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On the Exit Laws for Semidynamical Systems
and Bochner Subordination

Hassen Mejri * and Ezzedine Mliki

Abstract—Let @ : [0,00[XE — F be a semidynamical
system and 3 = (8:):>0 be a Bochner subordinator. It
is proved in this paper that, every [-Liapunov func-
tion [ for @ is of the form I(z) = fooo f(t,z)dt where
f:]0,00[XE + [0, 00[ be a solution of the following func-
tional equation

/Oc ft, ®(r,x)) Bs(dr) = f(s +t,x), s,t>0,x€E.
0

We deduce an explicit formula for a-Liapunov func-
tions defined by the fractional power subordinator of
order « €]0,1].

Keywords: semidynamical system, Bochner subordina-
tor, exit law.

1 Introduction

Let ® : [0,00[XE — E be a measurable semidynamical
system on a measurable space E and let F be the space of
measurable finite functions defined on E. Let 8 = (8;)>0
be a Bochner subordinator, i.e a convolution semigroup
of probability measures on [0, +o00[. We may define

Qiu(z) == /000 u(®(s,x)) fr(ds), weF,t>0,xz€E.

A B-exit law associated to @ is a family f = (fi)is0
of positive measurable function satisfying the functional
equation (using the notation f; := f(t,.))

stt = fs-‘rtv

The integral representation in terms of exit law is origi-
nally given by Dynkin [4] and its studied by several au-
thors [6, 7, 8, 9, 10] and [12, 13, 14, 15]. In this paper,
we investigate first the representation by [-exit laws. In
this case, if the function fooo fi dt is finite then it belongs
to the cone of Q-Liapunov functions defined by

s, t>0.

LP={ueF:u>0, Qu<u, tlirr(l)Qtuzu}

Conversely, there are elementary examples for which ele-
ments from L? do not admits an integral representation
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by a f-exit law (cf. [14], Example 2.7.1). In fact, as it
is observed in many papers related to this problem (cf.
[6, 7, 8,9, 10, 12, 13, 14, 15]), some finiteness assump-
tions are needed, in order to represent elements of L? in
terms of [-exit laws. Along this paper, elements from L?
which is bounded on each trajectory of ® will be called
B-Liapunov functions.

For our context, it is proved in [14] that, for each n®-
Liapunov function [ such that lim; .. Qfu = 0, there
exists a unique n%-exit law f* = (f¥)¢~o such that

l(x) = /OOO f(x) dt, rel (1)

The aim of the present paper is to show that a similar,
and in fact more general that (1). In what follows we shall
denote by K the set of all Bochner subordinator § such
that ¢ — [; is continuously differentiable from ]0, oo to
the Banach algebra of complex borel measures on R such
that ||8;]|s < oo for each t > 0. We prove the following
integral representation result:

Let 8 be in £ . For each g-Liapunov function [ there
exists a unique (up to equivalence) B-exit law f = (f1)e0
for ® such that

l(z) = /0(X> fi(x)dt, z€E.

Moreover, f = (fi)i>o0 is explicitly given by

)= | T U@(s,0) D B(ds), t> 0w €D

As application, we consider the fractional power subor-
dinator n® := (n*) of order a €]0,1[. Tt is defined by its
Laplace transform L£(n)(r) = exp(—tr®). In this case,
under some regular assumption we prove that each n®-
Liapunov function [ admits the integral representation.

=)= ﬁ /OOO eyt tdt,  weE (2)
where
o) = F(%a) Aoo (H@(t,2)) — U(s +t,2))) Sff%

(3)
Moreover, formulas like (2) and (3) will be also deduced
for the I'-subordinator and for the Poisson subordinator.
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The case 8 be the Dirac subordinator is already inves-
tigated in [8, 9, 10, 12]. Moreover, similar results are
obtained in other contexts in [6, 7, 13, 15] and in some
related references.

2 Preliminary

Let (E, &) be a measurable and separable space and let B
be the space of measurable bounded functions defined on
E. We denote by F the set of all finite functions defined
on FE and by F, be the subset of positive elements of
F. Note that any linear operator defined on the space B,
may be extended to any positive measurable function in
the usual way. The space [0,00[xE is always endowed
with product c-algebra £ ® A. For every g defined on
10, oo[x E, we denote by g; the function defined on E by
putting g:(z) := g(t, x). Let g, h :]0, co[x E — R, we write
gt = hy, A-ace. if, for each x € E the set {t > 0: hy(z) #
g:(x)} is A-negligible. In this section we summarize some
known results (cf. [2, 11, 17]).

Definition 2.1 A semidynamical system (SDS) on F is
a measurable mapping ® : [0, co[x F +— E which satisfies

i) ¢(0,2) ==z, x € E,

i) ®(s+t,z) = D(s,2(¢,x)), s,t >0, z € E. (Transla-
tion equation)

Let ® be a SDS on E. For each z € E, the set T,
{®(t,z) : t > 0} is called trajectory from z. If there
exists a > 0 such that x = ®(a, z) then T, is said to be
periodical. By putting

u(®(t, ),

we define a semigroup H := (H;);>o of linear operators
on B. H is the deterministic or substitution semigroup
associated to the SDS ®.

Hiu(x) := ueB,t>0,z€FE,

We consider R endowed with its Borel field, we denote
by A the Lebesgue measure on [0, co[ and by e; the Dirac
measure at point t. Moreover, for each bounded mea-
sure pu on [0,00[, £ denotes its Laplace transform, i.e.
L(p)(r) == [ exp(—rs) p(ds). If p has a density § with
respect to A, we denote by L(d) := L(4.)).

A Bochner subordinator is a convolution semigroup 3 =
(Bt)t>0 of probability measures on R such that

1. For each t > 0, the measure 3; # ¢ and supported
by [0, ool
2. Bs* Oy = Bsqe for all s, t > 0,

3. }ir% B¢ = €9, vaguely.

Let 8 be a Bochner subordinator. The associated po-
tential measure is defined by k := fooo Bsds. Following
(cf. [2], Proposition 14.1) & is a Borel measure. The as-
sociated Bernstein function k is defined by the Laplace
transform L£(3;)(r) = exp(—tk(r)) for all r,t > 0. It is
known that k admits the representation (cf. [2], Theorem
9.8)

k(r) =br —|—/ (1 — exp(—rs))v(ds), r>0 (4)
0
where b > 0 and v is a measure on |0, 00| verifying
o 51 v(ds) < oo. Moreover, b and v are uniquely
determined, they are called parameters of the Bernstein
function of 3.

Let S be the Banach algebra of complex borel measures
n [0, 00[, with convolution as multiplication, and nor-

mae by the total variation ||.||s. A Bochner subordintor

B = (Bt)e>0 is said to be in class I if :

t — (3, is continuously differentiable from ]0, co[ to S such

that ||B;|ls < oo for each ¢t > 0. This class of subordina-

tors, is considered in [3].

The most important example of Bochner subordinator

in the class K is the one-sided or fractional power stable

subordinator of index « €]0, 1[.

Examples 2.2 Let 3 be a Bochner subordinator and
let k be the associated Bernstein function given by (4).
We shall give some sufficient condition for the Bernstein
function in order to get a subordinator in K. We exhibit
such examples of subordinator be in C which contains a
number of important functions, including fractional pow-
ers, the logarithm, the inverse hyperbolic cosine. We refer
to [3] and [16].

1. If sup |FP(t,u)| = O(t~
ues

tu//

and S is the unit sphere of the complex space of
exponential polynomials with respect to sup-norm
on Ry. Then 8 € K (cf. [16], Theorem 2). For
examples:

1), ¢t | 0 where

57&7” 8)=B(r))v(ds)dr

i) Let a € [0,1], ¢ > 0 and k(r) = (¢ +r)* — ™.
Then g € K.

ii) Let 0 < a < v < 1 and k(r) = r* —
(exp(—(r)Y) — 1). Then § € K.

2. Let r — B¢([r—s,r)) is monotone decreasing function
on [s,00) (s > 0) for each sufficiently small ¢ > 0. If

/0°° B([0,)) v(ds) = O(t ™) as t | 0,

then 8 € KC (cf, [16], Theorem 5). For examples:

(Advance online publication: 1 February 2010)
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i) Let b > 0 and k(r) = log(b + r) — log b, then
B ek.

iil) Let b,s > 0 and k(r) = acosh(b+ r) — acosh b,
then 3 € K.

3. ex 3 is not in K.

4. If 3! and 82 are in K then so is 3! x 32.

Let @ be a SSD and  be a Bochner subordinator. Define
Q = (Qt)t>0 by

QWWV—AWU@UJD@MM (5)

for all w € B,t > 0 and z € E. Then Q is a semi-
group of linear operator on B. This is clear by using
the translation equation of ® and semigroup property
of 8. The potential kernel associated to Q is defined by
VA= [[¥ Q. dt. By integration of (5), we get

_ / Quu(z) dt = / w(®(t, 7)) k(dE)  (6)
0 0
forallu € Band z € E.

Definition 2.3 A positive measurable function [ € F
is called Q-Liapunov function for ® if for any x € E

(i) The function t — Q.l(x) is decreasing,

(i) Jim Qul(x) = I(),

We denote by L? the cone of such functions.

Let Im(V?) := {VAu : v € F,VPu € F}. Tt is clear
to see that Im(VP) C LP. If we instead Q by the
deterministic semigroup H associated to ® then each
function I € F satisfying (i) and (i) is called classical
Liapunov function for .

Let @ be SDS and § be in L. A (-exit law associated to
® is a measurable function f :]0,00[xE — [0, 00[ which
satisfies:

Amfw@@w»@wm—f@+a@ (7)

for all s,t > 0 and x € E. The functional equation
(7) is called (-exit equation. By (5) and the notation
fe(x) := f(t, ), (7) is equivalent to

stt(x):fs+t(z)7 S7t>0,I€E (8)

For example, for u € F4, the function (¢,z) — Qu(z)
is a (-exit law for ® whenever it is finite. This follows
immediately from the semigroup property of Q. Two (-
exit laws f and 1 are said to be equivalent if f; = vy,
A-a.e.

Lemma 2.4 Let 3 € K. Then

Bore =050, 5,6>0 (9)

and ,
By = —ﬁt * K, t>0
where 3, := 2B and k= [)° By dt.

Proof. Let 8 € K. Since L(5;)(r) = exp(—tf(r)), then by
differentiation with respect to ¢ under the integral sign,
we obtain

£(8) = o £(B)0) = ) exp(~t5 () tr >0
Let s,t,7 > 0, we get
L(B,*B)(r) = LB)LB)(r)
= —f(r)exp(—sf(r)) exp(—tf(r))
= —f(r)e” O
= L(Byr)(r)
Moreover, since L(k)(r) = f(lr) (cf. [2], Proposition 14.1)
we have
L(=B,xr)(r) = —L(B)(r)L(K)(r)
1
= f(r)eXP(—Sf(r))m
= L(B)(r)

We deduce (9) and (10

transform.

) by the injectivity of Laplace

3 Representation in terms of jJ-exit laws

Proposition 3.1 Let be a SDS and let f = (fi)t=o0
be a [B-exit law such that l(x fo fi(x)dt < co. Then
l is Q-Liapunov function, moreover

0
fi(z) = —aQtl(x), t>0,z€kE (11)

Proof. By Fubini’s Theorem and (8) we get for all x € E

/ Qul.(x chf/ file

Therefore, Q! is finite since fooo frdt < 0o and

:lmﬁuma

Now from (12), we easily deduce that [ is Q-Liapunov
function. Moreover, by (12) again we have for r,t > 0

t>0,z€E (12

1 1 [t
;(Qrﬂl - Qtl) = —;/t fsds.

Hence we obtain (11).
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Let R be the cone of functions u := fooo ft dt such that
f is an exit law for ® and wu is finite. From Proposition
3.1, it follows that

Im(V?) c R c L°.

But, the converse is not true in general, i.e. elements of
LB are not necessary on the form u = fooo fs ds for some
Q-exit laws f. As it is observed in many papers related
to this problem (cf. [6, 7, 8, 9, 10, 12, 13, 14, 15]), we
need some finiteness assumptions, in order to represent
the Q-Liapunov functions in terms of the (-exit laws of
®. In what follows, elements u of L? for which there exists
a v € Fy such that u(®(¢t,z)) < v(x) for each t > 0 and
each ¢ € E will be called g-Liapunov functions. This
means that « is bounded on each trajectory of ®.

Theorem 3.2 Let ® be a SDS, 8 in K and let | be
an associated (-Liapunov function, then the function f
defined by

ft(m):—/Oool(é(s,x))gtﬂt(ds), t>0,zcE (13)

is an exit law for ®.

Proof. Let 3 be in K and let [ be a §-Liapunov function.
Since [ o ®; < v for each ¢ > 0 and 5;(]0,00[) = 1, it
follows that

Qil(z) = /OOO U(D(r, 2)) Bo(dr) < v(x).

Hence @yl is a finite function. Now, since [ o ®; < v
again and the total variation of /3; is finite, the following
function is well defined

fi(z) ::—/Oool(q)(r,x))ﬁé(dr), t>0,z€FE,

and the differentiation with respect to t under the integral
sign is justified in @:l. We may define

file) =~ 5 Qul(a),

Now, since t — @Ql(x) is decreasing, (14) allows us to
conclude that f; > 0 for all ¢ > 0. Moreover, by Fubini
Theorem’s, (5) and (9), we have

t>0,z€eFE (14)

Oufi(a) Amﬂ@WmM&MM

_ /Ooo /0°° 1(®(r,®(m,x))) Ba(dr) B:(dm)
- 7/00/OOl(q)(rer,x))ﬁ;(dr)ﬂt(dm)
o Jo

—/O UD(r,2)) (5. * B)(dr)

_ /0 T U@ 2)) B, (dr)
= fope()

It follows that f is a Q-exit law.

Remarks 3.3 In [14] under the condition
limg_., Qs = 0, we proved the representation given
above by (17) of n“-Liapunov function defined by the
fractional power subordinator of order « €]0,1[ in terms
of n“-exit law.

Now we may obtain under the same condition the repre-
sentation for all subordinator in K. Indeed, from (14) it
is easy to see that

Qul(a) - Qul(x) = / fdr st>02€E  (15)
t

then, by letting s T oo in (15), we deduce that r — f,.(z)
is integrable at oo and

Ql(z) = /OO frdr, t>0,z€E (16)
t

we conclude by letting ¢ | 0 in (16).
In fact in Theorem 3.4 we prove that condition
limg_, 0 Qs = 0, is not necessary to get the representa-

tion of B-Liapunov functions in terms of (-exit law where
[ is a Bochner subordinator in the class K.

Theorem 3.4 Let ® be a SDS and let 8 in K. For
each B-Liapunov function 1, there exists a unique (up to
equivalence) B-exit law f = (f)i=o for ® such that

l(x):/ f(x)dt, wcE (17)
0
Moreover, f is explicitly given by

ft(x):-/OMZ(@(s,x));ﬁt(ds), t>0,zcE (18)

Proof. Let 8 be in K and let [ be a §-Liapunov function.
By Theorem 3.2 we may define

fi(z) = _%Qtl($)7 t>0,x€kF.

By Fubini’s Theorem, (5), (10) and (9) we have for fixed
s,t >0

@t = [ " H(Qul) Bu(dr)

- AWE«MM@MMM)

_ —Amémﬂwaanmwm4ﬂ>

- /0 h /0 h /O " Hyo(Qul) B,(dr) y(de) da
_ Aw(Amm«%mm*mNMqu

_ _Aw/ H, (Qul) By.,(dr) dq

0
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9
= - Howqd

<9
— — Sld
o atQt+q+ q

= / Jtrstqdq
0

oo

fq dq
t+s

Therefore we obtain the representation

oo
Qi = / fods,  t>0 (19)
¢
then by letting ¢ | 0 in (19), we obtain (17). By Theorem
3.2, we get (18).

Corollary 3.5 Let ® be a SDS and let € K. Let ¢
be a classical Liapunov function for ®, then there exists
a unique (up to equivalence) B-exit law f for ® such that

() = /0 " ) dt.

Proof. Let £ be a classical Liapunov function for ®. Since
t — L(P(t,z)) is decreasing then t — Q:£(x)) is also
decreasing. Moreover, }ir% Q:l(x) = 0 by the classical
Lebesgue Theorem, the fact that }in% £(P(s,x)) = 0 and

{(®(s,z)) < £(z). This means that ¢ is a S-Liapunov
function and therefore Theorem 3.4 may be applied.

Remarks 3.6

1. Let (E,®) be a SDS. A cocycle for (E,®) is a
measurable application C : E x [0, co[— [0, oo, satisfying
the functional equation

C(s+t,x)=C(t,x).C(s,®(t,x)), s5,t>0, z € E.

In this paper, we may replace the deterministic semi-
group H by a so called lattice semigroup P := (P;)i>0,
ie. |Ph| = Pi|h| for any t > 0 and h € B. Indeed,
following [8], P admits the representation

Pih(z) = C(t,2)h(®(t, x)),

where ® is a SDS and C is a cocycle for @ (cf. [10] for
more details). Now in view of (20), it is straightforward
that Theorem 3.4 may be generalized for P instead of H.

2. Let ¢ := (p¢)i>0 be an H-exit law and let f :=
(ft)e>0 the family defined by

heB,t>0,z€E (20)

fi(x) == /OO ws(x) Bi(ds), t>0,z€FE (21)

0

It can be easily verified that f is a S-exit law which is said
to be subordinated to ¢ in the Bochner sense by means of
3. Notice that if ps = Hsh for some h € F then (21) is
just (5). Moreover, by the well definition of k, we have

u(x) := /0 fi(z)dt = /0 o (x) k(dt) (22)

for all x € E. Let 8P be the cone of finite functions on
the form (22). From (5) and (22) again, we deduce that

Im(V?) c 8¢ c RP.

3. We consider the function g; be the density of 77%.
It is easy to see that g; is a Q-exit law. Furthermore
it is known that }in(l) gt(z) = 0 for each z € R. Hence

u= [ gedt € Rz\Sz. (cf. [14] Example 2.7.2). Under
some regular assumption we prove that S” = R4 Similar
results of this problem are obtained in other contexts in

[1].

4. Let @ be a SDS and let 3 be in K. A S-liapunov
function [ is said satisfies (C) if s — [I[(®(r,x)) — (P(r +
s,x))| is v integrable for all x € F and r > 0 where v is
the parameter of the associated Bernstein function given
in (4).

5. Let ® be a SDS and let 8 be in K with bounded
associated Bernstein function. Then condition (C') is ful-
filled for each B-liapunov function.

Theorem 3.7 Let ® be a SDS and let 8 be in KC. Then
each B-Liapunov function | such that (C) holds, admits
the integral representation

I(z) = /O T @) k(dt),  zcE (23)

where
ou(z) = /Ooo (1(@(t.2)) — (s + 1,2))) vlds),

Proof. Let 8 be in K and let [ be a S-Liapunov function
satisfying (C). Then by Theorem 3.4, there exist a unique
B-exit law f such that I(z) = [;° fi(z)dt. By (18), we
get

froata) = = [ Qu(@(r,2)) ilar) = - 5 Q. Qu(a)

(24)
On the other hand, since £;([0, 00[) = 1 and the differen-
tiation with respect to ¢ under integral sing is justified in
B, then [;° B8;(dt) = 0. Therefore, we have

%Qtu(m) = /Om(u(@(s,x)) —u(x))Bi(ds), t >0, z € E.

Now since (C') holds, then for each ¢t > 0 and x € E, the
following function is well defined

or(z) = /0 (l(q)(t,x)) —U(D(s+ t,x)))y(ds).
By letting s | 0, (24) and ([17], p. 265 ), we get
fil) = /0 (@) ~ Qu(@(r.2)) w(dr), 1 >0, 2 € E.

It follows from (5) that f, = [ ¢, Bi(ds) and we con-

clude by the well definition of x to get (23).
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4 Applications

1. One-sided stable subordinator: Let n® be
the one-sided stable subordinator of order a €]0,1],
i.e the unique convolution semigroup n® = (n)¢>0 on
[0, 00 such that for each ¢ > 0, the Laplace Transform
L) (r) = exp(—tr®) for r > 0. Moreover, following
([17], p.263), the measure n{* has a density, denoted by
gy, with respect to A. If we consider o = %, then the sub-

ordinator 77% is called the Inverse Gaussian subordinator
(cf. [3], p. 869). In this case (cf. [18], p. 268)

_3 —t?

ts2 exp(z), t>0.

F ol

1
s) = 1jp. oof(s
Following (cf. [3], p. 869), for each o €]0,1[, n* € K.
Let @ be a SDS and let [ be a n®-Liapunov function.
Following Theorem 3.4, in the special case if a = %7 lis
on the form

_3 /212

I(x) = \/ZTT/ODO /Oool(@(s,x)) s2 (E - 1)6%52 dsdt

for all z € E. Moreover, if (C) holds then by Theorem
3.7 each n®-Liapunov function ! admits the integral rep-
resentation

I(x) = ﬁ /000 o (z) t*tdt, reE,
where
@A@:FuiOOAW<K©@x»K¢@+Lx»);ﬁr

2. Gamma subordinator: The I'-subordinator v :=
(7)e>0 is given by 4 := hy - X where
Lo

1]0700[(8)7 st eXp(_S)7

0 t>0.

ht(S) =

In this case & = [~ ydt = d - X where
d(t) := exp(—t) /Oo L o1y
= exp(— — :
) T

Moreover v € K (cf. [3], p. 874). Let ® be a SDS,
by application of Theorem 3.4, each I'-Liapunov function
admits the integral representation

l(z) = /000 /000 W(®(s,x)) Srt(t; (II:((;)) —log s) e dsdt,

for all t > 0 and x € E. Moreover, if (C) holds then
by Theorem 3.7 each I'-Liapunov function ! admits the
integral representation

l(z) = /OOO oi(x) k(t) dt, r ek,

pir(x) = /0°° (l(@(s +t,2)) — U(D(¢, :v)))sil exp(—s) ds.

3. Compound Poisson subordinator: Let ¢ be an
arbitrary probability measure on [0, co[. With ¢; := {q}*/
such that gy = €9 and fixed ¢ > 0, the following semigroup
(ctf. [3], p. 870)

oo )
_ ct)?
Ti=e Ctz( ,') aj,

i=o J

t>0,

is called Compound Poisson subordinator. Moreover, the
Bernstein function associated to 7 := (7¢)¢~0 which is
bounded is given by f(r) = c¢L(go — q)(r), r > 0. Note
that 7 € K. For ¢ = €1, we obtain the Poisson subordina-
tor with jump c. In particular, if we consider the Poisson
subordinator with jump 1 by Theorem 3.7 and Remark
3.6.4 each 7T-Liapunov function [ is on the form

@)= 3 falo),

where

fula) = 1(B(t, ) — U(D(t+1,2)), t>0.
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