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Abstract—Let Φ : [0,∞[×E 7→ E be a semidynamical
system and β = (βt)t>0 be a Bochner subordinator. It
is proved in this paper that, every β-Liapunov func-
tion l for Φ is of the form l(x) =

∫∞
0

f(t, x) dt where
f :]0,∞[×E 7→ [0,∞[ be a solution of the following func-
tional equation

∫ ∞

0

f(t, Φ(r, x)) βs(dr) = f(s + t, x), s, t > 0, x ∈ E.

We deduce an explicit formula for α-Liapunov func-
tions defined by the fractional power subordinator of
order α ∈]0, 1[.

Keywords: semidynamical system, Bochner subordina-

tor, exit law.

1 Introduction

Let Φ : [0,∞[×E 7→ E be a measurable semidynamical
system on a measurable space E and let F be the space of
measurable finite functions defined on E. Let β = (βt)t>0

be a Bochner subordinator, i.e a convolution semigroup
of probability measures on [0,+∞[. We may define

Qtu(x) :=
∫ ∞

0

u(Φ(s, x)) βt(ds), u ∈ F , t ≥ 0, x ∈ E.

A β-exit law associated to Φ is a family f = (ft)t>0

of positive measurable function satisfying the functional
equation (using the notation ft := f(t, .))

Qsft = fs+t, s, t > 0.

The integral representation in terms of exit law is origi-
nally given by Dynkin [4] and its studied by several au-
thors [6, 7, 8, 9, 10] and [12, 13, 14, 15]. In this paper,
we investigate first the representation by β-exit laws. In
this case, if the function

∫∞
0

ft dt is finite then it belongs
to the cone of Q-Liapunov functions defined by

Lβ := {u ∈ F : u ≥ 0, Qtu ≤ u, lim
t→0

Qtu = u}

Conversely, there are elementary examples for which ele-
ments from Lβ do not admits an integral representation
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by a β-exit law (cf. [14], Example 2.7.1). In fact, as it
is observed in many papers related to this problem (cf.
[6, 7, 8, 9, 10, 12, 13, 14, 15]), some finiteness assump-
tions are needed, in order to represent elements of Lβ in
terms of β-exit laws. Along this paper, elements from Lβ

which is bounded on each trajectory of Φ will be called
β-Liapunov functions.
For our context, it is proved in [14] that, for each ηα-
Liapunov function l such that limt→∞Qα

t u = 0, there
exists a unique ηα-exit law fα = (fα

t )t>0 such that

l(x) =
∫ ∞

0

fα
t (x) dt, x ∈ E (1)

The aim of the present paper is to show that a similar,
and in fact more general that (1). In what follows we shall
denote by K the set of all Bochner subordinator β such
that t → βt is continuously differentiable from ]0,∞[ to
the Banach algebra of complex borel measures on R such
that ‖β′t‖S < ∞ for each t > 0. We prove the following
integral representation result:
Let β be in K . For each β-Liapunov function l there
exists a unique (up to equivalence) β-exit law f = (ft)t>0

for Φ such that

l(x) =
∫ ∞

0

ft(x) dt, x ∈ E.

Moreover, f = (ft)t>0 is explicitly given by

ft(x) = −
∫ ∞

0

l(Φ(s, x))
∂

∂t
βt(ds), t > 0, x ∈ E.

As application, we consider the fractional power subor-
dinator ηα := (ηα

t ) of order α ∈]0, 1[. It is defined by its
Laplace transform L(ηα

t )(r) = exp(−trα). In this case,
under some regular assumption we prove that each ηα-
Liapunov function l admits the integral representation.

l(x) =
1

Γ(α)

∫ ∞

0

ϕt(x) tα−1 dt, x ∈ E (2)

where

ϕt(x) :=
α

Γ(1− α)

∫ ∞

0

(
l(Φ(t, x))− l(Φ(s + t, x))

) ds

sα+1

(3)
Moreover, formulas like (2) and (3) will be also deduced
for the Γ-subordinator and for the Poisson subordinator.
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The case β be the Dirac subordinator is already inves-
tigated in [8, 9, 10, 12]. Moreover, similar results are
obtained in other contexts in [6, 7, 13, 15] and in some
related references.

2 Preliminary

Let (E, E) be a measurable and separable space and let B
be the space of measurable bounded functions defined on
E. We denote by F the set of all finite functions defined
on E and by F+ be the subset of positive elements of
F . Note that any linear operator defined on the space B,
may be extended to any positive measurable function in
the usual way. The space [0,∞[×E is always endowed
with product σ-algebra E ⊗ A. For every g defined on
]0,∞[×E, we denote by gt the function defined on E by
putting gt(x) := g(t, x). Let g, h :]0,∞[×E → R, we write
gt = ht, λ-a.e. if, for each x ∈ E the set {t ≥ 0 : ht(x) 6=
gt(x)} is λ-negligible. In this section we summarize some
known results (cf. [2, 11, 17]).

Definition 2.1 A semidynamical system (SDS) on E is
a measurable mapping Φ : [0,∞[×E 7→ E which satisfies

i) Φ(0, x) = x, x ∈ E,

ii) Φ(s + t, x) = Φ(s,Φ(t, x)), s, t ≥ 0, x ∈ E. (Transla-
tion equation)

Let Φ be a SDS on E. For each x ∈ E, the set Tx :=
{Φ(t, x) : t ≥ 0} is called trajectory from x. If there
exists a > 0 such that x = Φ(a, x) then Tx is said to be
periodical. By putting

Htu(x) := u(Φ(t, x)), u ∈ B, t ≥ 0, x ∈ E,

we define a semigroup H := (Ht)t≥0 of linear operators
on B. H is the deterministic or substitution semigroup
associated to the SDS Φ.

We consider R endowed with its Borel field, we denote
by λ the Lebesgue measure on [0,∞[ and by εt the Dirac
measure at point t. Moreover, for each bounded mea-
sure µ on [0,∞[, L denotes its Laplace transform, i.e.
L(µ)(r) :=

∫∞
0

exp(−rs) µ(ds). If µ has a density δ with
respect to λ, we denote by L(δ) := L(δ.λ).
A Bochner subordinator is a convolution semigroup β =
(βt)t>0 of probability measures on R such that

1. For each t > 0, the measure βt 6= ε0 and supported
by [0,∞[,

2. βs ∗ βt = βs+t for all s, t > 0,

3. lim
t→0

βt = ε0, vaguely.

Let β be a Bochner subordinator. The associated po-
tential measure is defined by κ :=

∫∞
0

βs ds. Following
(cf. [2], Proposition 14.1) κ is a Borel measure. The as-
sociated Bernstein function k is defined by the Laplace
transform L(βt)(r) = exp(−tk(r)) for all r, t > 0. It is
known that k admits the representation (cf. [2], Theorem
9.8)

k(r) = br +
∫ ∞

0

(1− exp(−rs)) ν(ds), r > 0 (4)

where b ≥ 0 and ν is a measure on ]0,∞[ verifying∫∞
0

s
s+1 ν(ds) < ∞. Moreover, b and ν are uniquely

determined, they are called parameters of the Bernstein
function of β.

Let S be the Banach algebra of complex borel measures
on [0,∞[, with convolution as multiplication, and nor-
mae by the total variation ‖.‖S . A Bochner subordintor
β = (βt)t>0 is said to be in class K if :
t → βt is continuously differentiable from ]0,∞[ to S such
that ‖β′t‖S < ∞ for each t > 0. This class of subordina-
tors, is considered in [3].
The most important example of Bochner subordinator
in the class K is the one-sided or fractional power stable
subordinator of index α ∈]0, 1[.

Examples 2.2 Let β be a Bochner subordinator and
let k be the associated Bernstein function given by (4).
We shall give some sufficient condition for the Bernstein
function in order to get a subordinator in K. We exhibit
such examples of subordinator be in K which contains a
number of important functions, including fractional pow-
ers, the logarithm, the inverse hyperbolic cosine. We refer
to [3] and [16].

1. If sup
u∈S

|F β(t, u)| = O(t−1), t ↓ 0 where

F β(t, u) :=
∫ ∞

0

∫ ∞

0

u(r)
∂

∂r
(βt(r−s)−βt(r))ν(ds)dr

and S is the unit sphere of the complex space of
exponential polynomials with respect to sup-norm
on R+. Then β ∈ K (cf. [16], Theorem 2). For
examples:

i) Let α ∈ [0, 1], c ≥ 0 and k(r) = (c + r)α − cα.
Then β ∈ K.

ii) Let 0 < α < γ < 1 and k(r) = rα −
(exp(−(r)γ)− 1). Then β ∈ K.

2. Let r 7→ βt([r−s, r)) is monotone decreasing function
on [s,∞) (s ≥ 0) for each sufficiently small t > 0. If

∫ ∞

0

βt([0, s)) ν(ds) = O(t−1) as t ↓ 0,

then β ∈ K (cf, [16], Theorem 5). For examples:
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i) Let b > 0 and k(r) = log(b + r) − log b, then
β ∈ K.

ii) Let b, s ≥ 0 and k(r) = acosh(b + r) − acosh b,
then β ∈ K.

3. ε ∗ β is not in K.

4. If β1 and β2 are in K then so is β1 ∗ β2.

Let Φ be a SSD and β be a Bochner subordinator. Define
Q = (Qt)t>0 by

Qtu(x) :=
∫ ∞

0

u(Φ(r, x)) βt(dr) (5)

for all u ∈ B, t ≥ 0 and x ∈ E. Then Q is a semi-
group of linear operator on B. This is clear by using
the translation equation of Φ and semigroup property
of β. The potential kernel associated to Q is defined by
V β :=

∫∞
0

Qt dt. By integration of (5), we get

V βu(x) :=
∫ ∞

0

Qtu(x) dt =
∫ ∞

0

u(Φ(t, x)) κ(dt) (6)

for all u ∈ B and x ∈ E.

Definition 2.3 A positive measurable function l ∈ F
is called Q-Liapunov function for Φ if for any x ∈ E

(i) The function t → Qtl(x) is decreasing,

(ii) lim
t→0

Qtl(x) = l(x),

We denote by Lβ the cone of such functions.
Let Im(V β) := {V βu : u ∈ F , V βu ∈ F}. It is clear
to see that Im(V β) ⊂ Lβ . If we instead Q by the
deterministic semigroup H associated to Φ then each
function l ∈ F satisfying (i) and (ii) is called classical
Liapunov function for Φ.

Let Φ be SDS and β be in K. A β-exit law associated to
Φ is a measurable function f :]0,∞[×E → [0,∞[ which
satisfies:

∫ ∞

0

f(t,Φ(s, x)) βt(dr) = f(s + t, x) (7)

for all s, t > 0 and x ∈ E. The functional equation
(7) is called β-exit equation. By (5) and the notation
ft(x) := f(t, x), (7) is equivalent to

Qsft(x) = fs+t(x), s, t > 0, x ∈ E (8)

For example, for u ∈ F+, the function (t, x) → Qtu(x)
is a β-exit law for Φ whenever it is finite. This follows
immediately from the semigroup property of Q. Two β-
exit laws f and ψ are said to be equivalent if ft = ψt,
λ-a.e.

Lemma 2.4 Let β ∈ K. Then

β
′
s+t = β′s ∗ βt, s, t > 0 (9)

and
βt = −β

′
t ∗ κ, t > 0 (10)

where β
′
t := ∂

∂tβt and κ =
∫∞
0

βt dt.

Proof. Let β ∈ K. Since L(βt)(r) = exp(−tf(r)), then by
differentiation with respect to t under the integral sign,
we obtain

L(β
′
t) =

∂

∂t
L(βt)(r) = −f(r) exp(−tf(r)); t, r > 0

Let s, t, r > 0, we get

L(β
′
s ∗ βt)(r) = L(β

′
s)(r)L(βt)(r)

= −f(r) exp(−sf(r)) exp(−tf(r))
= −f(r)e−(s+t)f(r)

= L(β
′
s+t)(r)

Moreover, since L(κ)(r) = 1
f(r) (cf. [2], Proposition 14.1)

we have

L(−β
′
s ∗ κ)(r) = −L(β

′
s)(r)L(κ)(r)

= f(r) exp(−sf(r))
1

f(r)
= L(βt)(r)

We deduce (9) and (10) by the injectivity of Laplace
transform.

3 Representation in terms of β-exit laws

Proposition 3.1 Let Φ be a SDS and let f = (ft)t>0

be a β-exit law such that l(x) :=
∫∞
0

ft(x) dt < ∞. Then
l is Q-Liapunov function, moreover

ft(x) = − ∂

∂t
Qtl(x), t > 0, x ∈ E (11)

Proof. By Fubini’s Theorem and (8) we get for all x ∈ E

Qtl(x) =
∫ ∞

0

Qtfs(x) ds =
∫ ∞

t

fs(x) ds.

Therefore, Qtl is finite since
∫∞
0

ft dt < ∞ and

Qtl(x) =
∫ ∞

t

fs(x) ds, t > 0, x ∈ E (12)

Now from (12), we easily deduce that l is Q-Liapunov
function. Moreover, by (12) again we have for r, t > 0

1
r
(Qr+tl −Qtl) = −1

r

∫ r+t

t

fs ds.

Hence we obtain (11).
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Let Rβ be the cone of functions u :=
∫∞
0

ft dt such that
f is an exit law for Φ and u is finite. From Proposition
3.1, it follows that

Im(V β) ⊂ Rβ ⊂ Lβ .

But, the converse is not true in general, i.e. elements of
Lβ are not necessary on the form u =

∫∞
0

fs ds for some
Q-exit laws f . As it is observed in many papers related
to this problem (cf. [6, 7, 8, 9, 10, 12, 13, 14, 15]), we
need some finiteness assumptions, in order to represent
the Q-Liapunov functions in terms of the β-exit laws of
Φ. In what follows, elements u of Lβ for which there exists
a v ∈ F+ such that u(Φ(t, x)) ≤ v(x) for each t ≥ 0 and
each x ∈ E will be called β-Liapunov functions. This
means that u is bounded on each trajectory of Φ.

Theorem 3.2 Let Φ be a SDS, β in K and let l be
an associated β-Liapunov function, then the function f
defined by

ft(x) = −
∫ ∞

0

l(Φ(s, x))
∂

∂t
βt(ds), t > 0, x ∈ E (13)

is an exit law for Φ.

Proof. Let β be in K and let l be a β-Liapunov function.
Since l ◦ Φt ≤ v for each t ≥ 0 and βt(]0,∞[) = 1, it
follows that

Qtl(x) =
∫ ∞

0

l(Φ(r, x)) βt(dr) ≤ v(x).

Hence Qtl is a finite function. Now, since l ◦ Φt ≤ v
again and the total variation of β′t is finite, the following
function is well defined

ft(x) := −
∫ ∞

0

l(Φ(r, x)) β′t(dr), t > 0, x ∈ E,

and the differentiation with respect to t under the integral
sign is justified in Qtl. We may define

ft(x) = − ∂

∂t
Qtl(x), t > 0, x ∈ E (14)

Now, since t → Qtl(x) is decreasing, (14) allows us to
conclude that ft ≥ 0 for all t > 0. Moreover, by Fubini
Theorem’s, (5) and (9), we have

Qtfs(x) =
∫ ∞

0

fs(Φ(m,x)) βt(dm)

= −
∫ ∞

0

∫ ∞

0

l(Φ(r,Φ(m,x))) β′s(dr)βt(dm)

= −
∫ ∞

0

∫ ∞

0

l(Φ(r + m,x))β′s(dr)βt(dm)

= −
∫ ∞

0

l(Φ(r, x)) (β′s ∗ βt)(dr)

= −
∫ ∞

0

l(Φ(r, x))β′s+t(dr)

= fs+t(x)

It follows that f is a Q-exit law.

Remarks 3.3 In [14] under the condition
lims→∞Qsl = 0, we proved the representation given
above by (17) of ηα-Liapunov function defined by the
fractional power subordinator of order α ∈]0, 1[ in terms
of ηα-exit law.
Now we may obtain under the same condition the repre-
sentation for all subordinator in K. Indeed, from (14) it
is easy to see that

Qtl(x)−Qsl(x) =
∫ s

t

fr dr, s, t > 0, x ∈ E (15)

then, by letting s ↑ ∞ in (15), we deduce that r 7→ fr(x)
is integrable at ∞ and

Qtl(x) =
∫ ∞

t

fr dr, t > 0, x ∈ E (16)

we conclude by letting t ↓ 0 in (16).
In fact in Theorem 3.4 we prove that condition
lims→∞Qsl = 0, is not necessary to get the representa-
tion of β-Liapunov functions in terms of β-exit law where
β is a Bochner subordinator in the class K.

Theorem 3.4 Let Φ be a SDS and let β in K. For
each β-Liapunov function l, there exists a unique (up to
equivalence) β-exit law f = (ft)t>0 for Φ such that

l(x) =
∫ ∞

0

ft(x) dt, x ∈ E (17)

Moreover, f is explicitly given by

ft(x) = −
∫ ∞

0

l(Φ(s, x))
∂

∂t
βt(ds), t > 0, x ∈ E (18)

Proof. Let β be in K and let l be a β-Liapunov function.
By Theorem 3.2 we may define

ft(x) = − ∂

∂t
Qtl(x), t > 0, x ∈ E.

By Fubini’s Theorem, (5), (10) and (9) we have for fixed
s, t > 0

Qs+tl =
∫ ∞

0

Hr(Qsl)βt(dr)

= −
∫ ∞

0

Hr(Qsl) (β′t ∗ κ)(dr)

= −
∫ ∞

0

∫ ∞

0

Hr+`(Qsl)β
′
t(dr)κ(d`)

= −
∫ ∞

0

∫ ∞

0

∫ ∞

0

Hr+`(Qsl)β
′
t(dr)βq(d`) dq

= −
∫ ∞

0

(∫ ∞

0

Hr(Qsl)(β′t ∗ βq)(dr)
)

dq

= −
∫ ∞

0

∫ ∞

0

Hr (Qsl) β
′
t+q(dr) dq
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= −
∫ ∞

0

∂

∂t
Qt+qQsl dq

= −
∫ ∞

0

∂

∂t
Qt+q+sl dq

=
∫ ∞

0

ft+s+q dq

=
∫ ∞

t+s

fq dq

Therefore we obtain the representation

Qtl =
∫ ∞

t

fs ds, t > 0 (19)

then by letting t ↓ 0 in (19), we obtain (17). By Theorem
3.2, we get (18).

Corollary 3.5 Let Φ be a SDS and let β ∈ K. Let `
be a classical Liapunov function for Φ, then there exists
a unique (up to equivalence) β-exit law f for Φ such that

`(x) =
∫ ∞

0

ft(x) dt.

Proof. Let ` be a classical Liapunov function for Φ. Since
t → `(Φ(t, x)) is decreasing then t → Qt`(x)) is also
decreasing. Moreover, lim

t→0
Qt`(x) = 0 by the classical

Lebesgue Theorem, the fact that lim
t→0

`(Φ(s, x)) = 0 and

`(Φ(s, x)) ≤ `(x). This means that ` is a β-Liapunov
function and therefore Theorem 3.4 may be applied.

Remarks 3.6
1. Let (E, Φ) be a SDS. A cocycle for (E, Φ) is a

measurable application C : E× [0,∞[→ [0,∞[, satisfying
the functional equation

C(s + t, x) = C(t, x).C(s,Φ(t, x)), s, t > 0, x ∈ E.

In this paper, we may replace the deterministic semi-
group H by a so called lattice semigroup P := (Pt)t≥0,
i.e. |Pth| = Pt|h| for any t ≥ 0 and h ∈ B. Indeed,
following [8], P admits the representation

Pth(x) = C(t, x)h(Φ(t, x)), h ∈ B, t ≥ 0, x ∈ E (20)

where Φ is a SDS and C is a cocycle for Φ (cf. [10] for
more details). Now in view of (20), it is straightforward
that Theorem 3.4 may be generalized for P instead of H.

2. Let ϕ := (ϕt)t>0 be an H-exit law and let f :=
(ft)t>0 the family defined by

ft(x) :=
∫ ∞

0

ϕs(x) βt(ds), t > 0, x ∈ E (21)

It can be easily verified that f is a β-exit law which is said
to be subordinated to ϕ in the Bochner sense by means of
β. Notice that if ϕs = Hsh for some h ∈ F then (21) is
just (5). Moreover, by the well definition of κ, we have

u(x) :=
∫ ∞

0

ft(x) dt =
∫ ∞

0

ϕt(x)κ(dt) (22)

for all x ∈ E. Let Sβ be the cone of finite functions on
the form (22). From (5) and (22) again, we deduce that

Im(V β) ⊂ Sβ ⊂ Rβ .

3. We consider the function gt be the density of η
1
2 .

It is easy to see that gt is a Q-exit law. Furthermore
it is known that lim

t→0
gt(x) = 0 for each x ∈ R. Hence

u :=
∫∞
0

gt dt ∈ R 1
2 \S 1

2 . (cf. [14] Example 2.7.2). Under
some regular assumption we prove that Sβ = Rβ . Similar
results of this problem are obtained in other contexts in
[1].

4. Let Φ be a SDS and let β be in K. A β-liapunov
function l is said satisfies (C) if s → |l(Φ(r, x))− l(Φ(r +
s, x))| is ν integrable for all x ∈ E and r > 0 where ν is
the parameter of the associated Bernstein function given
in (4).

5. Let Φ be a SDS and let β be in K with bounded
associated Bernstein function. Then condition (C) is ful-
filled for each β-liapunov function.

Theorem 3.7 Let Φ be a SDS and let β be in K. Then
each β-Liapunov function l such that (C) holds, admits
the integral representation

l(x) =
∫ ∞

0

ϕt(x)κ(dt), x ∈ E (23)

where

ϕt(x) :=
∫ ∞

0

(
l(Φ(t, x))− l(Φ(s + t, x))

)
ν(ds).

Proof. Let β be in K and let l be a β-Liapunov function
satisfying (C). Then by Theorem 3.4, there exist a unique
β-exit law f such that l(x) =

∫∞
0

ft(x) dt. By (18), we
get

ft+s(x) = −
∫ ∞

0

Qtl(Φ(r, x)) β′s(dr) = − ∂

∂s
QsQtl(x)

(24)
On the other hand, since βt([0,∞[) = 1 and the differen-
tiation with respect to t under integral sing is justified in
βt, then

∫∞
0

β′t(dt) = 0. Therefore, we have

∂

∂t
Qtu(x) =

∫ ∞

0

(u(Φ(s, x))−u(x))β′t(ds), t > 0, x ∈ E.

Now since (C) holds, then for each t > 0 and x ∈ E, the
following function is well defined

ϕt(x) :=
∫ ∞

0

(
l(Φ(t, x))− l(Φ(s + t, x))

)
ν(ds).

By letting s ↓ 0, (24) and ([17], p. 265 ), we get

ft(x) =
∫ ∞

0

(
Qtl(x)−Qtl(Φ(r, x)

)
ν(dr), t > 0, x ∈ E.

It follows from (5) that ft =
∫∞
0

ϕs βt(ds) and we con-
clude by the well definition of κ to get (23).
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4 Applications

1. One-sided stable subordinator: Let ηα be
the one-sided stable subordinator of order α ∈]0, 1[,
i.e the unique convolution semigroup ηα = (ηα

t )t>0 on
[0,∞[ such that for each t > 0, the Laplace Transform
L (ηα

t )(r) = exp(−trα) for r > 0. Moreover, following
([17], p.263), the measure ηα

t has a density, denoted by
gα

t , with respect to λ. If we consider α = 1
2 , then the sub-

ordinator η
1
2 is called the Inverse Gaussian subordinator

(cf. [3], p. 869). In this case (cf. [18], p. 268)

g
1
2
t (s) := 1]0,∞[(s)

1√
4π

ts
−3
2 exp(

−t2

4s
), t > 0.

Following (cf. [3], p. 869), for each α ∈]0, 1[, ηα ∈ K.
Let Φ be a SDS and let l be a ηα-Liapunov function.
Following Theorem 3.4, in the special case if α = 1

2 , l is
on the form

l(x) =
1√
4π

∫ ∞

0

∫ ∞

0

l(Φ(s, x)) s
−3
2

(2t2

4s
− 1

)
e
−t2

4s ds dt

for all x ∈ E. Moreover, if (C) holds then by Theorem
3.7 each ηα-Liapunov function l admits the integral rep-
resentation

l(x) =
1

Γ(α)

∫ ∞

0

ϕt(x) tα−1 dt, x ∈ E,

where

ϕt(x) :=
α

Γ(1− α)

∫ ∞

0

(
l(Φ(t, x))− l(Φ(s+ t, x))

) ds

sα+1
.

2. Gamma subordinator: The Γ-subordinator γ :=
(γt)t>0 is given by γt := ht · λ where

ht(s) := 1]0,∞[(s)
1

Γ(t)
st−1 exp(−s), t > 0.

In this case κ :=
∫∞
0

γtdt = d · λ where

d(t) := exp(−t)
∫ ∞

0

1
Γ(s)

ts−1 ds.

Moreover γ ∈ K (cf. [3], p. 874). Let Φ be a SDS,
by application of Theorem 3.4, each Γ-Liapunov function
admits the integral representation

l(x) =
∫ ∞

0

∫ ∞

0

l(Φ(s, x))
st−1

Γ(t)

(Γ
′
(t)

Γ(t)
− log s

)
e−s ds dt,

for all t > 0 and x ∈ E. Moreover, if (C) holds then
by Theorem 3.7 each Γ-Liapunov function l admits the
integral representation

l(x) =
∫ ∞

0

ϕt(x) k(t) dt, x ∈ E,

where

ϕt(x) =
∫ ∞

0

(
l(Φ(s + t, x))− l(Φ(t, x))

)
s−1 exp(−s) ds.

3. Compound Poisson subordinator: Let q be an
arbitrary probability measure on [0,∞[. With qj := {q}∗j
such that q0 ≡ ε0 and fixed c > 0, the following semigroup
(cf. [3], p. 870)

τt := e−ct
∞∑

j=0

(ct)j

j!
qj , t > 0,

is called Compound Poisson subordinator. Moreover, the
Bernstein function associated to τ := (τt)t>0 which is
bounded is given by f(r) = cL(ε0 − q)(r), r > 0. Note
that τ ∈ K. For q = ε1, we obtain the Poisson subordina-
tor with jump c. In particular, if we consider the Poisson
subordinator with jump 1 by Theorem 3.7 and Remark
3.6.4 each τ -Liapunov function l is on the form

l(x) =
n=∞∑
n=0

fn(x),

where

ft(x) = l(Φ(t, x))− l(Φ(t + 1, x)), t > 0.
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