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Abstract—Evolutionary algorithms based on stochastic pro-

gramming are proposed for learning of the optimum bid in auction

markets. Sellers and buyers are attempting to learn their optimum

bids that maximize their individual utility functions in the next

round of the game. Examples of a second-price sealed-bid auction,

and double auction markets, with random and merit-based match-

ing processes are considered and good performance of this type of

algorithms is confirmed by extensive simulations. The proposed

algorithms need no assumptions about the stationary behavior of

players, contrary to the needs of competitive algorithms in the class

of fictitious play.

Keywords: Auction market, Learning in games, Optimum bid,

Stochastic programming, Matching process.

1 Introduction

Auctions are the basic framework of exchange in many markets

and can be analyzed by game theoretical methods. In any game

players attempt to maximize their individual utility functions. If

the game is repetitive the players can use the past experience to

learn to play better in the future.

Learning in games and particularly auctions has been studied

extensively; see for example [5][7][16][15][9] , as it permits to

improve the strategies of the players in the future based on the

observation of the past actions. Diverse information patterns can

be considered in this context by which an agent can have partial

or complete access to the history of the actions and results of

other players.

It is then of primary interest to determine whether the repeated

game can converge to some kind of equilibrium. Learning and

convergence are particularly difficult when utility functions ex-

hibit discontinuities as is the case of utility functions used in

auction markets. The references [12][3] provide a discussion of

the existence of equilibria in discontinuous games while refer-

ences [8][4] give conditions of existence of equilibria in auction

markets specifically.

This paper considers different examples of auction markets and

∗S. Tabnadeh is with the Center for Intelligent Machines, McGill University,

Montreal, Qc (email: shahram.tabandeh@mail.mcgill.ca).
†H. Michalska is with the Department of Electrical and Computer Engineer-

ing, McGill University, Montreal, Qc (email: hannah.michalska@mcgill.ca).

develops algorithms for iterative stochastically-based learning

of their equilibria. The first algorithm is designed to implement

learning of the optimum bid in a second-price sealed-bid auction

where the valuation of buyers of the same object is unknown to

other buyers. The second algorithm is suited for double auc-

tion markets with separate populations of buyers and sellers

who attempt to optimize their individual utility functions dur-

ing the game. In this algorithm buyers and sellers meet each

other randomly. The third algorithm is also designed for learn-

ing in double auction markets, but buyers and sellers meet each

other based on their merits.

All types of auctions presented in this paper are used widely

in practice, NYSE and AMEX as examples, where double auc-

tioning rather than the second price auctioning is employed to

trade.

Evolutionary algorithms have long been used for learning in

games, see e.g. [1][2] which discusses convergence of a genetic

algorithm proposed for learning of the equilibrium in a double

auction market.

Other approaches to solve the same kind of problem include fic-

titious play, see [13]. In a fictitious play, the players optimize

their actions based on the empirical statistics estimated from the

historical actions of their opponents, stationary behavior of op-

ponents is assumed. In partial best response dynamic methods,

only some players change their strategies to best reply to previ-

ous state of the game, [16]. In other methods, called replicator

dynamic, the number of players using the same strategy grows

proportionally to the success of that strategy [16].

Random search algorithms, [10][6], are preferred stochastic pro-

gramming techniques in search of solutions to global or non-

smooth optimization problems. This also motivates their use as

a tool for computation of equilibria in discontinuous games such

as auction markets considered here.

The algorithm presented here can be adapted and extended to

apply to other kinds of auctions and can, for example, prove

useful to find equilibria of auctions in electricity markets as dis-

cussed in many recent papers, see e.g. [11][14].

The paper is organized as follows. Section II delivers the prob-

lem statement. Section III introduces examples of auction mar-

kets and presents the algorithm for evolutionary computation of

their equilibria. Section IV, delivers conclusions and future re-
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search directions.

2 Problem Statement

The algorithms presented below are designed to find optimum

bids for different auction markets hence the problem statement

is presented in the following general form. The assumption is

that there are n buyers and n sellers in a market. Every buyer

or seller employs his own utility function. When seller j meets

buyer i their utility functions are denoted by: ubi(pbi, psj) :
Ab ×As → ℜ and usj(pbi, psj) : Ab ×As → ℜ. Here, pbi and

psj are the bid and ask prices of buyer i and seller j, respectively,

Ab is the feasible set of prices bid by the buyers, and As is the

feasible set of prices asked by the sellers.

The utility function for buyer i as she meets with several random

sellers is further defined as the expected value:

Ubi(pbi, Ps, f
s) = Esj(ubi(pbi, psj)|pbi) (1)

where the Ps is the set of feasible prices offered by the sellers

and fs is the probability distribution function of these prices.

Similarly, the utility function for seller j as she meets with sev-

eral random buyers is:

Usj(psj , Pb, f
b) = Ebi(usj(pbi, psj)|psj) (2)

where the Pb is the set of feasible prices offered by the buyers

and f b is their probability distribution function.

The following definitions are essential for further developments

in this paper.

Definition 1 [1] (Nash Equilibrium in an auction game) The

set, {Pb, Ps, f
b, fs} , where Pb and Ps are sets of all prices

bid by the buyers and asked by the sellers, respectively, and f b

and fs are probability distribution functions over Pb and Ps,

respectively, is called a Nash equilibrium of the game if and

only if:

Ubi(pbi, Ps, f
s) ≥ Ubi(p

′

bi, Ps, f
s) ∀i, p′bi ∈ [0, 1] (3)

and

Usj(psj , Pb, f
b) ≥ Usj(p

′

sj , Pb, f
b) ∀j, p′si ∈ [0, 1] (4)

Definition 2 (Evolution) Evolution is the process by which the

values of the buyers’ bids pbi(k) and the sellers’ asks psj(k),
i, j = 1, ..., n in round k are updated to their new values in

round k + 1. The evolution process is hence thought to be rep-

resented by two mappings

Eb : pbi(k) 7→ pbi(k + 1) and Es : psi(k) 7→ psi(k + 1) ∀i, j

3 Stochastic Learning in Auction Mar-

kets

Two new algorithms implementing evolutionary learning of the

optimum bid and ask prices for different types of auctions are

presented below. Convergence properties of the novel random

algorithms are studied by simulations. The case of a second-

price sealed-bid auction market is discussed first. This is fol-

lowed by three other examples of double auction markets. Ex-

tensive simulation results demonstrate the efficiency of the de-

signed algorithms and deliver statistics for convergence to the

market equilibria when stochastic learning is applied.

3.1 Second-Price Sealed-Bid Auction Market

A second-price sealed bid auction is considered in which differ-

ent buyers bid to buy the same object. This object is assumed

to have value vi for buyer i. The valuations of objects are con-

sidered private , more precisely, any given buyer does not know

the value that the other buyers are attributing to the object which

she wants to buy.

The highest bidder gains the object and pays as much as the

second highest bid, while anyone else pays as much as she has

bid.The following notation is adopted :

– n, the cardinality of the populations of buyers.

– k, the index of the current round of the game, (k ∈ Z.)
– vi ∈ [0, 1], the value of the product for buyer i.
– pbi(k) ∈ [0, vi], the maximal price at which buyer i is willing

to buy in round k.

– σ > 0, the variance of the random generator function.

– NT (µ, σ), the normal distribution with mean µ and variance

σ.

– loop, maximum number of rounds in the game.

– mcount, counter of the round in the game.

– ch, the index of the buyer who is allowed to change his bid.

– bnew, candidate for a mutated bid price.

– ubch(bnew; k), the value of the utility function for buyer ch
when bidding price bnew in round k of the game.

The algorithm is stated first and is followed by a discussion of

its steps. The buyers are allowed to change their bids during the

game as they see fit. No more than a single buyer is allowed to

mutate his bidding price in any round of the game which places

the learning methodology employed in the category of ”learn-

ing by partial best response”. The buyers are taking turns in

changing their bids.
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Algorithm 1 The Stochastic Optimizer Algorithm For Second-

Price Sealed-Bid Auction Market.

Step 0: Set the counter for the round of the game k = 0. Set

n - the number of buyers and loop - the maximal number of

rounds in the game. Set the initial value for the bid randomizer

σ > 0. For i = {1, ..., n} draw samples of initial values of the

bid prices from uniform distributions over the interval [0, vi],
i.e. pbi(0) ∼ U(0, vi).

Step 1: For i = {1, ..., n} calculate utility functions

ubi(pbi(k); k).

Step 2: For buyer whose index is calculated as ch =
remainder(mcount/n)+1 calculated the candidate for a mu-

tated bid price as:

bnew ∼ NT (pbch(k), σ).

Step 3: Update the bid price pbch(k) = bnew if

ubch(bnew; k) > ubch(pbi(k); k).

Step 4: Update the counter of rounds mcount = mcount+ 1,

and go to Step 1 if mcount ≤ loop .

In Step 0 of the above algorithm, parameters of the algorithm

are initialized, and the bids of the n buyers are drawn from

uniform random distributions. In Step 1 the values of the

utility functions for all buyers are calculated for the current

bid prices. The index ch of Step 2 changes in a manner that

allows the buyers to take turns in mutating their bidding prices

in accordance with their proper utility function values. The

fact that the buyers are allowed to change their prices one

by one does not diminish the applicability of the algorithm

in practical situations as one can assume that the real-time

execution times of Steps 2 and 3 are negligible as compared to

real time bidding process in the marketplace. The inequality of

Step 3 implies that the bidding prices in the market will move

towards achieving best utility values for all buyers.

To test the algorithm, an example with 5 buyers is considered.

Values of the common object of interest for these 5 buyers are

drawn from a uniform random distribution U [0, 1]. Figures 1

and 2 show how the bid prices and utility function values evolve

when the private values of the desired object for the 5 players

were randomly set to: 0.8785, 0.7110, 0.6611, 0.4396, 0.5628.

Note that these happen to be set in favor of the first buyer who,

in fact, gains possession of the object as his utility function

approaches its valuation. During the evolution of the market,

the values of the utility functions for the remaining players

approach zero as they do not gain the object of bid.

The utility functions for the buyers in the game are assumed to

be given by:
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Figure 1: Evolution of the bids.
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Figure 2: Evolution of the utility functions

ubi(pbi(k); k) =

{ 1
N(k) (vi − p′b(k)) if pbi(k) = pb(k)

−pbi(k) otherwise
(5)

where pb(k) is the highest bid, N(k) is the number of buyers

that bid the highest bid, and p′b(k) is the second highest bid, all

in round k.

The other parameters in the algorithm were set to loop = 300
and σ = 0.5.

Figures 3 and 4 show the statistics of convergence when the val-

ues of the object for the five players are always the same and

are equal to 0.8785, 0.7110, 0.6611, 0.4396, 0.5628. The his-
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Figure 3: Empirical frequencies of convergence to different bids

for the fist player (the buyer who gains the object of the auction).

togram presented shows that different bid price equilibria can be

achieved in the market depending on the particular course of the

stochastic evolution of the game. As follows from the formula

for the utility functions, all these prices are part of Nash equi-

libria when the remaining buyers bid zero. Figure 4 shows that

perfect learning is not achieved as the sum of the absolute values

of the utility functions for the non-winning buyers is non-zero

in the region [0, 0.04].

3.2 Double Auction Market

A double auction market is considered in which the number of

buyers and sellers is the same and is equal to n > 0. It is further

assumed that there is only one kind of good to trade and that

in any round of the game a seller has a single unit of good to

sell and a buyer can buy up to one unit of good. In any round

of the game any buyer will be matched with a random seller.

A transaction will take place, benefiting both the buyer and the

seller, only if the price bid by the buyer exceeds the price asked

by the seller.

If c ∈ [0, 1] is the cost of the production and v ∈ [0, 1] represents

the value of good for the buyers, and under the assumption that

a buyer and a seller will benefit from their transaction equiva-

lently, the utility functions, ubi and usj , of buyer i and the seller

j in a single round of the game can be given by the formulae

below [1], [2]:

ubi(bi, sj) =

{

v −
pbi+psj

2 if pbi ∈ [psj , v]
0 otherwise

(6)
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Figure 4: Empirical frequencies of the sums of absolute values

of utility functions for the non-winning buyers (i=2,3,4) as an

estimator of the error in reaching the equilibrium of the market

(error reflecting inadequate learning in the game).

usj(bi, sj) =

{

pbi+psj

2 − c if psj ∈ [c, pbi]
0 otherwise

(7)

in which pbi and psj denote the prices of buyer i and seller j,
respectively.

Another example of a double auction market will be also con-

sidered that is created by adopting a different set of utility func-

tions:

ubi(bi, sj) =

{

v − (
pbi+psj

2 )2 if pbi ∈ [psj , v]
0 otherwise

(8)

usj(bi, sj) =

{

(
pbi+psj

2 )2 − c if psj ∈ [c, pbi]
0 otherwise

(9)

Proposition 1 [1] A double auction game with employing any

of the two sets of utility functions as above, with populations

of buyers and sellers of equal cardinalities, is in equilibrium

if all the players are bidding and offering the same price, i.e.

pbi = psj = ψ ∈ [c, v] for all i, j ∈ {1, ..., n}.

Justification :

Assume that all the players are biding/offering ψ ∈ [c, v] i.e.

pbi = psj = ψ, ∀i, j. If bidder i decides to bid higher, pbi > ψ,

it is obvious that the utility function will decrease for that player.

If the same bidder decides to bid lower, her utility function will

be zero. A similar reasoning can be applied to a seller, implying

that the market is in Nash equilibrium.
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Algorithm Proposed For Double Auction Markets

The evolutionary iterative algorithm for learning in double auc-

tion markets developed here belongs to the general class of ran-

dom search algorithms. The underlying idea of the algorithm is

that buyers and sellers try to follow the most successful buyer

or seller known to them from the previous iteration of the algo-

rithm. This algorithm can hence be considered to belong to the

class of algorithm of guided learning.

The following notation is adopted :

– n, the cardinality of the populations of buyers and sellers.

– k, the index of the current round of the game, (k ∈ Z.)
– pbi(k) ∈ [c, v], the maximal price at which buyer i is willing

to buy in round k.

– psj(k) ∈ [c, v], the minimal price at which seller j is willing

to sell in round k.

– c ∈ [0, 1], the cost of production for sellers.

– v ∈ [0, 1], the value of the product for buyers.

– p̄b(k) ∈ [c, v], the average of the buyers’ bid prices in round

k.

– p̄s(k) ∈ [c, v], the average of the sellers ask prices in round k.

– m, the number of buyers (or sellers) that any seller ( or buyer)

meets in any round of the game.

– α > 1, a shrinking factor for the variance of the randomizer

function used in the generation of the bid and offer prices.

– σk > 0, the variance of the random generator function in

round k of the game.

– µbk ∈ [c, v] and µsk ∈ [c, v], the means for the random

generator functions for buyers and sellers, respectively.

– NT (µ, σ), the normal distribution with mean µ and variance

σ truncated to the interval [c, v], i.e. if p ∼ N(µ, σ), the normal

distribution, and p /∈ [c, v] then p is reset to c or v depending on

whether the initial sample satisfies p < c or else p > v.

– mcount, a counter by which a buyer meets exactly m sellers.

– u′bi(pbi, psj), variable that is used to show the value of the

utility function for buyer i as she meets seller j.
– u′sj(pbi, psj), variable that is used to show the value of the

utility function for seller j as she meets buyer i.
– usumbi, variable that is used in averaging the utilities of

buyers.

– usumsj , variable that is used in averaging the utilities of

sellers.

– csj , the counter of the number of times that seller j has a

chance to participate in a transaction.

– ǫ ∈ (0, 1), algorithm termination threshold.

– i∗ and j∗, the indices of the buyer and seller, respectively,

who achieve the highest utility values in the current round of

the game.

Before stating the steps of the algorithm it is helpful to explain

the meaning behind them. The values of the algorithm parame-

ters and the initial values of the buyers’ and sellers’ prices are

selected in Steps 0 and 1. The latter are variables that are used

in averaging the utility of every buyer and seller that participate

in the market. Steps 3 - 6 constitute a loop in which each buyer

meets m sellers in the current round of the algorithm. As a

result of the meeting between buyer i and seller j, both of

them claim utility values u′bi(pbi, psj), and u′sj(pbi, psj), that

add up to: usumbi and usumsj , respectively. The counter csj

is upgraded to serve the averaging of utility values for every

seller in Step 7. Buyers do not need a similar counter as there

is always m values to average over for each buyer. Step 8,

commences by determining the indices i∗ and j∗ of the buyer

and seller, respectively, who achieve the highest utility values

in the current round of the game. The prices of this buyer and

seller are then selected as the averages µbk and µsk for the

randomizer normal distribution employed to generate the prices

for buyers and sellers in the next round of the game.

The variances of both probability distributions are shrunk by a

factor 1/α for the next round of the game. The variances of the

randomizing distributions are decreasing as players learn about

the market whose behavior is tightly related to the ensemble of

their utility functions. The algorithm is exited if the prices of the

buyers and sellers are sufficiently close to each other (close to

the equilibrium of the game). Clearly, the information structure

in this game is as follows: the players know their own utility

functions, their own price and the current price of their oppo-

nents in the market game.

Algorithm 2 The Stochastic Optimizer Algorithm For Double

Auction Market.

Step 0: Set the initial values of m, c, v, α > 1, and k = 0.

Set initial values for σ0 > 0, µb0 ∈ [c, v] and µs0 ∈ [c, v]
. For i, j = {0, ..., n} draw samples of initial values of the ask

and bid prices from uniform distributions over the interval [c, v],
i.e.pbi(0) ∼ U(c, v) and psj(0) ∼ U(c, v).

Step 1: For i, j = {1, ..., n} set usumbi = 0, usumsj=0 = 0,

and csj = 0 (parameters needed for averaging of utility values

for all players).

Step 2: Set i = 1, indicating that the utility function is averaged

for buyer i. Set mcount = 0.

Step 3: Draw an integer j∗ ∈ {1, 2, ..., n} from a uniform dis-

tribution (i.e. Pr(j∗) = 1/n) without repetitions in round k.

Update the counter of the number of times that seller j partici-

pates in asking against all buyers: csj = csj + 1 .

Step 4: Calculate u′b(i, j) and u′s(i, j) - the utility values for

buyer i and seller j as they meet. Update the total sums:

usumbi = usumbi + u′bi(pbi, psj) and usumsj = usumsj +
u′sj(pbi, psj).
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Step 5: Increment countermcount = mcount+1. If mcount < m,

go to Step 3.

Step 6: i = i+ 1, go to Step 3 if i < n+ 1 .

Step 7: For i, j = {1, ..., n}, set ubi = usumbi/m, and usj =
usumsj/csj , the average utilities of buyers and sellers.

Step 8: Update the price generator densities for the buyers and

the sellers, as follows. First determine the indices i∗ and j∗ of

the buyer and seller, respectively, who achieve the highest utility

values in the current round of the game. Then set : µbk = pbi∗ ,

and µsk = psj∗ .

Step 9: Evolve the price of each buyer and seller according to

pbi(k + 1) ∼ NT (µbk, σk), psj(k + 1) ∼ NT (µsk, σk); i, j ∈
{1, ..., n}.

Step 10: Contract the variance of the averages of the price gen-

erator densities for the buyers and the sellers: σk+1 = σk/α.

Step 11: Verify the algorithm’s stopping condition. If |p̄b(k) −
p̄s(k)| > ǫ, then set k = k + 1, and go to Step 1, else exit the

algorithm.

The evolution of the ask and bid prices of the players in the

market during the first few rounds of the game are shown in fig-

ures 5, 6, and 7. It can be seen that the prices of both buyers

and sellers are concentrating in the neighborhoods of their corre-

sponding best bid or ask prices. In all these tests the parameters

of the algorithm are set to n = 100, α = 1.1, σ0 = 0.3, c = 0,

v = 1.
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Figure 5: Diagram of prices, Step 0

The curves in Figures 8 to 11 represent the evolution of the av-

erage prices of the population of buyers and sellers during the

game using the utility functions 6 to 9, respectively. It is seen

that convergence to a Nash equilibrium of the game is achieved
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Figure 6: Diagram of prices, Step 1
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Figure 7: Diagram of prices, Step 2

in each case. In figures 9, 10, 12, and 13, statistics of con-

vergence are shown for the algorithm that terminates after 100

rounds of the auction game. It is seen that the spread between

the average bid and ask prices pb−ps is marginally small which

essentially demonstrates convergence to a single market price.

3.3 Merit Based Matching

In real auction markets the buyers and sellers do not meet ran-

domly, but the system selects the partners by their merits. An

example of such a double auction market is considered by adopt-

ing a different set of utility functions:

ubi(bi, sj) =

{

v − pbi if pbi ∈ [psj , v]
0 otherwise

(10)

usj(bi, sj) =

{

psj − c if psj ∈ [c, pbi]
0 otherwise

(11)

The main idea here is that a buyer who bids a higher price re-

IAENG International Journal of Applied Mathematics, 39:4, IJAM_39_4_11
______________________________________________________________________________________

(Advance online publication: 12 November 2009)



0 10 20 30 40 50 60 70 80 90 100
0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

Iteration

P
ri
c
e

 

 

average price buyers

average price sellers

Figure 8: Convergence of the proposed algorithm, while using

the utility functions of formulas ( 6) and ( 7).
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Figure 9: Empirical frequencies of convergence to different

market equilibria, while using the utility functions of formulas

( 6) and ( 7).
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Figure 10: Empirical frequencies for the spread between the av-

erage bid and ask prices pb−ps, while using the utility functions

of formulas ( 6) and ( 7).
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Figure 11: Convergence of the proposed algorithm, while using

the utility functions of formulas ( 8) and ( 9).
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Figure 12: Empirical frequencies of convergence to different

market equilibria, while using the utility functions of formulas

( 8) and ( 9)
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Figure 13: Empirical frequencies for the spread between the av-

erage bid and ask prices pb−ps, while using the utility functions

of formulas ( 8) and ( 9)

ceives more merit points for transaction than a buyer who bids a

lower price. Similarly, a seller who asks a lower price receives

more merit points than the one who asks a higher price. The

buyers and sellers are then matched according to their respec-

tive ranks of merit. Algorithm 3 is designed for learning in such

a market. Unless otherwise stated, notation and definitions are

the same as those used in Algorithm 2.

Algorithm 3 The Stochastic Optimizer Algorithm for Double

Auction Market with Merit Based Matching.

Step 0: Set the initial values of c, v, α > 1, and k = 0. Set

initial values for σ0 > 0, µb0 ∈ [c, v] and µs0 ∈ [c, v] . For

i, j = {1, ..., n} draw samples of initial values of the ask and

bid prices from uniform distributions over the interval [c, v],
i.e.pbi(0) ∼ U(c, v) and psj(0) ∼ U(c, v).

Step 1: Set i = 1, indicating that the utility function is calcu-

lated for buyer i.

Step 2: Calculate r, the merit rank of buyer i in the population

of all buyers (buyer with the highest bid has rank 1). Find j, the

seller that has rank r in the population of all sellers (seller with

the lowest ask has rank 1).

Step 3: Use utility functions of formulae 10, 11 to calculate ubi,

and usj , utility function values for the buyer and the seller in

Step 2.

Step 4: i = i+ 1, go to Step 2 if i < n+ 1 .

Step 5: Update the price generator densities for the buyers and

the sellers, as follows. First determine the indices i∗ and j∗ of

the buyer and seller, respectively, who achieve the highest utility

function values in the current round of the game. Then set :

µbk = pbi∗ , and µsk = psj∗ .

Step 6: Evolve the price of each buyer and seller according to

pbi(k + 1) ∼ NT (µbk, σk), psj(k + 1) ∼ NT (µsk, σk); i, j ∈
{1, ..., n}.

Step 7: Contract the variance of the averages of the price gen-

erator densities for the buyers and the sellers: σk+1 = σk/α.

Step 8: Verify the algorithm’s stopping condition. If |p̄b(k) −
p̄s(k)| > ǫ, then set k = k + 1, and go to Step 1, else exit the

algorithm.

Figure 14 presents the evolution of the average prices of the pop-

ulations of buyers and sellers to a Nash equilibrium of the game.

All parameters of the algorithm are the same as those used to test
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Figure 14: Convergence of the proposed algorithm, while using

the utility functions of formulas ( 10) and ( 11)

Algorithm 2 in Subsection B. In figures 15, and 16 statistics of

convergence are shown for the algorithm that terminates after

100 rounds of the auction game. It is seen that the spread be-

tween the average bid and ask prices pb−ps is marginally small

which essentially demonstrates convergence to a single market

price.

4 Conclusions

Stochastic programming evolutionary algorithms are proposed

in this paper and are applied to different cases of auctions such

as a second-price sealed-bid auction and double auction mar-

kets. These algorithms do not require any a priori assumptions

about the stationary behavior of bidders or sellers to be made.

Also, no specific assumptions are made about the probability

distribution functions as believed price behavior of the players.

The utility functions are allowed to be discontinuous as is the

usual case in real life auction markets. Thus, the presented

algorithms are considered to compare favorably against the

competitive classes of algorithms employed for learning in

market games such as the ”fictitious play” algorithms (which

make assumptions about the stationary behavior of the players)

and the ”gradient play” algorithms (which cannot handle

discontinuous utility functions).

Numerous simulations confirm that the new algorithms con-

verge to equilibria of the market.

In the last part of this paper, a more realistic matching process is

considered in the auctioning mechanism as the merit of buyers

and sellers plays a central role in the matching process.
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Figure 15: Empirical frequencies for the spread between the av-

erage bid and ask prices pb−ps, while using the utility functions

of formulas( 10) and ( 11)
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Figure 16: Empirical frequencies of convergence to different

market equilibria, while using the utility functions of formulas

( 10) and ( 11)
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The novel algorithms can be applied to other cases of auctions

and discontinuous games. Further research should address the

dependence of the values of the equilibria on initial market con-

ditions and parameters of the algorithms.
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