
 
 

 

Electromagnetic Energy-Momentum Tensor for 
Non-Homogeneous Media in the Theory of 

Relativity 
Andrei Nicolaide 

  
Abstract — The tensor calculus, using certain suitable 

transformations, permits to establish the expression of 
the energy-momentum tensor, also called energy quantity 
of motion tensor, for domains submitted to an 
electromagnetic field in various cases interesting in the 
Theory of Relativity, and which have not been examined 
in the known works. In literature, in the works devoted to 
the Theory of Relativity, this problem has been especially 
treated for the vacuum medium. Here, the author 
presents a new approach to the analysis of the case of 
linear but non-homogeneous electrically and 
magnetically polarized media. The problem of passing 
from a system of reference to another one in motion, and 
the selection of the volume density force formulae which 
are in accordance with the Theory of Relativity are also 
examined.  
 

Index Terms — Energy-momentum tensor, Tensor 
calculus, Theory of relativity.  

I. INTRODUCTION 
 In Electrodynamics and in the Theory of Relativity, 
the energy-momentum tensor has a very important role 
[1-9]. Besides the widely accepted fact that this tensor 
allows a compact way of writing the conservation laws 
of linear momentum and energy in Electromagnetism, it 
permits to calculate the energy and stress, in any 
reference frame in terms of another reference frame, and 
especially in terms of the reference frame in which the 
substance is at rest. 
 The developments of the principles of the concerned 
mathematical methods, started from a relatively long 
time, are still examined nowadays [10-14]. 

Many works have been devoted to this subject. 
However, in the most treated case of empty space as 
well as in the case of a space filled with substance, the 
transition from a reference frame to another in motion 
has not been carefully analysed. In this paper, a new 
approach to the analysis of the tensor will be presented 
namely, the construction of the tensor, the case of 
non-homogeneous electrically and magnetically 

polarized substances, and the transition from a reference 
frame to another one, with the involved consideration 
on the Theory of Relativity. 
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II. VOLUME DENSITY OF THE ELECTROMAGNETIC 
FORCE 

An analysis of the electromagnetic forces in the 
frame of classical theories can be found in certain works 
among which [15]. In the works concerning the Theory 
of Relativity the analysis of electromagnetic forces is 
achieved from the Lorentz formula of the force, e.g., [5, 
p. 133]. In the present paper, we shall start from the 
general formula of the electromagnetic force acting on a 
substance submitted to an electromagnetic field. It is 
derived from the principle of conservation of energy 
and the Theory of Relativity, through certain 
approximations, [8, p. 157]. The reasoning has led to the 
following formulae, both also deduced in various other 
manners and accepted by several authors: 
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where the symbols are the usual ones. In this case, the 
quantities ε and µ are considered as constant, but 
strongly depending on the point of the substance, hence 
varying in space. We shall denote the three axes of a 
Cartesian system of co-ordinates, by the indices i, j, k. 
In the further analysis, we shall consider formula (1 a), 
and we shall mention the modification occurring due to 
the supplementary term, if using formula (1 b). 
Relations (1 a) and (1 b) are considered as having, along 
each axis, three and four terms (components), 
respectively: 

( ) ( ) ( ) ( ) ,4321 kkkkk fffff +++=  (2)

where the index k indicates the axis. The four terms are 
given by the following expressions: 
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(3 a, …, d)

 Henceforth, we shall write the expressions of the 
electromagnetic field state quantities by using the 
scalar and vector potentials V and A, in the well-known 
form: 
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 The relations (4 a, b) may be written in a new form, 
using the relations (A.9 a-d) and (A.10 a, b) from 
Appendices, as follows:  
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 Further, we shall have in view the two groups (sets) 
of equations of the electromagnetic field (in the order 
used by H. A. Lorentz, which differs from that of J. C. 
Maxwell) in a four-dimensional continuum space-time, 
where the symbols are those of [10, 11]. For the sake of 
facility, we shall recall these symbols, firstly in the case 
of empty space (vacuum). The equations of the first 
group (set) are given by the relationships: 
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(6 g-j)
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where the subscript index k in the relations (6 j) and        
(6 l) refers to the usual three-dimensional vectors, 
whereas indices i and j refer, as previously, to tensor 
components. All situations in which the index k has this 
role will be mentioned. It is to be noted that the 
components of the form  and  vanish. iiF iiG
 Introducing the axis coefficients of the Galilean 
reference frame, , [11], we can write: iie
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 In the case of isotropic, linear, non-homogeneous 
media using relation (A.19 a) from Appendices, we may 
write: 
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 Similarly, using relation (A.21 b) from Appendices, 
we may write: 
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 The equations of the second group (set) are given by 
the relationship: 
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 In order to emphasize the tensors  and , 
equations (3) can be written in the form below, 
convenient for passing from three to four dimensions. 
Relations (6), have been considered. For instance, 
relation (8 c) has been written taking into account 
relations (6 a) and (6 k, l), respectively. Hence: 
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(8 a-d)

and also, we have: 
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 Summing up, side by side, relations (8 a) and (8 b), 
we shall get the following more compact expression: 
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relation which, as mentioned, is extended for the 
four-dimensional continuum since indices j and k may 
take four values. Then, summing up, there follows: 
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III. EXPRESSION OF THE FORCE COMPONENTS AND 
OF THE ENERGY-MOMENTUM TENSOR  

 We shall now consider the case of a linear isotropic 
electric and magnetic polarization of the considered 
medium, with the relative permittivity  and the 
relative permeability , point functions. In order to 
express the force component as the derivative of an 
expression, we shall write relation (10) in the form: 
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Now, we shall modify the second term of the 
right-hand side as follows: 
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 Summing up the left-hand and the last right-hand 
sides of the two expressions (12 a, b), and taking into 
account (7), we get: 
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 Replacing (13) into (11), we shall obtain: 
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By expanding the last term of (14), there follows:  
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Initially we shall assume index k different from zero. 
 Replacing the symbols of (8 e, f) into (15), after 
having divided both sides with c, we shall get: 
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 We remark that: 
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 We are now going to calculate the components of  
which, according to the types of the included 
electromagnetic field state quantities, can be of the 
following types: electric, magnetic, mixed. 

kf

 In order to facilitate the understanding of the formulae, 
we shall successively use the tensor notation and the 
vector notation. We shall use for indices numbers, 
instead of letters, because it is easier to perform the 
computation and to avoid the use of the summation 
convention when not allowed. Then, the indices may be 
subscripts. We adopt 3=k . We shall not write the terms 
of the form  and , being zero. uuF uuG
 We shall express the electric component considering 
expression (16). We take into account the relation:  
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The electric component will be obtained from the 
expanded relation (16), having in view (17 a), and that 
indices u and v take the same values:  
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and therefore: 
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In tensor form, we have: 
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Then, we shall express the magnetic component 
considering also expression (16). We need to calculate 
expressions of the form: 
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By differentiating, we obtain: 
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Therefore, replacing in the considered term of (16) 
the expression (18 b) and having in view relations (16 a) 
we shall obtain for : 3=k
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Rearranging the terms, there follows:  
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or in tensor form: 
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 Returning to previous letter indices, and summing 
side by side relations (17 b), (18 d) or (18 e), and (8 c), 
we shall get the sum of electric and magnetic terms: 
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 We shall now express the mixed components 
considering the first term of expression (16) and the 
expression (8 d). The mixed components are given by: 

( ) ( )

( ) ( )

( ) ( ) ,1

1

1

1
2

0
2

1

0

32
20

031
10

0

0
0mix1

⎥
⎦

⎤
⎢
⎣

⎡
∂

∂
+−

∂
∂

=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

+
∂

∂
=

∂
∂

⋅=

cBcD
x

cBcD
xc

FG
x

FG
xc

FG
xc

f ku
u

k

 (20 a)

and 
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 Returning to previous letter indices, we get: 
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 Adding up relations (19) and (20 b), side by side, we 
obtain: 

( ) ( )

( ) ( )

( ) [ ].3,1,,,,

2
1

2
1

0

2

2

∈∀−
∂

∂
−

µ
∂

∂
−µ

∂
∂

+

ε
∂

∂
⋅−ε

∂
∂

=

vkjiBDBD
x

c

H
x

HH
x

E
x

EE
x

f

ijji

k
vk

v

k
vk

v
k

 (22)

 By summing up, side by side relations (17 b), (18 f), 
(20 a), we can write: 

( ) ( ) ( )

( ) ( )

( ) ( )

( ) [ ] ,3,1,,1
2
11

2
1

11
2
1

2
11

0
0

0
0

0
0

0
0

elmag

∈∀
∂

∂
⋅+

∂
µ∂

+
∂

∂
⋅⋅+

∂
∂

⋅+
∂

ε∂
⋅+

⎥
⎦

⎤
⎢
⎣

⎡

∂
∂

⋅−
∂

∂
=

vuFG
xc

x
GGFG

xc

FG
xcx

FG
c

FG
x

FG
xc

f

ku
u

kuv
uv

uv
uv

k

ku
uv

vkv
v

v
v

kk
v

vk

(23 a)

and after summing up with relation (8 c), we get: 
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(23 b)

If we started from formula (1 b) we should have also 
added in the right-hand side of relation (23 b) the 
expression (20 c), and then, the final relation would 
differ. 

 
The force expression may be written in a compact and 

general form as follows: 
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 (24 a)

or in a more compact form, as follows: 
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 (24 b)

 Finally, the component of the volume density of the 
force along the k-axis can be expressed as:  

j
kjk W

x
f

∂
∂

= , (25)

where the expression: 
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vuvukji

FG
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W uv
uvj
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ijj

k
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 (26)

represents the energy-momentum tensor, also called 
tensor of energy and quantity of motion. It is possible to 
express the last relation in other forms, taking into 
account the following relation: 
 

[ ].3,1,1;1
;,0,

00 ∈∀−==

≠∀==

jee
kseWeW

jj

sk
jkskj

s  (26 a)

 
Also, we get: 

jk
kkjjjk WeeW = . (26 b)

 
Remarks 

 1° If the media were not assumed isotropic and had 
not linear electric and magnetic polarization, the 
previous transformations of relations (17 a) and (18 b), 
respectively, would be no longer possible. 

2° Having established the expression of the tensor in 
one reference frame, we can obtain its expression in any 
other one. The calculation is to be performed by using 
the group of co-ordinate transformations, for instance 
the Lorentz transformations. We consider useful to 
make the following remark. The Lorentz transformation 
group has been established for empty space (vacuum), 
and the involved light velocity is that in vacuo. In the 
present case, we consider that polarization exists, and in 
this case, also all transformations of the quantities are 
like those established by Minkowski. But a doubt 
appears, namely if the transformations are still valid 
because in any media the velocity of light is different. 
For this reason, the Lorentz transformation group may 
be considered as an assumption that is so better the 
smaller will be the space regions filled with substance. 
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 It is to be noted that we have established a new form 
of the tensors used for defining the field state quantities, 
which facilitate the analysis. 

IV. EXPRESSION OF THE COMPONENTS OF THE 
ENERGY-MOMENTUM TENSOR  

 1° Component . Using formula (26), and after 
performing the calculation, passing from tensor 
notation to vector notation, we have got: 

0
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(27 a)

and summing up the calculated terms, we obtain: 

( ) [ ],3,1;
2
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2
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2
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0
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+−=

iHE

BHDEEDW iiiiii
 (27 b)

which represents the volume density of the 
electromagnetic energy, and  are considered as 
three-dimensional vector components.  

ii DE ,

2° Component  for both cases  and j
kW jk ≠ jk = . 

We use, as above, formula (26), and after performing 
the calculation, we shall pass from tensor notation to 
vector notation.  

In the first case, remarking that j and k are different, 
we should keep only the first term of expression (26). 
We get: 
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 (28 a)

 In the second case, for more clarity, instead of letter 
indices, we shall use number indices, considering a 
certain case, namely for 2== kj . There follows: 
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(28 c)

and, grouping the terms, we obtain: 

( ),
2
1

2222
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2 BHDE ⋅+⋅−+=−= BHDEWW (28d)

and the general form, as expected, is: 
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 The results above, expressed by relations (28 a) and 
(28 e), represent the Maxwell stress tensors. 

 3° Component . As previously, we shall use 
formula (26), and after performing the calculation, we 
pass from tensor notation to vector notation. We begin 
with one example for 

jW0

2=j , , and then express 
the general form. There follows: 

0=k
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and the general form is: 
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c
HEHE

c
WW HE ×=−==  (30)

which apart from the denominator c, represents the 
j-component of Poynting vector, i.e., the rate of the 
radiated flux of energy per unit of surface and unit of 
time. 

 4° The force along the time axis. We shall use 
formula (24 a) or (24 b), putting , and after 
performing the calculations, we shall pass from tensor 
notation to vector notation. There follows: 
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and: 
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 Considering the first and second parentheses, we 
shall get: 
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and 
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where, for , , the vector H being 
contravariant, and according to relation (6 l), 

, since . Calculating the 
first two parentheses, we get: 
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Handling similarly the next two parentheses and 

summing up all terms, there follows: 
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For the last parenthesis we shall obtain: 
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 Replacing (35) into (34), we get: 
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hence 
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 The calculation of the derivatives yields the relation: 
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where we shall replace the derivatives with respect to 
time, with the known Maxwell relations, as follows: 

( ) ( )[ ].curlcurldiv1
0 EHJHEHE ⋅−−⋅+×=

c
f (37)

 Grouping the terms, we obtain: 

( ) ( )[ ]
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divdiv1
0
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c

c
f

 (38)

which represents the component of the force along the 
time axis. The same result can be also obtained from 
formula (10) by putting . 0=k
 The set  represents a four-vector, according to 
formulae (25), and can also result from (1 a) and (38), 
indeed the product of the four force components and the 
four-vector velocity yields a scalar. 

kf

 

V. CONCLUSION 
 The aim of this paper has been to establish the 
expression of the energy-momentum tensor within the 
frame of the Theory of Relativity, starting from the 
general formula of the electromagnetic force acting on a 
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substance submitted to an electromagnetic field. The 
case of linear non-homogeneous media has been 
examined. 

This subject has not been treated in the known papers 
or works published so far. Meanwhile, the analysis 
carried out has shown that no all-general known 
formulae are in agreement with the tensor 
energy-momentum expression when passing from a 
system of reference to another one. If the media were 
not assumed as isotropic and had not linear electric and 
magnetic polarization the deduction carried out for 
obtaining the tensor would not be possible. 
 The expression of the tensor established in one 
system of reference can be obtained in any other system 
of reference owing to the group of Lorentz 
transformation and the Minkowski transformation 
formulae using this group. However, a doubt appears 
because the velocity of light in any media is different, 
and the Lorentz transformation has been established for 
this case. 

APPENDICES 

A. The Equations of the Electromagnetic Field in the 
Theory of Relativity 

 In this Appendix, we shall present the equations of 
the electromagnetic field in the Special and General 
Theory of Relativity in a form permitting to deduce the 
energy-momentum tensor. We shall begin with the 
covariant forms of the equations, so that the passage 
from Special to the General Theory of Relativity could 
be performed without difficulties. In the known 
literature, various methods are used. We shall have in 
view the works [10, 11], which present certain 
advantages for the purpose of this Appendix. 

From the formulae of the general theory of the 
electromagnetic field [16, pages 129, 134, 142, 182], in 
the usual vector form, we have: 
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 (A.1 a, …, f)

We rewrite the equations (A.1 a-f) considering the 
general case of non-homogeneous media. We have: 
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 (A.2 a)
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(A.2 b)

 
and by expanding the double curl, there follows: 
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(A.3)

By rearranging the terms, we get: 
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 Since only the curl of vector A is imposed, the 
divergence can be chosen by using the L. V. Lorenz (do 
not confuse with H. A. Lorentz) gauge condition: 
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t
VA . (A.5)

The last relation may be written in the form: 
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 (A.6 a, b, c)

 
The components along any axis of a Cartesian system 

of co-ordinates will be: 
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The relations (A.1 a, b) may be written using a set of 
four quantities  as follows: iA
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 A new, more general and convenient form may be the 
following antisymmetric form with respect to indices i 
and j: 
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(A.9 a, …, d)

Therefore: 
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 It follows that the quantities  and  can be 
expressed as follows: 

iE ijB

.]3,1[,;1;0 ∈∀== jiF
c

BFE ijijii  (A.11 a, b)

For expressing the other field state quantities, we 
shall introduce the following symbols for the case of 
empty space (vacuum): 
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(A.12 a, …, j)

 B. The Equations for Any Polarized Medium 

For a polarized medium, the substance state 
quantities of electric and magnetic polarization, 
respectively, have to be introduced by symbols P and 

. In this Sub-section, we shall consider only the 
temporary polarization. In addition, we shall indicate in 
this Section, the components of the usual 
three-dimensional vectors by index k denoting one of 
the three axes. The respective quantities, can be, in this 
case, introduced by the following relations: 

JM
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 (A.13 a, …, f)

where in relations from a to c, in the left-hand side, the 
usual vector components are written, but in the 
right-hand side the tensor components are written; 
while in relations from d to f, in both sides, only usual 
vector components are written. In this manner, the 

components of tensors may be easier expressed. It 
follows: 
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 (A.14 g, h)

where  may represent the usual vector component as 

well as the tensor component, whereas  and  
represent the tensor component, and the corresponding 
vector component, respectively. 

jE

ijB kB

This subject has been thoroughly analysed in work 
[6, p. 156, 268]. However, further on, we have used, to 
some extent, another way, in order to allow for 
including, apart from the temporary polarization, also, 
the permanent polarization. 

 C. The Maxwell Equations for Empty Space 

With the symbols introduced above, we can write the 
Maxwell equations for empty space (vacuum) as 
follows. We shall consider two groups of equations. For 
the first group, we shall use the tensor Gij, and for the 
second one, the tensor Fij. 

The equations of the first group, using the symbols of 
the List of symbols and of (A.13 a-f) are given by the 
following formula: 
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 (A.15)

The relations (A.15) yield the local (differential) form 
of the of the electric flux law (after simplifying c of the 
numerator), and of the magnetic circuital law, for each 
axis, as 0=i  or 0≠i , respectively. 

The equations of the second group are: 
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 (A.16)

The relation (A.16) yields the local (differential) form 
of the magnetic flux law (after simplifying c of the 
numerator), and of the law of electromagnetic 
induction, for each axis, as or 0,, ≠kji 0=k , 
respectively. 

We shall write an example for the first group: 
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 (A.17)

The sign minus before the first term of the last equation 
occurs because of the inversion of indices according to 
relation (A.12 f), and before the third term, also because 
of the inversion of the indices. Therefore, the equation 
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of the magnetic circuital law, for the first axis, has been 
obtained. 

We shall write an example for the second group when 
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 (A.18)

where the last equation has been obtained after having 
replaced the co-ordinate . tcx =0

Therefore, the local (differential) form of the local 
(differential) equation of the law of electromagnetic 
induction, for the first axis, has been obtained. 

 D.  The Maxwell Equations for Polarized Media 

In order to consider the equations for polarized 
media, it is necessary to introduce the polarization 
tensors of the substance. 

For the first group of equations, we shall complete the 
equations of (A.15), according to relations (A.13 a, b). 
In order to bring the equations of the first group into a 
covariant form, with respect to any change of 
co-ordinates, we shall introduce, in the equation above, 
the symbols: 
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 (A.19 a)

and 
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 In the case of an isotropic medium, we should have in 
view that the permittivity and permeability become 

 and . Then, from relations   (A.13 
a, d) and (A.19 a), it follows: 

e,e χ=χ kj m,m χ=χ kj

( ) .]3,1[,1 e0
0 ∈∀χ+ε= jEG j

j  (A.20)

 Also, we have: 

]3,1[,

;11;:
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∈∀

−⋅
µ

=−=

ji
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c
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 (A.21 a, b)

and 

.]3,1[,0;0; 000 ∈∀==ρ= jMPcJ j
v

 
(A.21 c)

In the same case, as previously for (A.20), from 
relations (A.13 b, e) and (A.21 b), there follows: 

( ) .]3,1[,,11 m0 ∈∀=χ+µ jiF
c

G ijij  (A.22)

In all definition formulae above, the terms of the form 
 from the right-hand side are those given by 

relations (6 a, d) and are written like those of the left- 
hand side, with raised indices. In the same formulae, the 
terms of the form  from the right-hand side are 
those given by relations (A.12 a, e). Consequently, 
equation (A.15) becomes: 

ijG
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j

ij
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cJjijiJ
x
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(A.23 a-d)

The equations of (A.23) correspond to equations of 
(A.15) above. 

For the second group of equations, we shall obtain 
the same relations as for non-polarized media because 
the occurring quantities are not influenced by 
considering the polarization: 

.
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x

F
j
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i
jk
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ij

≠≠

∈∀=
∂
∂

+
∂

∂
+

∂

∂
 (A.24)

The equations (A.24) correspond to equations (A.16) 
above. 

E. Establishing the Nature of the Four-Potential 
Vector 

 In many of the preceding equations, there occurred 
the four-potential vector  the nature of which should 
be known.  

iA

From the formulae of the general theory of the 
electromagnetic fields [16, pages 129, 134, 182], in the 
usual vector form, we get the formulae below, where the 
four-potential  also occurs. Firstly we shall examine 
the three-dimensional vector form: 

iA

.curl;curl ABBE =
∂
∂

−=
t

 (A.25 a, b)

 

.grad
t

V
∂
∂

−−=
AE  (A.25 c)

 
 By the nature of a geometrical object considered a 
tensor, in particular a tensor of rank 1, i.e., a vector, is 
meant its character, hence if it has to be transformed 
when passing from one system of reference to another 
as a contravariant or as a covariant one. If the 
geometrical object, which will be defined as a tensor, is 
considered separately, with no relation with other 
tensors, each of the two variants can be chosen. If it is 
considered in relation with another tensor, the nature of 
which is known, the situation is different. For example, 
it is necessary to mention that if the product of two 
tensors yields a result of a certain nature, say a scalar 
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(tensor of rank 0), the product should give the same 
result in any other system of reference. 

If the character of one tensor is established and we 
have to choose the character of a geometrical object that 
will constitute the other tensor, one can use the known 
procedures: the tensor quotient law [5], or the theorem 
of tensor classification [12]. We shall extend the last 
one, using integral operators, in order to facilitate the 
operation.  

In order to fix the ideas, we shall establish the nature 
of the set of four quantities  that may be functions of 
co-ordinates. Several explanations have been given in 
literature on this subject, some of them referring to 
formula (A.4), but without a precise conclusion [14]. 

iA

We shall make a first verification in order to examine 
the previous choice. We shall consider relation (A.1 b), 
and calculate the flux of vector B through any simply 
connected surface bounded by a closed curve Γ in a 
three-dimensional continuum. As mentioned, we shall 
use an integral form. According to Stokes theorem, we 
shall replace the calculation of the flux, of the 
right-hand side of the theorem relationship, by the 
calculation of the circulation of A along that curve, 
which will be given by the integral of the left-hand side 
of the relation. 
 We shall assume that the flux is a scalar. Then, the 
covariant vector component , multiplied with the  
circulation curve element, namely the contravariant 
component , should yield a scalar, namely , 
hence in accordance with the physical meaning of the 
considered case. Therefore, the vector of components 

 will be a covariant one. 

iA

ild i
i lA d

iA
 It is useful to add that in the calculation of the 
circulation, hence of the magnetic flux, the component 

 does not occur.  0A
 It is to be noted that the preceding explanation, 
concerning the nature of the set , although mentioned 
in literature, refers to the three-dimensional continuum 
and does not satisfy the case of four-dimensional 
continuum. 

iA

 For this reason, we consider that this analysis may be 
carried out as follows We shall refer to the Section 
(3.10) of [16], where there is examined in Galilean 
systems of reference the transition from one system of 
reference K to another system of reference K ′  in 
motion with a constant velocity v relatively to the 
former. 
 There, the known relations between the components 
used for expressing the electromagnetic field state 
quantities of these systems are given. However, using 
the tensors of the present paper, the same relations may 
be obtained, but much easier. By a direct way, like in 
[16], one can obtain the following known relations: 
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 (A.26)

The known transformation relations between the 
co-ordinates of the both systems, using symbols like 
those of the present paper, will be:  

.
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 (A.27)

 If we proceed to a scaling of the quantities , by 
replacing  by , for , and replace these 
quantities in relation (A.26), we shall obtain:  

iA

iA iAc 0≠i
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c
vAA
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c
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 (A.28)

 By comparing the two systems of relations, (A.27) 
and (A.28), it follows that the initial sets  

and  change in opposite manners. 

Therefore the set  being a contravariant four-vector, 
the set  will be a covariant four-vector. Then, the 
product of the tensor  and an element of a space 
curve will give a scalar, result which remains 
unchanged in any other system of reference. In respect 
to Linear Algebra, if the set  is a covariant 
tensor of rank 1, each set obtained from the previous 
one, by multiplying each element (component) by any 
constant factor, will also be a covariant four-vector, 
hence a tensor of rank 1. Therefore the set 

3210 ,,, AAAA
3210 ,,, xxxx

ix
iA

iA

zyx AAAV ,,,

[ ]3,0, ∈∀iAi , in any form, will be a covariant 
four-vector. 

List of Symbols 

Ai – component of the four-vector potential; 
A – electrodynamic vector potential; 
Bij – twice covariant tensor component of magnetic 

induction, yielding Bk ; 
Bk – component of the magnetic induction along axis k, 

considered as a usual three-dimensional vector; 
B – magnetic induction vector; 
c – velocity of light in empty space, supposed to be 

constant; 
Di – component of the electric displacement, considered 

as a usual three-dimensional vector; 
Di – contravariant component of the electric displacement 

yielding Dk or Di considered as a usual 
three-dimensional vector; 

D – electric displacement (electric induction) vector; 
Ei – covariant component of the electric field strength, as 

well as component of the electric field strength along 
axis i, as a usual three-dimensional vector; 
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Ei – contravariant component of the electric field 
strength; 

E – electric field strength vector; 
eii – axis coefficient, for the axis i of the Galilean 

reference frame; 
Fij – component of the covariant tensor of rank 2, yielding 

Bij for i and j non-zero; 
Fi0 – component of the previous covariant tensor, and 

yielding the component Ei of the electric field 
strength, considered as a usual three-dimensional 
vector; 

fk – four-vector component of the volume density of the  
electromagnetic force; 

Gij – contravariant tensor of rank 2, yielding Hij; 
Gi0, 
Gi0

– components of the covariant and contravariant 
tensors, and yielding the component Di; 

Hk – component of the magnetic field strength along axis 
k, considered as a usual three-dimensional vector; 

H – magnetic field strength vector; 
Ji – component of a contravariant four-vector, for i 

non-zero, density of the conduction electric current; 
J – conduction electric current density vector; 
V – electric potential; 
xi – co-ordinate along axis i; 
δij – symbol equal to unity for equal indices, and equal to 

zero for different ones (Kronecker symbol); 
ε – electric permittivity, in vacuo it is ε0; 
µ – magnetic permeability, in vacuo it is µ0; 
ρv – volume density of the free electric charge. 
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