbert problem, we need the following lemma from [5].
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Lemma 4 Suppose f and k are two given functions
and g is to determine from the Wiener-Hopf equation∫∞
0

g(θ)k(x − θ)dθ = f(x), x ≥ 0. If the Fourier trans-
form of f and k satisfy the Höler condition and go to zero
faster than some power. Moreover, the Fourier transform
of k does not vanish on R. Then, the unknown function g
is the inverse Fourier of Φ− in the Riemann-Hilbert prob-
lem Φ−(ω)k̂(ω) = f̂(ω)+Φ+(ω), where Φ+ is the Fourier
transform of the unknown function of h determined by∫∞
0

g(θ)k(x− θ)dθ = h(x), x ≤ 0.

The following theorem provides an L2(R) approximated
solution for the Wiener-Hopf integral equation with an
odd or even kernel.

Theorem 3 Suppose k, kn, f, and fn are given and
piecewise continuous functions in L1(R) ∩ L2(R). And,
g and gn are unknown functions where are to be deter-
mined from Wiener-Hopf equations

∫∞
0

g(θ)k(x− θ)dθ =
f(x), x ≥ 0 and

∫∞
0

gn(θ)kn(x − θ)dθ = fn(x), x ≥ 0.
Then

a) solution of g and gn satisfy, whenever k and kn, are
odd functions, k̂(ω)/ω and k̂n(ω)/ω have zero in-
dexes

||g − gn||2 ≤ 3A1

2b2
1

|| k̂(ω)− k̂n(ω)
ω

||2

+
1√

B1b1

|| f̂(ω)− f̂n(ω)
ω

||2,

b) solution of g and gn satisfy, whenever k and kn, are
even functions and k̂(ω) and k̂n(ω) have zero indexes

||g − gn||2 ≤ 3A2

2b2
2

||k − kn||2 +
1√

B2b2

||f − fn||2,

where B1 := sup{k̂(ω)/ω, k̂n(ω)/ω}, b1 :=
inf{k̂(ω)/ω, k̂n(ω)/ω}, A1 := sup{|f̂(ω)/ω|, |f̂n(ω)/ω|},
B2 := sup{k̂, k̂n}, b2 := inf{k̂, k̂n}, and A2 :=
sup{|f̂ |, |f̂n|},

Proof. (a) Using Lemma (4) and the fact that eixω −
e−ixω = 2i sin(xω), one can observe that the kernel
corresponding Riemann-Hilbert problems vanish at ori-
gin. Using the Gakhov’s suggestion along result of The-
orem (1), Remark (1), and Lemma (2) the desire re-
sult obtain. (b) Using Lemma (4) and the fact that
eixω + e−ixω = 2i cos(xω), along result of Theorem (1)
and Lemma (2) the desire result obtained

Remark 2 From the Parseval’s identity and properties
of the Fourier transform. It is easy to observe that,
||k̂1(ω)/ω − k̂2(ω)/ω||2 corresponds to an L2-norm of an
antiderivative for k1 − k2.

The significance of the above theorem lies in the fact that
it gives a continuity result for the solution process for
Wiener-Hopf equations of certain class. In general, one
dues not expect such result for integral equations as can
for example be seen from the simplest of all integral equa-
tion

∫ x

0
s(θ)dθ = f(x), where f is given, which a small

change (in L2(R)) of f leads to large changes in s.

Theorem 4 Suppose k, kn, and f are given and piece-
wise continuous functions in L1(R) ∩ L2(R). And, g
and gn are unknown functions where are to be deter-
mined from Wiener-Hopf equations

∫∞
0

g(θ)k(x− θ)dθ =
f(x), x ≥ 0 and

∫∞
0

gn(θ)kn(x − θ)dθ = f(x), x ≥ 0.

Moreover, suppose that the Fourier transform k̂n can be
written as k̂n ≡ r+

n r−n , where r+
n and r−n , respectively,

are analytic and bounded in D+ and D−, f̂ goes to zero
faster than some power (i.e., f̂(ω) = o(|ω|α), whenever
α < −1 as |ω| → ∞), and the Fourier transform of f̂/r+

n

vanishes outside of the interval [−T/2, T/2]. Then

a) solution of g and gn satisfy, whenever k and kn, are
odd functions, k̂(ω)/ω and k̂n(ω)/ω have zero in-
dexes

||g − gn||2 ≤ 3A1

2b2
1

|| k̂(ω)− k̂n(ω)
ω

||2

+
2T 1−α

√
B1b1

∞∑

j=N+1

jα−1,

b) solution of g and gn satisfy, whenever k and kn, are
even functions and k̂(ω) and k̂n(ω) have zero indexes

||g − gn||2 ≤ 3A2

2b2
2

|| k̂(ω)− k̂n(ω)
ω

||2 +
2T−α

√
B2b2

∞∑

j=N+1

jα,

where B1 := sup{k̂(ω)/ω, k̂n(ω)/ω}, b1 :=
inf{k̂(ω)/ω, k̂n(ω)/ω}, A1 := sup{|f̂(ω)/ω|},
B2 := sup{k̂, k̂n}, b2 := inf{k̂, k̂n}, and A2 := sup{|f̂ |},

[12] considered a statistical problem which can be re-
stated as the following Wiener-Hopf integral equation

∫ ∞

0

g(θ)k(x− θ)dθ = f0(x), for x ≥ 0, (5)

where f0(x) is a given log-concave and even density func-
tion defined on x ≥ 0, k(x) = −sgn(x)f0(x), and g is
a real-valued and positive function to be determined.
Kucerovsky et al. (2009) established that the above
Wiener-Hopf equations have real-valued, positive, and
unique solution.
As pointed out before, in many case the Wiener-Hopf
equation cannot be solved explicitly, where a approxi-
mated technique has to be employed. Using the above
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fact along the Carlemann’s method (see above), to solve
integral equation (5), we suggest: (i) approximate f0 in
the original Wiener-Hopf integral equation by a function
in class of P, given by (4), which has rational Fourier
transform; (ii) solve its corresponding Riemann-Hilbert
problem using the Carlemann’s method; (iii) take inverse
Fourier transform of Φ−. Since, integral equation (5) has
unique solution which has to be positive, continuous, and
real-valued function, we believe that its solution should
be in class P, given by (4).
Now, we solve an example.

Example 1 (Normal density function) Suppose f0 is
integral equation (5) be the Normal density function
f0(x) = exp{−x2/2}/√2π. Using the above steps, ap-
proximated solution of integral equation (5) is

g(θ) = 0.9971 +
15∑

i=1

ai cos(biθ) exp{−ciθ}

+
15∑

i=1

di sin(eiθ) exp{−fiθ},

where a=(0.0004, 0.0389, -2.9991, -18.3763, -0.0027, -
1.0988, 7.7404, 0.0382, -1.1011, 0.0001, -0.0001, 1.8629,
-13.0964, 7.6762, 18.7692), b=(1.9950, 2.2450, 0.4110,
0.4895, 0.6200, 2.2453, 1.2451, 2.2450, 2.2447, 1.9949,
0.6196, 0.2970, 0.6038, 1.2374, 0.0067), c=(1.6455,
1.7615, 3.1395, 2.9146, 1.7313, 2.6837, 2.9117, 1.7615,
2.6839, 1.6456, 1.7310, 3.2354, 2.8876, 2.9247, 2.6393),
d=(0.0006, 14.5099, 3.0866, 0.0030, 0.7965, -5.8484,
0.3457, 0.8019, -0.0005, 5.1804, 16.7046, -6.5426, -0.0033,
-3.5832, 0.3461), e=(1.9950, 0.4110, 0.4895, 0.6200,
2.2453, 1.2451, 2.2451, 2.2447, 1.9950, 0.6038, 0.2970,
1.2374, 0.6196, 0.0067, 2.2448), and f=(1.6455, 3.1395,
2.9146, 1.7313, 2.6838, 2.9117, 1.7615, 2.6840, 1.6457,
2.8876, 3.2354, 2.9247, 1.7310, 2.6393, 1.7615). One
could observer that limx→+∞ g0(x) = 0.9971. More-
over, the error of approximated solution may be mea-
sured by replacing g0 in | ∫∞

0
g(θ)k(x − θ)dθ − f0(x)|,

i.e., Error(x) := | ∫∞
0

g(θ)k(x − θ)dθ − f0(x)|, where
supx{Error(x)} = 0.007.

Example 2 (Hyperbolic secant density function) Sup-
pose f0 is integral equation (5) be the Hyperbolic secant
density function f0(x) = 1/(π cosh(x)). Using the above
steps, approximated solution of integral equation (5) is

g(θ) = 0.8574 +
15∑

i=1

ai cos(biθ) exp{−ciθ}

+
15∑

i=1

di sin(eiθ) exp{−fiθ},

Above example can readily extent as following. Consider
the integral equation

∫ ∞

0

s(θ)k(θ − x)dθ = f0(x), x ≥ 0, (6)

where f0(x) = e|x|/(1 + e|x|)2, k(x) = −sgn(x)f0(x),
and g is to de determined. As Example 1 pointed out,
the Fourier transform k̂ cannot uniformly be approxi-
mated by a rational function. One can replace given f0

by the Gaussian function fG = exp{−πx2/16}/4, which
fG approximates f0 in L2, i.e.,

∫
R
|fG(x) − f0(x)|2dx ≤

0.000417. Now, one can employ result of previous exam-
ple to approximate solution of (6), say gG, in L2(R), i.e.,∫∞
0
| ∫∞

0
gG(θ)k(x− θ)dθ − f0(x)|2dx ≤ 0.001062.
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