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Abstract—The traditional Value at Risk (VaR) is
a very popular tool for measuring market risk, but
it does not incorporate liquidity risk. This paper
proposes an extended VaR model to integrate liquid-
ity risk in intraday trading strategies when analyzing
high frequency order book data. We estimate the one
step ahead liquidity adjusted intraday VaR (LAIVaR)
for both bid and ask positions, considering several
threshold trading sizes. We also quantify the liquid-
ity risk premium by comparing our result with the
standard VaR approach, applying the approach in 3
UK bank stocks. The liquidity risk premia of differ-
ent volumes for the Northern Rock stock are larger
on the bid side in 5 minutes and 10 minutes trading
intervals. In contrast, in the case for the Royal Bank
of Scotland, the liquidity risk premium on the ask side
is larger than on the bid side when the volume is high.
For HSBC, the liquidity risk premium is roughly the
same on both sides.

Keywords: Liquidity adjusted intraday VaR, liquidity
risk premium, asymmetric market behaviour.

1 Introduction

The growth of the risk management industry can be
traced directly to the increased volatility of financial mar-
ket since the early 1970s. Liquidity risk is a key factor
of the cause of many serious market crises. The infa-
mous disaster from the Long Term Capital Management
(LTCM) in late 1998, Russian financial crisis in 1998 and
the collapse of credit market in 2008 evidence the dangers
of ignoring the effects of liquidity. In September 2007,the
British retail bank Northern Rock could not refinance it-
self in the credit market and faced bankruptcy due to
the lack of liquidity. These big lessons teach us that the
liquidity plays a very important role in financial mar-
kets, in particular when it comes to trading. Therefore, a
good risk measurement has to take liquidity risk in to ac-
count. However, the definition of liquidity is ambiguous
and has many different interpretations. “A liquid mar-
ket is a market in which a bid-ask price is always quoted,
its spread is small enough and small trades can be im-
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mediately executed with minimal effect on price (Black
(1971))”.

A concept that is even more difficult to predict and mea-
sure is liquidity risk. In a real “friction market”, investors
hardly get the mid-price that is used in many risk applica-
tions and a more rigorous approach of risk management is
needed. Bangia, Diebold, Schuermann, and Stroughair
(1999) argue that the liquidity risk is an impor-
tant component in order to capture the overall risk.
Lawrence and Robinson (1997) stress that the failure to
consider liquidity may lead to an underestimation of the
VaR by 30%.

Although more and more market practitioners have
recognized that liquidity risk is a very serious concern
for firms, plenty studies have separately analyzed the
VaR and liquidity. Only a few studies incorporate
liquidity into VaR, not to speak of VaR at intra-
day level (see, for example, Beltratti and Morana
(1999), Dionne, Duchesne, and Pacurar (2006) or
Colletaz, Hurlin, and Tokpavi (2007)). The literature
include only a few former studies where researchers have
incorporated liquidity risk with conventional VaR. In
general, there are two different methods: the first one is
the stochastic horizon method. Lawrence and Robinson
(1997) determine the holding period of VaR accord-
ing to the size of position and the characteristics of
liquidity market. The second method models market
price changes induced by the selling the underly-
ing asset within a fixed time horizon. For example,
Glosten, Jagannathan, and Runkle (1997) use this
method to derive the optimal strategy of liquidation
that maximize the value over a pre-specified period.
Therefore, they consider the impact of the size of the
position and the period of execution on the value under
liquidation of the position. Bertsimas and Lo (1998)
use a similar method to determine the dynamic optimal
strategy for minimizing the cost of execution.

The motivation for our paper is as follows: Firstly, liq-
uidity risk is a key factor for the health of the financial
system. The conventional VaR models do not take the
liquidity risk in to account. The conventional VaR mod-
els heavily rely on the implied assumption that an asset
can be traded at a certain price at any quantity within a
fixed period of time. This assumption is not realistic un-
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der real market conditions, especially in intraday trading,
as execution is not always guaranteed, i.e. the conven-
tional VaR models do not capture the liquidity risk that
traders and investors are exposed to. This paper there-
fore attempts to measure additional risk due to liquidity
in the VaR using intraday data and extends the existing
literature in the following way: We consider the endoge-
nous liquidity risk, taking into account the volume effect
to model the liquidity adjusted intraday VaR (LAIVaR),
which measured on the basis of the size of investors’ po-
sitions.

Secondly, the result shows that there is an asymmetry in
up and down movement in the equity market. Downward
movements typically have a higher magnitude than up-
ward movements. Xiangli L (2008) prove the upside risk
is important by studying upside VaR and extreme up-
side risk spillover in Chinese copper futures market and
spot market. Our paper investigates both upside and
downside VaR process. In particular, we are interested
in differentiating between both bid and ask sides since
different market sides have to face different price move-
ments as well. We estimate the one step ahead LAIVaR
of both market sides in order to quantify their real risk
position.

The outline of the paper is as follows. Section 2 provides
a literature review. Section 3 describes the methodology
and Section 4 presents the data and the empirical results.
Section 5 concludes.

2 Literature Review

2.1 Liquidity and Liquidity Risk

Liquidity plays a very important role in the financial mar-
ket. However, the definition of liquidity is ambiguous and
has several versions. Generally speaking, the liquidity is
a ability for participants to execute large trades rapidly
at with a small impact on prices (CGFS (2000)).

Figure 1: The relationship between liquid and illiquid
position of VaR and holding period (Source Dowd (1998)

Market liquidity risk can be summarized as the risk aris-
ing from the higher cost and difficulty to execute the trade

which is caused by illiquidity market. According to Dowd
(1998) “a market can be very liquid most of the time, but
lose its liquidity in a major crisis”. In general, we could
differentiate the liquidity risk between normal liquidity
risk and crisis liquidity risk. During the crisis period, the
liquidity risk should be taken more serious in to account
because market lose its liquidity. Dowd (1998) also point
out the relationship between the liquid position of VaR
and the holding period (see Figure 1). In a highly liquid
position the investors can settle the position quickly to
get the market price without any significant liquidation
cost. But in a illiquid position, one must pay liquidity
cost to close his position. The longer the investor wait,
the lower of liquidity cost. Moreover, during the waiting
period, the asset price can change in a worse way.

Bangia, Diebold, Schuermann, and Stroughair (1999) di-
vide the liquidity risk into two components. Exogenous
liquidity risk is influenced by the character of market. On
the other hand, endogenous liquidity risk is specific af-
fected by participant’s action and position. For example,
the larger the trade size, the bigger the ask-bid spread,
and the higher the endogenous liquidity risk will become.
Figure 2 shows the relationship between the endogenous
risk and the the investors’ position.

Figure 2: The effect of position size on liquidation value.
Source: Bangia, Diebold, Schuermann, and Stroughair (1999)

2.2 Models of Liquidity Adjusted VaR

Conventional VaR models have an implied assumption
which is that an asset can be traded at a fixed price within
a fixed period of time. This assumption is not realistic un-
der real market conditions. Obviously, the conventional
VaR models do not capture the liquidity risk.

Former studies reported in the literature incorporated
liquidity risk with conventional VaR by using opti-
mal execution strategy. More specifically, there are
two general methods: one is Stochastic Horizon meth-
ods; another is modeling the changing of market price
induced by the selling off with fixed time horizon.
Lawrence and Robinson (1997) determine the holding pe-
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riod of VaR according to the size of position and the char-
acteristics of liquidity market. The authors use the sec-
ond kind of method which is deriving the optimal strategy
of liquidation that will maximize the value over a fixed
time horizon. Glosten, Jagannathan, and Runkle (1997)
therefore consider the impact of the size of the position
and the period of execution on the value under liquidation
of the position. Bertsimas and Lo (1998) use the similar
method to derive the dynamic optimal strategy with the
aim of minimizing the expected cost.

Bangia, Diebold, Schuermann, and Stroughair (1999)
develop a liquidity adjusted VaR (LAVaR) model (named
as the BDSS model after the name of the authors) which
is a fundamental framework for integrating liquidity risk
into the standard VaR. The BDSS model mainly focuses
on exogenous liquidity risk which take the bid-ask
spread into account. The LAVaR simply represents the
sum of conventional VaR (computed by mid-price) and
the liquidity risk adjusted part (computed by ask-bid
spread).

LAV aR = Midt[(1− eµ−ασ) +
1

2
(S + α′σ̃)] (1)

where Midt is the mid-price of the asset at time t, S =
(Ask−Bid)/Mid is the the average relative spread, σ̃ is
the volatility of relative spread and α′ is the quantle of
the relative spread distribution.

However, the BDSS model has several drawbacks: Firstly,
the model is based on the normal distribution which dif-
fers from reality. Secondly, the method ignores the en-
dogenous liquidity risk which is also important. Thirdly,
the assumption of perfect correlation between liquidity
risk and VaR would lead to an overestimation of the
LAVaR. Erwan (2001) extends the BDSS model by us-
ing the weighted average spread which incorporates the
endogenous risk effect instead of the ask-bid spread. He
also points out that for illiquid stocks, the endogenous
liquidity risk represents half of the total market risk and
must not be neglected.

Hisata and Yamai (2000) propose a framework for the
quantification of the LAVaR model that considers the
market impact induced by the trader’s own liquidation.
They derive the optimal execution strategy according to
level of market liquidity and the scale of the investor’s
position. They choose the holding period as an endoge-
nous variable and provide both a discrete time model and
continuous time model for LAVaR measurement.

Further, Agnelidis and Benos (2006) investigate intraday
LAVaR in Athens Stock Exchange and extend the model
from Madhavan, Richardson, and Roomans (1997) by in-
corporating trading volume and take both endogenous
and exogenous liquidity risk into account. Their result
also shows that the liquidity risk must not be neglected.
Moreover, the LAVaR exhibits a U-shaped pattern

throughout the day. In contrast, Giot and Gramming
(2006) introduce a GARCH model to derive the LAVaR
in an automated auction market. Their empirical model
is based on the BDSS framework and model the liquidity
risk by calculating the weighted average bid price from
the real order book data. They incorporate the endoge-
nous risk impact by corresponding the trader’s position.
Their result shows that liquidity in VaR accounts signifi-
cantly and the liquidity risk exhibits an L-shape pattern
throughout the day.

Agnelidis and Benos (2006) investigate intraday LAVaR
in Athens Stock Exchange. They extend the model from
Madhavan, Richardson, and Roomans (1997) by taking
in to account trading volume and both endogenous and
exogenous liquidity risk. Their result also shows that the
liquidity risk must not be neglect. Moreover, the LAVaR
exhibits a U-shaped pattern throughout the day.

As showed in Figure 3, the conventional VaR model like
RiskMetrics (Morgan (1996)) measures the uncertainty
of assets returns and do not include the liquidity risk. So
a improved approach of modeling VaR should take the
whole market risk into account.

Figure 3: Taxonomy of Market Risk and
the VaR Models (Source: Adapted from
Bangia, Diebold, Schuermann, and Stroughair (1999).)

2.3 Multivariate GARCH Models

Multivariate GARCH models were initially developed in
the late 1980s. Basically the models study the mov-
ing process both of variance and covariances which is
different with univariate GARCH models. There are
three important classes of multivariate models, namely
(a) the VECH model, (b) the diagonal VECH model
Bollerslev, Engle, and Wooldridge (1998) and (c) the
BEKK model Engle and Kroner (1995).

The VECH model is proposed by
Bollerslev, Engle, and Wooldridge (1998) which is
the original version of the multivariate GARCH model:

Yt = µt + εt (2)
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with εt | Ψt−1 ∼ N(0,Ht), and

V ech(Ht) = C+
q∑

i=1

AiV ech(εt−iε
′
t−i)+

p∑

j=1

BjV ech(Ht−j)

(3)
where Yt is an N × 1 vector which denotes the return
at time t, µt is the conditional mean of Yt, εt is the in-
novation vector, Ψt−1 is the set of information available
time t − 1, C is a N(N + 1)/2 × 1 vector, Ai and Bj

are N(N + 1)/2×N(N + 1)/2 matrices, and V ech(.) de-
notes the column-stacking operator applied to the lower
portion of an N ×N symmetric matrix.

The number of parameters in VECH model equals:
2N(N+1)+N2(N+1)2(p+q)

4 . For example, if we assume N=2,
and the simple GARCH(1,1) model, then there are 21 pa-
rameters need to be estimated; if N=3, then there are 78
parameters need to be estimated. Thus, the estimation
of VECH model is very complex.

Therefore Bollerslev, Engle, and Wooldridge (1998) de-
velop the diagonal VECH model in order to reduce the
parameters to estimate in VECH model, which is written
as:

hij,t = ωij + αijεi,t−1εj,t−1 + bijhij,t−1 (4)

where ωij , αij and bij are parameters.

Later, Engle and Kroner (1995) present the BEKKmodel
which imposes positive definiteness restrictions to ensure
the H matrix being positive. The general format of con-
ditional covariance matrix can be represented as:

Ht = CC ′ + ΣK
k=1Σ

q
i=1Aikεt−iε

′
t−iA

′
ik

+ΣK
k=1Σ

p
i=1BikHt−iB

′
ik

(5)

where C is a lower triangular parameter matrix, Aik and
Bik are N×N matrices. As long as C is positive definite,
the conditional covariance matrix is also positive definite
because the other terms in (4) are expressed in quadratic
form.

For example, we assume K = 1 and apply GARCH(1,1)
model:

Ht = CC ′ + A11εt−1ε
′
t−1A

′
11 + B11Ht−1B

′
11 (6)

In the bivariate case, the BEKK becomes

Ht = CC ′ + A

[
ε2
1t−1 ε1t−1ε2t−1

ε2t−1ε1t−1 ε2
2t−1

]
A′

+ B

[
h11t−1 h12t−1

h21t−1 h22t−1

]
B′ (7)

where

A =
[

a11 a12

a21 a22

]
B =

[
b11 b12

b21 b22

]
.

The commonly method to estimate a multivariate
GARCH model is conditional log likelihood function
which has the following form:

L(θ) = −TN

2
ln2π − 1

2

T∑
t=1

(ln|Ht|+ εtH
−1
t εt) (8)

where θ denotes the vector of all the unknown param-
eters, and Ht = (σijt)N×N . Numerical maximization
yields the maximum likelihood estimates with asymptotic
normal standard errors.

3 Methodology

Different positions face different risks. Developing the
discussed models further, we estimate the liquidity ad-
justed intraday VaR (LAIVaR) model for the bid side,
which is for the investor who wants to buy, as well as for
the ask side, which is for the investor who wants to sell.
Researchers normally use daily data to analysis financial
problems. Compared with the low frequency data, the
shorter time horizon of high frequency data can present
more detailed information about the market behavior.
Let vi,t denote the corresponding volumes of orders queu-
ing in the book at time t at positions i = 1, ..., n. Similar
to Giot (2005), we first define for both bid (B) and ask
(A) sides the volume-weighted average prices (VWAP)
Bt(v) and At(v) to trade a certain volume v in the next
short time interval, based on the individual bid and ask
prices Bi,t(v) and Ai,t(v), i.e.

Bt(v) =

∑
j Bi,tv

BID
i,t∑

j vBID
i,t

At(v) =

∑
j Ai,tv

ASK
i,t∑

j vASK
i,t

where v is the pre-specified threshold volume to be traded
at time t when executing at least the first j queuing orders
on the bid or ask side, such that v ≤ ∑

min(n) vi,t.

This variable is an ex-ante measure of liquidity which
indicates an immediate execution trading cost. With a
given volume v (inside the depth), we can compute the
price impact by using the information of the full limited
order book data. In order to capture the liquidity risk
we adopt the model from Giot (2005) and define two log
ratio return processes as

rBID
t (v) = ln

Bt(v)
Bt−1(v)

rASK
t (v) = ln

At(v)
At−1(v)

representing the VWAP returns.

It is reported in former studies that financial intraday
data have a consistent diurnal pattern of trading activ-
ities over the course of a trading day, due to certain in-
stitutional characteristics of organized financial markets,
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such as opening and closing hours or lunch time. Since
it is necessary to take the daily deterministic seasonality
into account (Andersen and Bollerslev (1999)), smooth-
ing techniques are required to obtain deseasonalized ob-
servations. To remove the seasonality property of high
frequency data, Giot and Gramming (2006) assumed a
deterministic seasonality in the intraday volatility, and
defined the deseasonalized return as

DBID
t =

rBID
t√
φBID

t

DASK
t =

rASK
t√
φASK

t

where rt denotes the raw log VWAP-returns and φt the
deterministic seasonality pattern of intraday volatility.
Following their approach, we first chose 30 minutes in-
terval raw return as nodes for the whole trading day and
then use cubic splines to smooth the average squared sam-
ple returns in order to get the intraday seasonal volatility
component φt (see also Giot (2000) and Giot (2005)).

Having computed the deseasonalized VWAP return pro-
cess, we apply a GARCH(1,1) model

ht = α0 +
q∑

i=1

αiε
2
t−i +

p∑

i=1

βiht−i (9)

for both market sides with ht as the conditional variance
for the (deseasonalized) VWAP-returns and εt as nor-
mally distributed innovations. The LAIVaR at time t for
the two return process given confidence level α can be
modelled as

LAIVaRt = µt + Zασt (10)

with σt as the volatility component. Based on the es-
timated conditional variance, the standard deviation of
the raw return at time t is σt =

√
htφt. From (10),

we can estimate the LAIVaR for both bid and ask sides
which can be displayed as LAIVaRBID

t and LAIVaRASK
t

respectively.

In the “frictionless” market, the frictionless VaR is com-
puted by the mid-price. In order to quantify the liquidity
risk premium, we also need to compute the intraday VaR
(IV aRMID) based on the mid-price as a benchmark and
compare it with the LAIVaR. We define the log ratio re-
turn of mid price rmid,t as

rMID
t = ln(

PMID
t

PMID
t−1

) (11)

where PMID
t is the mid-price at time t and model the

mid-price return process using a GARCH(1,1) volatility
process. Similarly, the IVaR of mid-price returns at time
t− 1 is given by:

IV aRMID
t = µMID

t + ZασMID
t (12)

To compare the difference of the liquidity risk, we trans-
late our results back to price intraday VaR which means
the worst α% predicted price if one execute his asset at
time t. Most studies in the literature ignore upside risk
and only focus on the downside risk, however in our paper
the upside risk is a measure for traders who have a long
position of his asset. A higher upside risk also means a
higher cost. We define the liquidity risk premium λt as
the difference between mid-price IVaR and LAIVaR

λt =

{
1
T

∑T
t=1(PV aRm(t) − LaIV aR(t)) (D)

1
T

∑T
t=1(LaIV aR(t) − PV aRm(t)) (U)

(13)

where U and D denote upside risk and downside risk re-
spectively.

Finally, we are also interested in the relative cost of liq-
uidity risk and the difference of the LAIVaR between the
bid and ask side. To capture the LAIVaR of VWAP-
prices for different levels on both bid and ask side of the
order book jointly, we apply the dynamic conditional cor-
relation (DCC) multivariate GARCH model proposed by
Engle (2002). Consider the bivariate filtrated normally
distributed return process

rt | Ψt−1 ∼ N(0,Ht) (14)

with the covariance matrix

Ht = DtRtDt (15)

where Rt represents the correlation matrix of the returns
on both market sides. Further, Engle (2002) assumes that

Dt = diag(
√

ht) (16)
Q = (1− a− b)Q + aεt−1ε

′
t−1 + bQt−1 (17)

Rt = (diag(Qt))−
1
2 Qt(diag(Qt))−

1
2 (18)

where

Q = T−1
T∑

t=1

εtε
′
t . (19)

The residuals are assumed to be

εit = rit/
√

hit (20)

with hi,t = α0 + αiε
2
i,t−1 + βihi,t−1 where i stand for

the ith asset. Following Engle (2002), the log-likelihood
function can be written as

L(θ, ϕ) =
T∑

t=1

Lt(θ, ϕ)

= −1
2

T∑
t=1

(log|DtRtDt|+ r′tD
−1R−1

t D−1rt)

= −1
2

T∑
t=1

(2log|Dt|+ r′tD
−1rt︸ ︷︷ ︸

Lv(θ)

− ε′tεt + log|Rt|+ ε′tRtεt︸ ︷︷ ︸
Lc(θ,ϕ)

)
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allowing a two step estimation approach as it can be de-
composed into a volatility part

Lv(θ) = −1
2

T∑
t=1

(2log|Dt|+ r′tD
−2rt) (21)

=
1
2

T∑
t=1

n∑

i=1

(log(hi,t +
r2
i,t

hi,t
)) (22)

and a correlation part

Lc(θ, ϕ) = −1
2

T∑
t=1

(log|Rt|+ ε′tRtεt − ε′tεt) . (23)

Hence, we first estimate the parameters θ = (α0, αi, β) in
(22) in the univariate GARCH models, and then substi-
tute θ into (23) to estimate the parameter ϕ = (a, b).

4 The Empirical Analysis

The historical order book using empirical data is ex-
tracted from the SETS (Stock Exchange Trading Sys-
tem) that is operated by the London Stock Exchange.
The SETS is a powerful platform providing a electronic
market for the trading of the constituents of the FTSE.
This study only considers the continuous trading phase,
where the order book is open and visible for all registered
market participants. It starts after the opening auction
at 8 am, where the opening price is determined as the
price which maximizes the volume that can be traded,
and ends at 4.30 pm with the launch of the daily closing
auction. The sample period of our data ranges from 1st

March 2007 to 31st March 2007. The data set contains
full order book information including all events recorded
in the order book (limit orders, market orders, iceberg or-
ders, cancelations, changes, full/partial executions) and
their matching outcomes.

Different volume sizes executed have different liquidity
risk effect. We present two liquidity executions in this
paper which are based on a big and a small size of vol-
ume. Executing big volume orders has bigger liquidity
risk than small volume. We measure the investor’s risk
on both downside and upside risk which depend on in-
vestors’ trading strategy (short or long position). In this
paper, we choose three different liquidity stocks from the
SETS limit order book which are Northern Rock (NR),
Royal Bank of Scotland (RBS) and Hongkong and Shang-
hai Banking Corporation (HSBC). Table 1 gives a list of
several average volumes which reflect the liquidity activ-
ity for the three selected stocks and shows that HSBC
have the largest trade size in every situation. If we com-
pare the average cumulated volume of total ask and bid,
NR has the smallest size. According to these facts we
choose several different representative threshold volume
sizes to reflect different liquidity positions for each stock
indicated.

Table 1: Data description
Average volume of ... NR RBS HSBC
Best ask 2979 2038 28386
Best bid 2802 2039 18450
Best three ask orders 7504 8762 57074
Best three bid orders 6654 9015 41743
Total ask side 345420 1077160 3939042
Total bid side 346030 1116740 4348526
Threshold Size (small) 2000 10000 50000
Threshold Size (medium) 10000 50000 100000
Threshold Size (large) 20000 100000 200000

We filter every 5 minute and 10 minute snapshots of
the order book to get an equally spaced time series
data. Table 2 presents the GARCH model parameter
estimates (with the standard errors in brackets) based
on the VWAP returns for the three stocks with different
threshold volume values. For stock NR and HSBC, all α
parameters are as expected smaller than β which means
that the updated variance is mainly based on the past
variance and less effected by “news”. However for stock
RBS bid side, the past variance is mainly depend on the
“innovation” part.

Figure 4 and Figure 5 display both upside and downside
the LAIVaR (with α=5%) of prices and compares this
with the frictionless IVaR, based on a 5 minutes and 10
minutes sampling frequency. The graphs compare of the
conventional VaR result with our approach. The volume
choice can make a big difference of the estimation of VaR.
For huge size of the volume execution of all three assets,
the LAIVaR is always above the conventional VaR for
upside risk and lower for downside risk, and the differ-
ence is obvious. The LAIVaR also displays asymmetric
between upside and downside position. For algorithmic
trader who always adjust their position in short time pe-
riod, it is important to take liquidity risk in to account.
The upside and downside LAIVaR allow traders know ex-
actly how large the risk of long and short position. As
shown in the Figure 4 and Figure 5, the huge volume gain
more liquidity risk and higher cost. Hence, the conven-
tional method which use mid-price to measure IVaR is
underestimating the risk.

Figure 6 and 7 show the dynamic conditional correlation
and the conditional variance for bid and ask position of
three assets. For each asset, there are results for two
different volumes. In 5 minute case, the most fluctuant
correlation is the sample volume equal to 2000 of North-
ern Rock, which ranges from −0.7 to 1.

We examined the effect of our liquidity risk by the liquid-
ity risk premium λ. Figure 8 and 9 displays the forecasted
risk premium λ of different volume for both ask and bid
side. Liquidity risk is higher when volume size are bigger
for all three assets. For larger volume size there are more
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Table 2: Estimated Parameters at 5 minutes frequency

NR
v=2000 5 minute 10 minute

Ask Bid Ask Bid
a0 2.8047e− 7

(3.6838e−8)
2.6218e− 7
(3.5863e−8)

1.8026e− 6
(7.8993e−5)

2.2207e− 6
(5.7645e−5)

a1 0.2367
(0.0121)

0.2013
(0.0100)

0.1817
(0.0218)

0.1136
(0.0143)

β1 0.7202
(0.0193)

0.7570
(0.0169)

0.5255
(0.0088)

0.5499
(0.0087)

v=10000 Ask Bid Ask Bid
a0 3.6017e− 7

(4.5469e−8)
4.7074e− 7
(7.5653e−8)

2.1940e− 6
(7.3669e−5)

2.3968e− 6
(5.8352e−5)

a1 0.2609
(0.0105)

0.1585
(0.0131)

0.0961
(0.0230)

0.1867
(0.0526)

β1 0.6924
(0.0187)

0.73557
(0.0298)

0.5601
(0.0940)

0.5200
(0.0701)

v=20000 Ask Bid Ask Bid
a0 2.6298e− 7

(2.6819e−8)
4.3733e− 7
(5.0698e−8)

2.2782e− 6
(5.5326e−5)

3.9412e− 6
(4.1364e−5)

a1 0.2631
(0.0087)

0.1564
(0.0103)

0.1641
(0.0103)

0.1836
(0.0204)

β1 0.7148
(0.0128)

0.7630
(0.0189)

0.4838
(0.0082)

0.4796
(0.0068)

RBS
v=10000 Ask Bid Ask Bid
a0 7.6274e− 7

(3.6187e−8)
1.2803e− 6
(4.715e−8)

4.739e− 6
(4.818e−6)

4.4760e− 6
(4.3153e−6)

a1 0.2706
(0.0102)

0.4580
(0.0264)

0.3543
(0.0016)

0.5556
(0.0163)

β1 0.5710
(0.0168)

0.3041
(0.0204)

0.4001
(0.0214)

0.0012
(0.0211)

v=50000 Ask Bid Ask Bid
a0 1.9233e− 7

(1.4278e−8)
1.4687e− 6
(4.6034e−8)

5.1494e− 6
(1.8548e−7)

4.4429e− 6
(1.6625e−7)

a1 0.3472
(0.0164)

0.6126
(0.0226)

0.5928
(0.0125)

0.77175
(0.0258)

β1 0.5736
(0.0164)

0.3041
(0.0204)

0.0231
(0.0168)

0.064
(0.0243)

v=100000 Ask Bid Ask Bid
a0 1.376e− 6

(1.9968e−5)
1.5055e− 6
(4.094e−8)

4.8786e− 6
(4.898e−6)

5.9844e− 6
(5.094e−6)

a1 0.4953
(0.0142)

0.2300
(0.0201)

0.5622
(0.0142)

0.5763
(0.0136)

β1 0.5046
(0.0106)

0.2318
(0.0132)

0.3017
(0.0213)

0.012
(0.0332)

HSBC
v=50000 Ask Bid Ask Bid
a0 1.3154e− 7

(7.0776e−9)
1.5111e− 7
(7.2394e−9)

2.3042e− 7
(5.0498e−7)

2.3374e− 7
(5.2187e−7)

a1 0.3012
(0.0168)

0.2579
(0.0157)

0.4032
(0.0213)

0.4255
(0.0221)

β1 0.6371
(0.0124)

0.6429
(0.0171)

0.5344
(0.0246)

0.5526
(0.0165)

v=100000 Ask Bid Ask Bid
a0 1.0400e− 7

(7.0012e−9)
1.6348e− 7
(7.7124e−9)

5.1758e− 7
(3.0834e−8)

3.7381e− 7
(2.0726e−8)

a1 0.2383
(0.0146)

0.2953
(0.0152)

0.5839
(0.0323)

0.4229
(0.0234)

β1 0.7131
(0.0182)

0.6201
(0.0121)

0.4090
(0.0190)

0.5630
(0.0273)

v=200000 Ask Bid Ask Bid
a0 1.3685e− 7

(7.5151e−9)
1.4553e− 7
(5.9531e−9)

2.3844e− 7
(5.8665e−7)

2.4243e− 7
(5.9865e−7)

a1 0.2781
(0.0164)

0.2932
(0.0126)

0.4871
(0.0244)

0.4332
(0.0216)

β1 0.6429
(0.0161)

0.6381
(0.0126)

0.5002
(0.0192)

0.5582
(0.0298)

big jumps of risk premium which can effect the traders
who plan to execute large volumes in short time. The
risk premium also shows different with same volume but
different trading positions.

Table 3 reports the liquidity risk premium of price
LAIVaR for the three stocks with two different frequen-
cies (5 minutes and 10 minutes). The values in brackets
are the mean liquidity risk premium in percentage. The
BDSS model based on the bid-ask spread only consid-
ers price impact. For improvement, we propose LAIVaR
model to adjust conventional VaR by incorporating si-
multaneously the exogenous liquidity risk and the en-
dogenous liquidity risk. The results show how the con-
ventional VaR methods heavily underestimate the risk.
Especially for the large volume size case, liquidity risk
premium indicate a significant impact in the entire risk
profile. In contract to Giot and Gramming (2006) who
investigate the bid side liquidity risk premium, we are in-
terested in the asymmetric effect of liquidity risk in both

Table 3: LAIVaR Risk Premia (λ).
NR

5 minutes: v=2000 v=10000 v=20000
Ask 0.3370 1.0938 1.6755
(%) (0.0005) (0.0010) (0.0014)
Bid 0.8781 1.3210 2.9364
(%) (0.0008) (0.0012) (0.0025)

RBS
v=10000 v=50000 v=100000

Ask 1.9241 3.9213 9.4878
(%) (0.0011) (0.0029) (0.0048)
Bid 1.3305 6.7812 11.9636
(%) (0.0007) (0.0032) (0.0054)

HSBC
v=50000 v=100000 v=200000

Ask 0.9624 1.0362 1.4567
(%) (0.0010) (0.0013) (0.0017)
Bid 0.7133 0.07982 1.4827
(%) (0.0008) (0.0009) (0.0017)

NR
10 minutes: v=2000 v=10000 v=20000
Ask 0.4063 1.2894 1.8695
(%) (0.0004) (0.0011) (0.0016)
Bid 0.6982 1.1995 2.4876
(%) (0.0007) (0.0010) (0.0021)

RBS
v=10000 v=50000 v=100000

Ask 1.1095 1.6382 7.012
(%) (0.0008) (0.0009) (0.0048)
Bid 0.8963 3.7678 9.5969
(%) (0.0006) (0.0019) (0.0048)

HSBC
v=50000 v=100000 v=200000

Ask 0.2229 0.4780 0.6150
(%) (0.0003) (0.0005) (0.0007)
Bid 0.3769 0.5975 0.6471
(%) (0.0004) (0.0007) (0.0007)

ask and bid side. Because the asymmetric information of
two sides and ask side risk is also important especially for
investors who are in short position. For example, the liq-
uidity risk premia of different volumes for the NR stock
are larger on bid side in both 5 minutes and 10 minutes
cases. However in the case of RBS, the liquidity risk pre-
mium of ask side is larger than bid side when the volume
is high (v = 10000). For HSBC, the liquidity risk pre-
mium is roughly the same on both sides. The results also
show that the trend of liquidity risk premium is similar
in both 5 minutes and 10 minutes frequency.

General speaking, by examining the liquidity risk pre-
mium, one can reveal the liquidity risk component when
measuring the VaR model. An investor, especially for the
one who have to execute large size volume of asset, must
take into account the effect of liquidity in order to trade
more rationally.

5 Conclusion

This paper extends the conventional VaR measurement
methodology by incorporating the liquidity risk of trading
asset and trade positions of market participators. We use
the information of limited order book data to study the
asymmetric risk effect for bid and ask side.

Our method provides an new practical empirical tech-
nique which can help the algorithmic traders to quantify
their risk depending on their market position. We estab-
lish the liquidity risk premium to quantify the liquidity
risk between different volume sizes which provides a spec-
ified structure of liquidity risk. This approach improves
the BDSS model by incorporating the endogenous liquid-
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ity risk effect to instead of the ask-bid spread. Compared
with Giot and Gramming (2006), we use different real re-
turn process which can reflect the real market information
to measure liquidity adjusted intraday VaR (LAIVAR).
Furthermore, we also proposed the asymmetric behaviors
of both upside and downside LAIVaR and a liquidity risk
premium in our analysis.

Our results show that the liquidity risk is a crucial factor
in estimating VaR. Negligence of liquidity cost will lead to
underestimation of risk as the conventional VaR model.
We further contribute by studying and contrasting the
patterns of LAIVaR and liquidity risk premium between
bid side and ask side of an order drive stock market. We
provide significant and specific information for investors
who want to go long or short. Therefore, the modeling
of the LAIVaR allows investors to adjust positions with
a benchmark for the optimal order scheduling.
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Figure 4: Price IVaR (α=5%) of three companies with 5
minutes sampling frequency
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Figure 5: Price IVaR (α=5%) of three companies with
10 minutes sampling frequency
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Figure 6: Variance and correlation with different volume
sizes for 5 minutes sampling frequency
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Figure 7: Variance and correlation with different volume
sizes for 10 minutes sampling frequency
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Figure 8: Risk-premium with 5 minutes sampling fre-
quency and different volume sizes
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Figure 9: Risk-premium with 10 minutes sampling fre-
quency and different volume size
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