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Abstract—In this paper, we present a simple and
fast method for counting the number of nonnegative
integer solutions to the equality a1x1+a2x2+. . .+arxr =
n where a1, a2, ..., ar and n are positive integers. As an
application, we use the method for finding the number
of solutions of a Diophantine inequality.
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1 Introduction

Counting techniques play an important role in comput-
ing probabilities in random experiments of throwing dice,
or classical occupancy problems. As a result, they have
come to form a major part of the mathematics curriculum
in many statistical publications. First we will consider
some important applications of counting techniques.

Ross [3] showed that the number of ways for placing n
identical objects into the r distinct cells is equivalent to
the number of nonnegative integer solutions to the equa-
tion

x1 + x2 + . . . + xr = n (with xi ≥ 0, i = 1, . . . , r). (1)

He also showed that the number of positive integers solu-
tions of (1) is

(
n−1
r−1

)
. The number of nonnegative integer

solutions of (1), subject to the constraint xi ≥ bi for
i = 1, . . . , r is

(
n+r−(b1+b2+...+br)−1

r−1

)
. Letting xi = yi + bi

for each i yields the equation

y1 + . . . + yr = n− (b1 + b2 + . . . + br), (2)

to be solved in nonnegative integers. The number of such
solutions where xi ≤ bi (i = 1, . . . , r) can be obtained us-
ing the inclusion/exclusion principle (see, for example,
Rosen et al. [1]). For the latter situation, Murty [4] ob-
tained a simple method of counting the favoured number
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of solutions. One generalization of (1) is the number of
nonnegative integer solutions of the following equation,

a1x1 + a2x2 + . . . + arxr = n. (3)

Equation (3) is well-known as a Linear Diophantine
Equation. As is discussed above for the simple case, it is
possible to obtain the number solutions of equation (1)
with some bounds on xi’s from (1) without any bounds
on xi’s. It has been shown that the number solutions of
(3) by some bounds on xi’s can be expressed as a func-
tion of the number solutions of (3) without any bounds
on xi’s (Eisenbeis et al. [5]). Therefore, it is enough to
restrict our effort to determine the number solutions of
(3) without any bounds on xi’s. Given positive integers
a1, a2, . . . , ar that are relatively prime, it is well-known
that for all sufficiently large n the equation (3) has a so-
lution with nonnegative integers xi (Tripathi [2]). The
generating function of equation (3) has the form

ϕ(t) = [(1− ta1)(1− ta2) . . . (1− tar )]−1,

and the number of non-negative integer solutions J(n) of
equation (2) is given by the formula:

J(n) =
1
n!

ϕn(0). (4)

Calculation of J(n) is difficult in most situations. An-
timirov and Matvejevs, in [6] have discussed several pos-
sible methods methods for its calculation. Eisenbeis et
al.(1992) [5] presented fast methods for computing the
exact or approximate number of solutions. In summary,
there are two main problem for finding the number of
nonnegative integer solution solutions of (3); the present
methods, owing to the difficulty of the problem, are com-
plicated, time consuming, and encounter difficulties when
one wishes to extract a list of such solutions. These is-
sues motivated us to obtain a simple method for finding
the number of nonnegative integer solutions of (3) and
provide a list of the obtained solutions.

2 New Method

Among the two problems considered, i.e., computing the
number solutions and generating the solutions, the first
one is by far the most complex. Therefore, it is vital
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to simplify the problem as much as possible in order to
obtain efficient computation. Let us first consider ai = 1
for i = 2, ..., r in (3). In this case, we must find the
number of nonnegative integer solutions for

a1x1 + x2 + . . . + xr = n. (5)

For solving (5), we can give the possible values of x1 and
reform (5) to form (1). Therefore,

[n/a1]∑
w1=0

(
n− a1w1 + r − 2

r − 2

)
(6)

is the number of nonnegative integer solutions for equa-
tion (5), where [u] is the integer part of u and r is a
positive integer and r > 2. If r = 2 we must use
[n/a1]∑
w1=0

I(a2, w1) as the number of nonnegative integer so-

lutions, where

I(a2, w1) =
{

1 a2|n− a1w1

0 otherwise (7)

Now, let ai = 1 for i = 3, ..., r. In this case, we must find
the number of nonnegative integer solutions for

a1x1 + a2x2 + x3 + . . . + xr = n. (8)

For solving (8), we can give the possible values of x1, x2

and reform (8) to form (1). Therefore,

[n/a1]∑
w1=0

[(n−a1w1)/a2]∑
w2=0

(
n− a1w1 − a2w2 + r − 3

r − 3

)
(9)

is the number of nonnegative integer solutions for this
equation. It should be noted that, the formula is true
when r is a positive integer and r > 3. However, if r = 3

we use
[n/a1]∑
w1=0

[(n−a1w1)/a2]∑
w1=0

I(a3, w1, w2) as the number of

nonnegative integer solutions, where

I(a3, w1, w2) =
{

1 a3|n− a1w1 − a2w2

0 otherwise (10)

Continuing the procedure, we can get the following for-
mula for the number of nonnegative integer solutions of
(3).

s(a1, . . . , ar;n) :=

[n/a1]∑
w1=0

[(n−a1w1)/a2]∑
w2=0

. . .

[(n−a1w1−...−ar−2wr−2)/ar−1]∑
wr−1=0

I(ar; w1, . . . , wr−1)

(11)
where

I(ar;w1, . . . , wr−1) =
{

1 ar|n− a1w1 − ...ar−1wr−1

0 otherwise.
(12)

Note also that if ai = 1 for all i, then s(a1, . . . , ar;n) is
equal to

(
n+r−1

r−1

)
, since

s(a1, . . . , ar;n) =
n∑

w1=0

n−w1∑
w2=0

. . .

n−w1−...−wr−2∑
wr−1=0

1

=
n∑

w1=0

n−w1∑
w2=0

. . .

n−w1−...−wr−3∑
wr−2=0

(
n− w1 − ...− wr−2 + 1

1

)

=
n∑

w1=0

n−w1∑
w2=0

. . .

n+1−w1−...−wr−3−1∑
wr−2=0

(
1 + wr−2

1

)
.

(13)

Now equality is obtained using the fact that
n−m∑

k=0

(
m + k

m

)
=

(
n + 1
m + 1

)
.

3 An application

There are many problems which can be solved using the
proposed algorithm. As a useful example, we use the
algorithm for solving the Diophantine inequality

a1x1 + . . . + arxr ≤ n. (14)

Let us now briefly consider the characteristic of the
Diophantine Inequality (for more information see, for
example, [16][17][18][19]). The main statement of the
aforementioned theorem is in the language of lattices in
number theory. That is for any convex set in the r-
dimensional Euclidean space Rr symmetric with respect
to the origin, and with volume greater than 2r, must con-
tain a lattice point other than that of the origin. In the
language of linear forms the problem is restated as

r∑

j=1

aijxj = Li(X), 1 ≤ i ≤ r, (15)

with real coefficients aij such that det(aij) 6= 0, suppos-
ing that there exist r positive real numbers bi, i = 1 . . . r
with

∏r
i=1 bi ≥ det(aij). Then there exists an integer
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vector C such that Li(C) ≤ bi, 1 ≤ i ≤ r, thus im-
plying that a solution exists for the above equations and
indeed the implied inequality. The paper by Cheema,
[13] suggests techniques similar to the programming of
this research in its working, and indeed uses Minkowski’s
theorem to state that, where || · || denotes the distance
of a number from its nearest integer, that there always
exists a nonzero integer-vector solution X = (x1, . . . , xr)
to the inequalities:

||Lj(X)|| ≤ C, (1 ≤ j ≤ r). (16)

Another practical application of the discussed problem is
that of the “Knapsack” model, encountered in many areas
with a cleat explanation offered in [14]; “the question of
how to fill a knapsack of limited weight capacity with
different items which best meet the needs of one’s trip”.
Beged-Dov [14], first introduced bounds on the number,

N , of solutions to
r∑

i=1

aixi ≤ n with the ai’s all being

natural-valued, as

nr

r!
r∏

i=1

ai

≤ N ≤ (n + a1 + . . . + ar)r

r!
r∏

i=1

ai

. (17)

These bounds were obtained in the following way. Denote
the rectangular box B(y1, . . . , yr) as the set of points Y =
(y1, . . . , yr) such that

aixi ≤ yi ≤ (xi + 1)ai for i = 1, . . . , r (18)

which has r-dimensional volume
∏r

i=1 ai. Secondly, de-
fine the pyramid P (n) with volume nr

r! , which denotes
the set of points satisfying yi ≥ 0 for i = 1, . . . , r and∑r

i=1 yi ≤ n. The bounds are obtained as a consequence
of the fact that each point xi as defined above belongs
to a unique B, which is the one with xi =

[
yi

ai

]
, and

if that xi lies in the pyramid P (n), then it necessarily
obeys the linear diophantine inequality in question. So
the union of the N boxes contains P (n). This somewhat
simple topological argument allows the derivation of the
above bounds. To add weight to Beged-Dov’s argument
in [14], some experimental results are calculated using an
algorithm which could be considered to be an early pre-
cursor to the results of this paper. The tendency of the
upper and lower bounds of the number of solutions to
the linear Diophantine inequality to become close with
increased number of variables and right hand side is also
touched upon.

Padberg and Lambe sought to respectively improve upon
Beged-Dov’s bounds. In the latter case an approximate
number of solutions was eventually sought and found in

[7]. Padberg [12] considered the following lower bound

(n + 1)r

r!
∑r

i=1 ai
≤ N (19)

Very soon after [14] was submitted, Padberg took its re-
sult in [12] and sharpened Beged-Dov’s result to the fol-
lowing inequality:

max
(

(n + 1)r

r!
∏r

i=1 ai
,

(
r + a∗

r

))
≤ N

and

N ≤ min

(
(n +

∑r
j=1 aj)r

r!
∏r

i=1 ai
,

(
r + a∗∗

r

))
.

(20)

Here a∗ and a∗∗ are integers satisfying a∗ ≤ n
aj

and a∗∗ ≥[
n
aj

]
for all j = 1, . . . , r. The initial adjustment to the

original result is made by definition of the new pyramid
P (n + δ), whence

r∑

j=1

xij ≤ n+δ, xij ≥ 0 for j = 1, . . . r, 0 ≤ δ < 1, (21)

Then as above, taking a vector ξ ∈ P (n + δ), then sum-
ming over each element of the vector we have (since
[x] ≤ x, ∀x > 0):

r∑

j=1

xj

[
ξj

xj

]
≤

r∑

j=1

xj

(
ξj

xj

)
≤ n + δ. (22)

The lower bound
(n + δ)r

r!
∏r

j=1 aj
≤ N is obtained with the

substitution of P (n+ δ) with P (n) in the previous proof,
which is then sharpened by taking the limit of this bound
as δ → 1. The result is improved further by making the
above substitution for a∗ and a∗∗ above, noting that

r∑

j=1

xj ≤
r∑

j=1

xj
aj

amin
≤ n

amin
, (23)

to obtain the bounds stated above.

The paper of Padberg also introduces the formula for
the number of possible partitions explored in this paper,
and quotes that another proof is mentioned in the book
[15]. Lambe in his paper [11] of 1974 introduced bounds
which in most cases were better still, than what had been
previously discussed:

(
n + r

r

) r∏

i=1

1
ai
≤ N ≤

(
n + ra

r

) r∏

i=1

1
ai

, (24)
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Table 1: Comparison between current methods and the new algorithm.
{ai} n New (Exact) (17) (20) (24) (19)

lower upper lower upper lower upper lower

2, 3, 5 10 20 6 44 10 56 10 38 8
2, 3, 5 50 947 695 1200 737 1200 781 1140 737
2, 3, 5 100 6518 5556 7394 5724 73946 5896 7194 5724
2, 3, 5 200 48202 44444 51450 45115 51450 45791 50717 45115
1, 1, 10 12 97 29 230 37 230 46 202 37

2, 3, 4, 4, 5 11 53 3 356 21 252 9 247 21
2, 4, 4, 4, 5 11 41 2 316 21 252 7 223 21

2, 3, 4, 4, 5, 7 15 162 5 1693 28 1693 16 1142 7
2, 3, 4, 5, 6, 7 20 364 18 2970 28 2970 46 2130 24

2, 3, 5, 7, 9, 11, 13 50 8872 574 73412 659 73412 978 59228 659

where a =
∑r

i=1
ai

r . His new bounds were also able to
show that the ratio of upper to lower bounds tends to
unity as r and n grow large. To attain the lower bound,
the inequalities

g−1∑

i=1

aiyi +
r∑

i=g

yi ≤ n, (25)

with the yi’s all integers and g ∈ {1, . . . r +1} are consid-
ered. The proof requires - where Pi denotes the number
of feasible (that is, nonnegative) solutions to (25) - the
proving of

Pg ≤ agPg+1, for g = 1, . . . , r. (26)

The proof of the upper bound is achieved using the in-
equalities

g−1∑

i=1

aiyi +
r∑

i=g

yi ≤ n +
r∑

i=g

(xi − 1), (27)

and requires the assertion - where Qi denotes the number
of feasible solutions to (25) and (27) - that

Qg ≥ agQg+1, for g = 1, . . . , r. (28)

Both are achieved in similar fashion.

As mentioned above, Lambe in [7], discovered upper and
lower bounds for this number. However, the algorithm
proposed here is able to compute the exact number of
solutions. To do this, we convert (14) to (3) by adding
an extra nonnegative integer variable xr to (14). Then
we need to solve a1x1 + . . . + ar−1xr−1 + xr = n and
using the algorithm the number of nonnegative integer
solutions to (14) is:

s(a1, . . . , ar−1, 1; n) =

[n/a1]∑
w1=0

[(n−a1x1)/a2]∑
w2=0

. . .

[(n−a1x1−...−ar−2xr−2)/ar−1]∑
wr−1=0

1.
(29)

It should be noted that in the reduced form of inequality
we have ar = 1. Therefore I(ar; w1, . . . , wr−1) = 1 for

all w1, . . . , wr−1. Let us first consider an simple exam-
ple. Suppose we are interested in finding the number of
nonnegative solutions to

10x1 + x2 + x3 ≤ 12. (30)

The lower and upper bounds on the number of solutions
to this inequality, 4 and 455 respectively, are obtained
from the algorithm of (20), whilst we know the exact
number of solution is 97. It can be seen easily that these
bounds represent a wide deviation from the actual num-
ber of solutions. Let us now use the proposed algorithm
for solving (30). As we mentioned above, first we need
to reform (30) to 10x1 + x2 + x3 + x4 = 12. Thus, the
solution is as follows

[12/10]∑
w1=0

[(12−10w1)/1]∑
w2=0

[(12−10w1−w2)/1]∑
w3=0

1 =

=
12∑

w2=0

12−w2∑
w3=0

1 +
2∑

w2=0

2−w2∑
w3=0

1 = 97. (31)

Table 1 shows the resulting lower and upper bounds given
for the number of solutions to the inequality with coef-
ficients ai and relevant n. The third column shows the
exact number of solutions given by the method of this
note.
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