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Electromagnetic Energy-Momentum Tensor for
Non-Homogeneous Media in the Theory of
Relativity

Andrei Nicolaide

Abstract — The tensor calculus, using certain suitable
transformations, permits to establish the expression of
the energy-momentum tensor, also called energy quantity
of motion tensor, for domains submitted to an
electromagnetic field in various cases interesting in the
Theory of Relativity, and which have not been examined
in the known works. In literature, in the works devoted to
the Theory of Relativity, this problem has been especially
treated for the vacuum medium. Here, the author
presents a new approach to the analysis of the case of
linear but non-homogeneous electrically and
magnetically polarized media. The problem of passing
from a system of reference to another one in motion, and
the selection of the volume density force formulae which
are in accordance with the Theory of Relativity are also
examined.

Index Terms — Energy-momentum tensor, Tensor
calculus, Theory of relativity.

1. INTRODUCTION

In Electrodynamics and in the Theory of Relativity,
the energy-momentum tensor has a very important role
[1-9]. Besides the widely accepted fact that this tensor
allows a compact way of writing the conservation laws
of linear momentum and energy in Electromagnetism, it
permits to calculate the energy and stress, in any
reference frame in terms of another reference frame, and
especially in terms of the reference frame in which the
substance is at rest.

The developments of the principles of the concerned
mathematical methods, started from a relatively long
time, are still examined nowadays [10-14].

Many works have been devoted to this subject.
However, in the most treated case of empty space as
well as in the case of a space filled with substance, the
transition from a reference frame to another in motion
has not been carefully analysed. In this paper, a new
approach to the analysis of the tensor will be presented
namely, the construction of the tensor, the case of
non-homogeneous electrically and magnetically
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polarized substances, and the transition from a reference
frame to another one, with the involved consideration
on the Theory of Relativity.

IL. VOLUME DENSITY OF THE ELECTROMAGNETIC
FORCE

An analysis of the electromagnetic forces in the
frame of classical theories can be found in certain works
among which [15]. In the works concerning the Theory
of Relativity the analysis of electromagnetic forces is
achieved from the Lorentz formula of the force, e.g., [5,
p. 133]. In the present paper, we shall start from the
general formula of the electromagnetic force acting on a
substance submitted to an electromagnetic field. It is
derived from the principle of conservation of energy
and the Theory of Relativity, through certain
approximations, [8, p. 157]. The reasoning has led to the
following formulae, both also deduced in various other
manners and accepted by several authors:

f=pVE—%E2gradg—%H2gradu+J><B, (1a)
and
| 1 2
f=pVE—5E grads—EH gradp+J x B
(1b)

0
—~(DxB
+at( *B)

where the symbols are the usual ones. In this case, the
quantities € and p are considered as constant, but
strongly depending on the point of the substance, hence
varying in space. We shall denote the three axes of a
Cartesian system of co-ordinates, by the indices i, j, k.
In the further analysis, we shall consider formula (1 a),
and we shall mention the modification occurring due to
the supplementary term, if using formula (1 b).
Relations (1 a) and (1 b) are considered as having, along

each axis, three and four terms (components),
respectively:
fio = (fi )y + (fi )y + (fi )y + (i), s )

where the index Kk indicates the axis. The four terms are
given by the following expressions:
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(fk)1 =pvEk; (fk)z :['J x B]k3

(fk)3 ={—%E2grads—%H2gradu} ;

K Ga,..
(fk)4:{%(DxB)} |

k

., d)

Henceforth, we shall write the expressions of the
electromagnetic field state quantities by using the
scalar and vector potentials V and A, in the well-known
form:

E__ OV _0A 0Aj oA
o T Y ax oxd (4a,b)
vi, j,ke[1,3].

The relations (4 a, b) may be written in a new form,
using the relations (A.9 a-d) and (A.10 a, b) from
Appendices, as follows:

0A oA
Fij:cj_ij_ci_Aj’
OX OX
EizFloza;’A‘?—a—A?), vi, j €[0,3];
ox' o (5 a-e)
1 0A; OA
B, =B;=—F, =—3 -
KT T o axd

Ay =-V, x =ct, Vi,jkell,3].

Further, we shall have in view the two groups (sets)
of equations of the electromagnetic field (in the order
used by H. A. Lorentz, which differs from that of J. C.
Maxwell) in a four-dimensional continuum space-time,
where the symbols are those of [10, 11]. For the sake of
facility, we shall recall these symbols, firstly in the case
of empty space (vacuum). The equations of the first
group (set) are given by the relationships:

ij )
ﬁz\]', Vi, je€[0,3], i#]; J0=va, (6)
oxJ
and
Ei = FiO; FIJ :eiieij”; FIJ =—Fji;
G =ceoF*: (6 a-f)
Gip =CeoFig: Vi, je[0,3]; ¢*= ! :
Eolo

also
Bij:lFij; Gii:L.lFU’;

c ny C

1 (6 g7)

C

Vi, j, kell, 3];

HY=G"; H,=H";

B, = By: (6 k-m)
Vi, j.ke[l,3];

where the subscript index Kk in the relations (6 j) and

(6 1) refers to the usual three-dimensional vectors,

whereas indices i and j refer, as previously, to tensor

components. All situations in which the index K has this
role will be mentioned. It is to be noted that the

components of the form F; and G" vanish.

Introducing the axis coefficients of the Galilean
reference frame, €;;, [11], we can write:

A:eliAi:eisAs§ &o =1 &i=-1, Vie[l,3];
eij:()a VIija

AR =(AF-(AF-(AF-(A).

(6 n-r)

In the case of isotropic, linear, non-homogeneous
media using relation (A.19 a) from Appendices, we may
write:

G =080(1+xe)Ej =€0&, FJ-O =gF.

(65)

Similarly, using relation (A.21 b) from Appendices,
we may write:

gio_ L lei__ 1 1l 69
moll+om) € pour €

The equations of the second group (set) are given by
the relationship:

6FE . aFj_k . aFk_i
ox«  ox'
i=j=k.

=0, Vi, j,ke[0,3],
ox! (7

In order to emphasize the tensors Fj; and Gy,
equations (3) can be written in the form below,
convenient for passing from three to four dimensions.
Relations (6), have been considered. For instance,
relation (8 c) has been written taking into account

relations (6 a) and (6 k, 1), respectively. Hence:

1 oG 1 oGY
(fk)FE' o Fro s (fk)zzg.axij ku
(fk)3=_1FUOF0uﬁ_lGquuvﬂ;
2 ox< 2 OX (8 a-d)
1 0
(fk)4zg'ﬁ(Goquu),

and also, we have:
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GOj:CSOSrFOj; GUV: 1 .lFUV;
Koty C
1 8 e-i
¢’ = 5 €= 808, H=Holy; ( )
€olo
Viell,3; uvell,3], u<v.

Summing up, side by side, relations (8 a) and (8 b),
we shall get the following more compact expression:

1 8G" 1 oGY
f Fog+—-——F
(k) ¢ ol k0+c ox) ku > ©)
Vi kel0,3], uelL3],

relation which, as mentioned, is extended for the
four-dimensional continuum since indices j and K may
take four values. Then, summing up, there follows:

1 aG”

(fi)i=—

o —Fy. vi, j, kelo,3].

(10)

III. EXPRESSION OF THE FORCE COMPONENTS AND
OF THE ENERGY-MOMENTUM TENSOR

We shall now consider the case of a linear isotropic
electric and magnetic polarization of the considered
medium, with the relative permittivity &, and the
relative permeability p,, point functions. In order to

express the force component as the derivative of an
expression, we shall write relation (10) in the form:

Gi aFk_i
ox}

b

el 0
c(fy)ip=—-Fg = (G ! Fkl)
ox} oxJ

Vi, j,k €[0,3].

(11)

Now, we shall modify the second term of the
right-hand side as follows:

il 5Fk_i _Gil aFk_i
ox! ox! (12a)
il i _git 9P _ qi 96 _ i OFik (121
oxJ ox! ox' ox'

Summing up the left-hand and the last right-hand
sides of the two expressions (12 a, b), and taking into
account (7), we get:

261 O _gi O, OFik | i OFi
ox! ox)  ox! oxk
Replacing (13) into (11), we shall obtain:
oG o 1 ij OF
C(fk)12 :WFki_aX] (G”Fkl) 2GIJW- (14)

By expanding the last term of (14), there follows:

O S e

ox oxt 2 oX

! 5 (15)
+§G“VT(chuv),Vi, j,kelo,3];u,vell,3].
Initially we shall assume index k different from zero.
Replacing the symbols of (8 e, f) into (15), after

having divided both sides with ¢, we shall get:

1 0 1 0i OF

(fk) E aT(GIJFkl)'FZS()S F JaT?(V

1 oF 1 0 (16)
+_808I’FUOWLLO+EGUVW(“GUV)7

vi, j.kel0,3]; u,vell,3]

We remark that:

| 0 0
—G"” —(uG,. )=GPI —(uG, ),
5 P (“ rs) %k (H PQ) (16 a)
vr,sell,3]; vp.gell,3], p<q.

We are now going to calculate the components of f,

which, according to the types of the included
electromagnetic field state quantities, can be of the
following types: electric, magnetic, mixed.

In order to facilitate the understanding of the formulae,
we shall successively use the tensor notation and the
vector notation. We shall use for indices numbers,
instead of letters, because it is easier to perform the
computation and to avoid the use of the summation
convention when not allowed. Then, the indices may be
subscripts. We adopt kK =3 . We shall not write the terms

of the form F, and G", being zero.

We shall express the electric component considering
expression (16). We take into account the relation:

—aFE:—i(laF2j+lF2%.

2 oy (17 a)

The electric component will be obtained from the
expanded relation (16), having in view (17 a), and that
indices U and Vv take the same values:

1 0
(fk)elec c a v(GOVFkO)

—ﬁk[lgFO”Fqu+l|:°”|:uo6—8k
o 2 2 OX

(1: a%(GOZon)
1 0

Lot L

l o
+EF uFuO

:% aﬂ(emlrm) (17b)

oe

a—k, VU,VE[I, 3],
X
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and therefore:

(fk)elec =

0 0 0
:a—xl(gElE3)+72(5E2E3)+£(8E3E3)
_li( E2)+ 2% O¢

2 0X%3 2 0%y

(17¢)

In tensor form, we have:
1.0 (GOVFkO)—l-l-i(G

Ea

k

Then, we shall express the magnetic component
considering also expression (16). We need to calculate
expressions of the form:

0 oB 1
GY —(uG =—B—, GY =G=—B.
~ LGw) B " (18 a)
By differentiating, we obtain:
9 152 zl.i(52)_ig2a_“;
ox\ u n ox n? o ox
F) ) ) (180)
2 (wG?)=26-(nG)-c2 .
é)x(H ) ax(M ) OX

Therefore, replacing in the considered term of (16)
the expression (18 b) and having in view relations (16 a)
we shall obtain for k =3:

(fk )mag :ﬁ(uGquku )+ % ’ %(HGUVGUV)

+ %(G VG, )a—i

OX

( mqu)

( GUZG3U)

ou (18 ¢)

0
P el )2

Yu,ve [1, 3], and U <V in the products of the

form G"'G, .

Rearranging the terms, there follows:

0 0
(fk)magZG—X( —(MHst)
I

X2

HH3H1)+

——[H(Hz +Hi )] % %(MH2)+%H2§7L;

0 0 0
=_1(MH3H1)+&(HH3H2)+E(P‘H3H3)
0 (18 d)
—E[H(H12+H22+H32)]
1 0 2 1 2 6}1
—-—\uH —H" ==
2% 3(“ )+2 0%,
and
0 0
f HyH, )+ —(uH,H
(i) = =, l(u )+ax2(” 3H,)
(18 ¢)
0 1 0 2 1 2 6u
—(uH;H;)——-——uH —H"—
Jrax3(Ll Ha) 2 6x3(u )+2 0X3
or in tensor form:
0
(fk)mag :aT(HGUVGkU) (189
18
1 0 1 )6u
- GUVG _GUVG
+2 aXk (“ UV)+2( ku axka
vu,vell,3], u<v.

Returning to previous letter indices, and summing
side by side relations (17 b), (18 d) or (18 e), and (8 c¢),
we shall get the sum of electric and magnetic terms:

=ai(sEkEv)—l-i(gE2)

f
( k)e‘mag X, 20X,

1 2 oe 0
g%, H, H
2 ox, axv(“ k v)

_li(uH2)+lH2a_“
2 OXy 2 0%
L2 e 1
20X 2

(19)

|-|2a_“
Xy

We shall now express the mixed components
considering the first term of expression (16) and the
expression (8 d). The mixed components are given by:

(fi )mixl =%-a%(GUOFkU)
= 1{680 (6F, J+ aio (Gzo':n)}

:l{aio( cD ch)+%(cD CBI)}

(20 a)

and
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0

"ot
5 (20 b)
- —E(D xB),, Yuell,3],
and similarly:
1 0 (~ou 0
ft) .,=———\G F,|]=—(DxB
( k )m1x2 c 6X0 ( ku) 6t( X )3 B (20 C)
vuell,3].
Returning to previous letter indices, we get:
a . .
()i =5 (D'B; ~ DB, 21)

Adding up relations (19) and (20 b), side by side, we
obtain:

a l a 5
f =——(eE E, )J—-— - —IeE
k P V(S k v) 5 an( )
0 1 o ,
HH,)————IuH
+ ox, (wHH,) 2 0%, (M ) 22)
_C%(DiBj _DjBi)’ viaj,k,VE[l,:i]‘

By summing up, side by side relations (17 b), (18 1),
(20 a), we can write:

(fi dtmag = ﬂai" (GOV Fko)—% %(G YEo )}
0

(GOVFvO)a_i““%'

and after summing up with relation (8 c), we get:

(f, )Sum = %[aiv (GOV Fk0)+ % . %(GUOFUO)}

ol o)

.a%(GVOFkV), vu,vell,3], u<v.

(23 b)

+

o |~

If we started from formula (1 b) we should have also
added in the right-hand side of relation (23 b) the
expression (20 c), and then, the final relation would
differ.

The force expression may be written in a compact and
general form as follows:

1 0 (~ii 11 0
fk:_‘_j(G”Fki)"'_'_'_k( uvFuv),
C 0x 2 ¢ 0x (24 a)
Vi, j,kel0,3], vu,vel0,3], u<v
or in a more compact form, as follows:
o=t -2 (G” Fyi +lng“VFuvj,
c ox 2 (24 b)

Vi, j,ke[0,3]; vu,vel0,3], u<v.

Finally, the component of the volume density of the
force along the k-axis can be expressed as:

0 \yi
szmwka (25)
where the expression:
i 1L il 1
W) ==IG"F; )+ 5} — —(GYF, ),
K c( kl) k' c( UV) (26)

vi, j,ke[0,3]; vu,vel0,3], u<v,

represents the energy-momentum tensor, also called
tensor of energy and quantity of motion. It is possible to
express the last relation in other forms, taking into
account the following relation:

wlek =wk e, =0, Vs=zk;

. 26
e =1 ej=-1, VjelL3]. (262)
Also, we get:
ik
ijzejjekkWJ . (26b)

Remarks

1° If the media were not assumed isotropic and had
not linear electric and magnetic polarization, the
previous transformations of relations (17 a) and (18 b),
respectively, would be no longer possible.

2° Having established the expression of the tensor in
one reference frame, we can obtain its expression in any
other one. The calculation is to be performed by using
the group of co-ordinate transformations, for instance
the Lorentz transformations. We consider useful to
make the following remark. The Lorentz transformation
group has been established for empty space (vacuum),
and the involved light velocity is that in vacuo. In the
present case, we consider that polarization exists, and in
this case, also all transformations of the quantities are
like those established by Minkowski. But a doubt
appears, namely if the transformations are still valid
because in any media the velocity of light is different.
For this reason, the Lorentz transformation group may
be considered as an assumption that is so better the
smaller will be the space regions filled with substance.
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It is to be noted that we have established a new form
of the tensors used for defining the field state quantities,
which facilitate the analysis.

IV. EXPRESSION OF THE COMPONENTS OF THE
ENERGY-MOMENTUM TENSOR

1° Component WOO. Using formula (26), and after

performing the calculation, passing from tensor
notation to vector notation, we have got:

g 1 1ol
Wy :E(G'O Foi +58860"F0Vj +588EG“"FUV

vi,u,vell,3], u<v;
1

_Gio F()i = DiEi )

c (27 a)
1 1290 1

E'ESOG VFOV Z_EEVDV’

1 1. 1

E'ESOGUVFUV :EHiBia
and summing up the calculated terms, we obtain:
W, = D;E; —%EiDi +%HiBi,

(27 b)

:%(sEz +uH2); Vie[l,i%],

which represents the volume density of the
electromagnetic energy, and E;, D; are considered as

three-dimensional vector components.

2° Component ij for both cases k= j and k= j.

We use, as above, formula (26), and after performing
the calculation, we shall pass from tensor notation to
vector notation.

In the first case, remarking that j and k are different,
we should keep only the first term of expression (26).
We get:

w,] =%G°ij0+Gij Fii
=¢&ogr Fjo Fro +GIR;
€0y Fjo Fko =E; Dy =E¢ Dy
GYF; =Hy Bj =H; By;

W) =-W¥=E;D, +H;By;
Vi, j,ke[1,3].

(28 a)

In the second case, for more clarity, instead of letter
indices, we shall use number indices, considering a
certain case, namely for j =k =2. There follows:

- (28 b)
+EE(GOV F0V+GUV FUV); VU,VE[I,3],
%(Goz F20 ‘|‘(.~'J12 F21 +G32 F23): D2 E2
+H; (- By)+(-H)B;;
11 1
E'E(GOV FOV): _E(Dl El + D2 E2 + D3 E3),
11 1
E'E(GUV FUV):E(HIBI+H282+H3 B3); (28 ¢)
vu,vell,3];
W2 :—W22

=E,D, -H;3B; -H,B, + H,B, —H,B,

_%(ElDl +E,D; + E3D;)

+%(HIBI +H,B, + H;B3);
and, grouping the terms, we obtain:
W} =-W?* =E,D, + H,B, —%(E -D+H-B),(28d)
and the general form, as expected, is:

W) =-Wl =E;D; +H ;B —1(E-D+ H -B),
2 (28¢)

vijell,3]

The results above, expressed by relations (28 a) and
(28 e), represent the Maxwell stress tensors.

3° Component Woj. As previously, we shall use

formula (26), and after performing the calculation, we
pass from tensor notation to vector notation. We begin
with one example for j=2, k=0, and then express

the general form. There follows:

1 i 1 1
1 1
:EHU(_ E1)+E(_H23)(_ E,):

| o (29)
Wg =€(E3 Hi—E H;); W =w i

:%(Ek Hi—Ein), V|,k6[1,3],

and the general form is:
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W' :WJOZE(EkHi_Ein):E(EXH)j’ (30)
which apart from the denominator C, represents the
j-component of Poynting vector, i.e., the rate of the
radiated flux of energy per unit of surface and unit of

time.

4° The force along the time axis. We shall use
formula (24 a) or (24 b), putting k=0, and after
performing the calculations, we shall pass from tensor
notation to vector notation. There follows:

1 0

e O
Vi, jel0,3], vu,vel0,3], u<v,

and:

cf, =G%(Gi°F0i)+ %(G”Fm)
+;?(GQF02)+;?(G”FM) o)
)

vielo,3], vu,ve[0,3],u<v, k=o.

Considering the first and second parentheses, we
shall get:

(33 a)
=—cee, (- Fig Fig)=E - D,
and
G Fy =G?' Fp, + G Fys
=—H"(-E,)+H* (- E;) (33 b)

1
ZE(Ez Hiy —E; H2)=(E>< H)u

where, for i=2, Gl=G?=H? , the vector H being
contravariant, and according to relation (61),

H?' =—H'2 = —H;, since H, = H? . Calculating the
first two parentheses, we get:

0
ax°

O (i )
—(G"Fy; )= ExH
axl( 0') ax( <H):

0
G"Fy ]=c——(E-D);
( OI) Caxo( )’
(330

Handling similarly the next two parentheses and
summing up all terms, there follows:

1 .. 0
fo ZEdIV(E X H)+W(E . D)

L0 (o) (34)
2 ox°
vu,vel0,3], u<v.
For the last parenthesis we shall obtain:

G"F, =G"Fy +G"Fs=-D, E, + H,B,
-D-E+H-B, (35)
vu,velo,3], u<v, r,s,qel,3], r<s.
Replacing (35) into (34), we get:

fo :ldiv(E X H)+i(E -D)

c ox° )
(35a
—l-io(E-D)+l 0 (H B)
2 ox 2 ox°
hence
1 1 0
fo=—|diviExH)+—=-—(E-D
=1 (e )2 (E D) .
119 Hw.B)
c 2 ot

The calculation of the derivatives yields the relation:

fozl div(ExH)+E- D .8
ot ot

36
. (36)
where we shall replace the derivatives with respect to
time, with the known Maxwell relations, as follows:

f, =%[div(E «H)+E -(curlH = 3) = H -curl E]. (37)

Grouping the terms, we obtain:
fo =l[div(E xH)-div(ExH)-J-E]
c
| (38)
=——J-E,
c
which represents the component of the force along the
time axis. The same result can be also obtained from
formula (10) by putting k=0.
The set f, represents a four-vector, according to

formulae (25), and can also result from (1 a) and (38),
indeed the product of the four force components and the
four-vector velocity yields a scalar.

V. CONCLUSION

The aim of this paper has been to establish the
expression of the energy-momentum tensor within the
frame of the Theory of Relativity, starting from the
general formula of the electromagnetic force acting on a
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substance submitted to an electromagnetic field. The
case of linear non-homogeneous media has been
examined.

This subject has not been treated in the known papers
or works published so far. Meanwhile, the analysis
carried out has shown that no all-general known
formulae are in agreement with the tensor
energy-momentum expression when passing from a
system of reference to another one. If the media were
not assumed as isotropic and had not linear electric and
magnetic polarization the deduction carried out for
obtaining the tensor would not be possible.

The expression of the tensor established in one
system of reference can be obtained in any other system
of reference owing to the group of Lorentz
transformation and the Minkowski transformation
formulae using this group. However, a doubt appears
because the velocity of light in any media is different,
and the Lorentz transformation has been established for
this case.

APPENDICES

A.The Equations of the Electromagnetic Field in the
Theory of Relativity

In this Appendix, we shall present the equations of
the electromagnetic field in the Special and General
Theory of Relativity in a form permitting to deduce the
energy-momentum tensor. We shall begin with the
covariant forms of the equations, so that the passage
from Special to the General Theory of Relativity could
be performed without difficulties. In the known
literature, various methods are used. We shall have in
view the works [10, 11], which present certain
advantages for the purpose of this Appendix.

From the formulac of the general theory of the
electromagnetic field [16, pages 129, 134, 142, 182], in
the usual vector form, we have:

curl E =—a—B; B =curl A;
E =—gradV —%;
ot (Ala,... 1
curlH =J +@; D=¢gyE+P;
ot
B:},loH +MOM

We rewrite the equations (A.1 a-f) considering the
general case of non-homogeneous media. We have:

oE
curl(igH +poM) = pod +ggug ry
P (A2 a)
+u05+u0curlM;

curl B =curlcurl A= pyJ

+ g0l %[— gradV — %]

ot (A2 b)

+ po(%+curlM];

and by expanding the double curl, there follows:
graddivA—V?A=p,J

{ v azA)
—golg| grad— + —— |+

ot ot? (A3)
oP
+ Uy| — +curlM |.
Mo( ot J
By rearranging the terms, we get:
o°A
2 —
VZA-gu 6t_2 =
(A.4)

oP
- J+—+curl M |+grad| div A+¢ — .
Ho( ot ] g [ oMo 8tJ

Since only the curl of vector A is imposed, the
divergence can be chosen by using the L. V. Lorenz (do
not confuse with H. A. Lorentz) gauge condition:

ov

ot

The last relation may be written in the form:
a—Aii+L2-a—VO=O; x" =ct;
oxX ¢ X

(A.6a,b,c)

> 1

c™ =
gollo

The components along any axis of a Cartesian system
of co-ordinates will be:

__ OV oA o _OAc OA
oax ot T axd axk’ (A7 a,b)
vi, j,k e[1,3].

The relations (A.1 a, b) may be written using a set of
four quantities A; as follows:

e O _OA o _OA A
ax ot T axd ax*T (A8a,b,o)
A=V, Vi, jkelL3]
A new, more general and convenient form may be the
following antisymmetric form with respect to indices i
and j:
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OA; oA
Fij =¢i J —-Ci—, :—V)
1) 1 aX| IGXJ AO (A9 d)
G =¢, Vk=0; 9a, ...,
o =1, Vk=0; Vi, jkel0,3].
Therefore:
oAy _OA |
Ei=Fo= P —Cm, Ay =-V:
L N SV (A.104,b, ¢)
1 6Xl aXJ: 5 R

It follows that the quantities E; and Bj can be

expressed as follows:

1 ..
Ei:FiO; Bi ZEFU, V|,J€[1,3]. (Alla,b)

]

For expressing the other field state quantities, we
shall introduce the following symbols for the case of
empty space (vacuum):

GOJ=C80FOJ; GiO =080Fi0;

Vi, jell,3];
o1

€oMo

Le gl 1 pi. :
Bij:EFija G —E-EF ; (A.12a,...,j)

pi = LG0 _ g 50, ;
c

D,=D¥*; HY=G"; H, =H";

Bk:B”, V|, J,k€[1,3]

B. The Equations for Any Polarized Medium

For a polarized medium, the substance state
quantities of electric and magnetic polarization,
respectively, have to be introduced by symbols P and
M, . In this Sub-section, we shall consider only the

temporary polarization. In addition, we shall indicate in
this  Section, the components of the wusual
three-dimensional vectors by index k denoting one of
the three axes. The respective quantities, can be, in this
case, introduced by the following relations:

Pc=P; M, =M"; H =HY;
My =%XmiHjs
Vi, j,k e[l,3];

Pe=20%ex Ejs (A.13a, ..., )

M;  =po My

where in relations from a to ¢, in the left-hand side, the
usual vector components are written, but in the
right-hand side the tensor components are written;
while in relations from d to f, in both sides, only usual
vector components are written. In this manner, the

components of tensors may be easier expressed. It

follows:
D'=¢,8"E, +¢ xijE-;

o Tl m (A.14 g, h)
By =Bjj =po Hy + My 5 Vi, j,ke[l,3],

where E; may represent the usual vector component as
well as the tensor component, whereas Bj and By

represent the tensor component, and the corresponding
vector component, respectively.

This subject has been thoroughly analysed in work
[6, p. 156, 268]. However, further on, we have used, to
some extent, another way, in order to allow for
including, apart from the temporary polarization, also,
the permanent polarization.

C. The Maxwell Equations for Empty Space

With the symbols introduced above, we can write the
Maxwell equations for empty space (vacuum) as
follows. We shall consider two groups of equations. For
the first group, we shall use the tensor G", and for the
second one, the tensor Fj;.

The equations of the first group, using the symbols of
the List of symbols and of (A.13 a-f) are given by the
following formula:

| .
G _3i, vi, jelo,3],
ox!
izj; J%=cp,.

The relations (A.15) yield the local (differential) form
of the of the electric flux law (after simplifying c of the
numerator), and of the magnetic circuital law, for each
axis, as i =0 or i =0, respectively.

The equations of the second group are:

oFj OFj  OF
K + i + .

OX ox'  ox!
vi, j,ke[0,3],

(A.15)

2

(A.16)

i#j=Kk.
The relation (A.16) yields the local (differential) form
of the magnetic flux law (after simplifying ¢ of the

numerator), and of the law of -electromagnetic
induction, for each axis, as i, jk#0 or k=0 ,

respectively.
We shall write an example for the first group:

oGl oG sG'! 8G"? oGP

_ = J!
i 0 1 2 3 ’
OX agx aHax aHax OX (A17)
_ 1 + 3 2 :‘]1.
ot 00X, 0X;

The sign minus before the first term of the last equation
occurs because of the inversion of indices according to
relation (A.12 f), and before the third term, also because
of the inversion of the indices. Therefore, the equation
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of the magnetic circuital law, for the first axis, has been
obtained.

We shall write an example for the second group when
i=2, j=3, k=0:

0,
ox’  ox*  ox’ ALS)
0B 0B, 0B,
ot 0X, 0X3

where the last equation has been obtained after having
replaced the co-ordinate X, =ct.

Therefore, the local (differential) form of the local
(differential) equation of the law of electromagnetic
induction, for the first axis, has been obtained.

D. The Maxwell Equations for Polarized Media

In order to consider the equations for polarized
media, it is necessary to introduce the polarization
tensors of the substance.

For the first group of equations, we shall complete the
equations of (A.15), according to relations (A.13 a, b).
In order to bring the equations of the first group into a
covariant form, with respect to any change of
co-ordinates, we shall introduce, in the equation above,

the symbols:

G =G +cPl=ce sV E; +cPJ,
_ (A.19 a)

Vjell3];

and

G'':=—cg,8"E;—cP', Vie[l,3]. (A.19b)

In the case of an isotropic medium, we should have in
view that the permittivity and permeability become
Xekj =Xe and Yy ki = Am - Then, fromrelations (A.13

a, d) and (A.19 a), it follows:

G =gy (1+7.)E;, Viell3] (A.20)
Also, we have:
il =i —mi; gi="L Lpi_yi,
Ho C (A.21 a, b)
Vi, je[l,3]
and
%=cp,; P’=0; MY =0, Vje[1,3] (A210)

In the same case, as previously for (A.20), from
relations (A.13 b, ¢) and (A.21 b), there follows:

o 1+ 7,)8% =T FY. Vi jef13), (A22)

In all definition formulae above, the terms of the form

G from the right-hand side are those given by
relations (6 a, d) and are written like those of the left-
hand side, with raised indices. In the same formulae, the

terms of the form G from the right-hand side are
those given by relations (A.12 a, e). Consequently,
equation (A.15) becomes:

ij .

E:J', Vi, j€[0,3], i#]; J0=va;
J

OoX (A.23 a-d)
P’=0; MY =0.

The equations of (A.23) correspond to equations of
(A.15) above.

For the second group of equations, we shall obtain
the same relations as for non-polarized media because

the occurring quantities are not influenced by
considering the polarization:
oF; OF, .
U R o, i jefo,3),
ox* ox'  ox! (A.24)
i=j=k.

The equations (A.24) correspond to equations (A.16)
above.

E. Establishing the Nature of the Four-Potential
Vector

In many of the preceding equations, there occurred
the four-potential vector A the nature of which should
be known.

From the formulae of the general theory of the
electromagnetic fields [16, pages 129, 134, 182], in the
usual vector form, we get the formulae below, where the
four-potential A also occurs. Firstly we shall examine

the three-dimensional vector form:
0B

curlE=——; B=curlA. (A25a,b)
oA
E =—gradV S (A25¢)

By the nature of a geometrical object considered a
tensor, in particular a tensor of rank 1, i.e., a vector, is
meant its character, hence if it has to be transformed
when passing from one system of reference to another
as a contravariant or as a covariant one. If the
geometrical object, which will be defined as a tensor, is
considered separately, with no relation with other
tensors, each of the two variants can be chosen. If it is
considered in relation with another tensor, the nature of
which is known, the situation is different. For example,
it is necessary to mention that if the product of two
tensors yields a result of a certain nature, say a scalar
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(tensor of rank 0), the product should give the same
result in any other system of reference.

If the character of one tensor is established and we
have to choose the character of a geometrical object that
will constitute the other tensor, one can use the known
procedures: the tensor quotient law [5], or the theorem
of tensor classification [12]. We shall extend the last
one, using integral operators, in order to facilitate the
operation.

In order to fix the ideas, we shall establish the nature
of the set of four quantities A; that may be functions of

co-ordinates. Several explanations have been given in
literature on this subject, some of them referring to
formula (A.4), but without a precise conclusion [14].

We shall make a first verification in order to examine
the previous choice. We shall consider relation (A.1 b),
and calculate the flux of vector B through any simply
connected surface bounded by a closed curve I' in a
three-dimensional continuum. As mentioned, we shall
use an integral form. According to Stokes theorem, we
shall replace the calculation of the flux, of the
right-hand side of the theorem relationship, by the
calculation of the circulation of A along that curve,
which will be given by the integral of the left-hand side
of the relation.

We shall assume that the flux is a scalar. Then, the
covariant vector component A;, multiplied with the

circulation curve element, namely the contravariant

component dl', should yield a scalar, namely A dr ,

hence in accordance with the physical meaning of the
considered case. Therefore, the vector of components
A; will be a covariant one.

It is useful to add that in the calculation of the
circulation, hence of the magnetic flux, the component
A, does not occur.

It is to be noted that the preceding explanation,
concerning the nature of the set A, , although mentioned

in literature, refers to the three-dimensional continuum
and does not satisfy the case of four-dimensional
continuum.

For this reason, we consider that this analysis may be
carried out as follows We shall refer to the Section
(3.10) of [16], where there is examined in Galilean
systems of reference the transition from one system of
reference K to another system of reference K' in
motion with a constant velocity Vv relatively to the
former.

There, the known relations between the components
used for expressing the electromagnetic field state
quantities of these systems are given. However, using
the tensors of the present paper, the same relations may
be obtained, but much easier. By a direct way, like in
[16], one can obtain the following known relations:

A, =OL[AX _Clzvj; A=A A=A,

V'=alV -vA,)
The known transformation relations between the

co-ordinates of the both systems, using symbols like
those of the present paper, will be:

\'
Xrl =OL(X1 __XOJ; Xr2 =X2; Xr3 — X3;

(A.26)

c

v
X0 =al X" —=x'|.
c

If we proceed to a scaling of the quantities A;, by

(A.27)

replacing A, by cA, for i#0, and replace these
quantities in relation (A.26), we shall obtain:

A =oc(A1 +%A0), A=A A=A
; (A.28)
Ay =0‘(Ao +EA1J-

By comparing the two systems of relations, (A.27)
and (A.28), it follows that the initial sets Ay, A, Ay, A

and x°, x!, x2, %3 change in opposite manners.

Therefore the set X' being a contravariant four-vector,
the set A; will be a covariant four-vector. Then, the
product of the tensor A; and an element of a space
curve will give a scalar, result which remains
unchanged in any other system of reference. In respect
to Linear Algebra, if the set V, A, Ay, A, isacovariant

tensor of rank 1, each set obtained from the previous
one, by multiplying each element (component) by any
constant factor, will also be a covariant four-vector,
hence a tensor of rank 1. Therefore the set
Ai,Vie[O, 3] , in any form, will be a covariant
four-vector.

List of Symbols

A — component of the four-vector potential;

A — electrodynamic vector potential;

Bij — twice covariant tensor component of magnetic
induction, yielding By

By — component of the magnetic induction along axis K,
considered as a usual three-dimensional vector;

B — magnetic induction vector;

c — velocity of light in empty space, supposed to be
constant;

D; — component of the electric displacement, considered

) as a usual three-dimensional vector;

D' — contravariant component of the electric displacement
yielding Dy or D; considered as a usual
three-dimensional vector;

D — electric displacement (electric induction) vector;

E; — covariant component of the electric field strength, as

well as component of the electric field strength along
axis I, as a usual three-dimensional vector;
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— contravariant

component of the electric field

strength;

— electric field strength vector;
— axis coefficient, for the axis i of the Galilean

reference frame;

— component of the covariant tensor of rank 2, yielding

Bjj for i and j non-zero;

— component of the previous covariant tensor, and

yielding the component E; of the electric field
strength, considered as a usual three-dimensional
vector;

— four-vector component of the volume density of the

electromagnetic force;

— contravariant tensor of rank 2, yielding HY;
— components of the covariant and contravariant

tensors, and yielding the component D;

— component of the magnetic field strength along axis

K, considered as a usual three-dimensional vector;

— magnetic field strength vector;
— component of a contravariant four-vector, for i

non-zero, density of the conduction electric current;

— conduction electric current density vector;

— electric potential;

— co-ordinate along axis i;

— symbol equal to unity for equal indices, and equal to

zero for different ones (Kronecker symbol);

— electric permittivity, in vacuo it is g;
— magnetic permeability, in vacuo it is p;
— volume density of the free electric charge.
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