
Abstract—In this paper we propose a new approach for 
solving linear and nonlinear Volterra integral equations 
(LVIE, NVIE) of the first and the second kinds. First, we define 
a new problem in calculus of variations, which is equivalent to 
this kind of problem. By taking this approach, one can solve a 
large number of problems in calculus of variations. We use a 
discretisation method to obtain a nonlinear programming 
problem and in some cases a linear programming problem. 
Then by using the optimal solution of the latest (LP or NLP) 
problem, we obtain an approximate solution with a 
controllable error for the original solution.

Keywords—Volterra integral equations, Discretisation, 
Nonlinear programming. 

I. Introduction
Finding the exact solution of the integral equations 

by classical methods is sometimes too difficult, and it 
is usually very useful to find a numerical estimation of 
the exact solution. 

Consider the following Volterra integral equation of 
the second kind:

0
    ( ) ( ) ( , ) ( ( )) ,

x
u x f x k x t u t dt                 (1)

where k(.,.):R2→R is the kernel which is a known 
function, and λ is a given real parameter and f(.):R→R
is a given function. We are trying to find an 
approximate solution of equation (1) where u(.):R→R.

))(( tu is a linear or nonlinear function of u(t). Many 
different techniques have been presented so far for 
solving (1) such as Adomian's decomposition method,
series solution method and successive substitution 
method [6],[9]. In recent years many numerical 
methods are also presented for solving VIEs
[2],[5],[7],[8]. Homotopy perturbation method is 
applied in [1], [4] to solve such problems.  
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In this paper we propose a new numerical approach 
for solving the above equation, both linear and
nonlinear by discretisation and using an interpolation 
method to find a formula for solution of such integral 
equation.

The organization of this paper is as follows: in 
Section II some theorems are presented that will be 
used in later sections. Our algorithm is illustrated In 
Section III. In Section IV some examples are provided 
and the results are compared with the exact solutions. 
Section V is the conclusion. 

II. Preliminaries. Consider the following theorem

Theorem 2.1. If f(x,t) be a given function and a and b 

are constants, and let  1 2, , , nt t t  be  a set of suppo-

rt points in [a,b], where 1 2 ,na t t t b      then
1

,
1

   ( , ) lim ( , )
i nb

i ia n
i

f x t dt f x t
 




                   (2)

Proof. As we know from calculus

1
1

1

   ( , ) lim ( , ) ,
i

i

i nb t

a tn
i

f x t dt f x t dt


 




                 (3)

where 1i i it t t   and i  are arbitrary points in the 

interval 1[ , ],i it t  ( 1,2, , 1)i n  , notice that the 

subintervals are of equal length. The right-hand 
components of (3) contain integrals with small 
intervals (when n→∞ ti's get close to each other), so 
we can substitute each integral by 

1

   ( , ) ( , ) ,
i

i

t

i it
f x t dt f x t

                             (4)

where i ( 1,2, , 1)i n  are arbitrary points in the 

interval 1[ , ].i it t  Now we use (4) in the right-hand 

side of (3) to obtain
                         

1
1 1

1 1

  lim ( , ) lim ( , ) ,
i

i

i n i nt

i itn n
i i

f x t dt f x t
   

 
 

           (5)

By considering (3) and (5) together, the proof is 
completed, and we have

1
1 1

1 1

( , ) lim ( , ) lim ( , ) .
i

i

i n i nb t

i ia tn n
i i

f x t dt f x t dt f x t
   

 
 

     ▀
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Remark 1: If we choose the same distance between 
support points, from (3) we obtain the following
formula:                          

1 ( 1)

0

( , ) lim ( , )
i nb a i h

a a ihn
i

f x t dt f x t dt
   




                               

                    
1

0

lim ( , ) ,
i n

in
i

f x h
 




    

where h=
b a

n


and i (i=0,…,n-1) are arbitrary 

points in the interval 1[ , ].i it t 

The next two theorems are about some properties of 
convex functions. 

Theorem 2.2. If  y=f(x) be a convex function on a 
convex set, then any local minimum of f is a global 
one.

Proof. See [3] 

Theorem 2.3. Consider n convex vector functions

1 2, , , ,nf f f then
1

( ) ( )
n

i i
i

g x f x


  is also a 

convex function, for αi≥0, ( 1, 2, , )i n  .

Proof. It is easy to see.

III. A new approach for solving NVIE and LVIE

In this section we propose our method to find the 
numerical solution of nonlinear Volterra integral 
equation of the form

0
( ) ( ) ( , ) ( ( )) ,

x
u x f x k x t u t dt    0 1,x  (6)

where f(x), k(x,t) are given functions and λ is a given 
parameter and f is a continuous function.

The basis of our method exclusively focuses upon 
discretisation. We can rewrite (6) as follows:

0
( ) ( ) ( , ) ( ( )) 0,

x
u x f x k x t u t dt    0 1.x  (7)

(Note that we are choosing 0 1,x   since every 

interval such as [ , ]a b  can be transformed into this 
interval by a linear transformation.) Let 

0
      ( ) ( ) ( ) ( , ) ( ( )) ,

x

uE x u x f x k x t u t dt    
where Eu(x) (an error function) is a functional and 
depends on the unknown function u(x), so
Eu:Pc[0,1]→R (where Pc[0,1] is the set of all 
piecewise continuous functions on the interval [0,1]). 
To solve (7), consider the following problem: 

[0,1]
    ( ) ; 0 1,uXu Pc

Min E x dx x


                 (8)                                                                

where [0,1],X  we can even solve the following 
problem:

[0,1]
  ; 0 1 , 1,

p

u pu Pc
Min E x p


                (9)                          

where ||Eu||p=
1

( | | )p p
uX

E d  .

The following theorem is of great importance and is 
the basis of our method.

Theorem 3.1. Let u(x) be a continuous function on 
[0,1]  and a solution for (7), then u(x)  is the optimal 
solution of (8) with zero objective function and vice 
versa.

Proof. Let u1(x) be a solution for (7), which is 
continuous on [0,1], so

1 10
( ) ( ) ( , ) ( ( )) 0,

x
u x f x k x t u t dt    0 1.x                  

Hence,

1 10
( ) ( ) ( , ) ( ( )) 0.

x
u x f x k x t u t dt                               

Since u1 and f are continuous on their domains, by 
integrating both sides of the last equation on X=[0,1],
we obtain

1 10
( ) ( ) ( , ) ( ( )) 0.

x

X
u x f x k x t u t dt dx           

Thus, 0
1
uE  and this means that u1(x) is the 

optimal solution of (8) with zero objective function.
   For the converse part of the proof, we let u1(x) be the 
optimal solution of (8) with zero objective function, 
then

1 10
( ) ( ) ( , ) ( ( )) 0.

x

x
u x f x k x t u t dt dx           

Since                       

1 10
( ) ( ) ( , ) ( ( ))

x
u x f x k x t u t dt   
is an absolute function, by using Lebesgue integral 
theorems, we see that the following equality must be 
held

1 10
( ) ( ) ( , ) ( ( )) 0,

x
u x f x k x t u t dt    0 1,x 

which 

1 10
( ) ( ) ( , ) ( ( )) 0,

x
u x f x k x t u t dt   
so u1(x) is the solution of (7). ▀

Note that the same result is held between a solution of 
(7) and the optimal solution of (9). 

Remark 2: It is clear, the optimal solution for (8) is 
zero, and since zero is a local minimum of (8), by 
theorem 2.2, it is also a global one. We solve (8) 
instead of solving (7).

In what follows, we present our numerical method 
based on discretisation, for solving Eq. (7). By 
applying the result of theorem 3.1, we solve Eq. (7), by 
solving an NLP optimization problem (8).
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By theorem 2.1 we can substitute (8) by an infinite 
series 

1

0 0
( ) ( ) ( , ) ( ( ))

x
u x f x k x t u t dt dx   

1
1

0
0

lim ( ) ( ) ( , ) ( ( ))
i

i

i n x x

xn
i

u x f x k x t u t dt dx 
 




    
1

0
0

lim ( ) ( ) ( , ) ( ( )) ,
i n x

i i i
n

i

h u f k t u t dt    
 




   
                                                                                 (10)
where 

i  for ( 1,2, , 1)i n  are arbitrary points in 

the interval 1[ , ],i ix x  h=
n

1
 and ix ih .

We can choose 
i = xi, the lower bound in each 

interval; thus, (10) changes to the following:                     
1

0
0

1
lim ( ) ( ) ( , ) ( ( )) .

i
i n x

i i i
n

i

u x f x k x t u t dt
n

 
 




           (11)

If we use the same method as we discussed above to 
approximate the inner integral in (11), then we have

0 0
( , ) ( ( )) ( , ) ( ( ))

ix ih

i ik x t u t dt k x t u t dt        

2

0
( , ) ( ( )) ( , ) ( ( ))

h h

i ih
k x t u t dt k x t u t dt     

1 ( 1)

( 1)
0

( , ) ( ( )) ( , ) ( ( )) .
j iih j h

i ii h jh
j

k x t u t dt k x t u t dt 
  




      

                                                                               (12)                                                                       
Since h is small, we can approximate each integral by                    

( 1) 1
( , ) ( ) ( , ) ( )

j h

i i j jjh
k x t u t dt k x t u t

n




                                 
1

( , ) ( ),k ih jh u jh
n

            (13)

where .jt jh  Now from (12) and (13), we can reach 

the following conclusion:
1

0
0

1
( , ) ( ) ( , ) ( ).

i
j ix

i i j j
j

k x t u t dt k x t u t
n

 



              (14)

Finally, from (10),(11) and (14) we have
1

0 0
( ) ( ) ( , ) ( ( ))

x
u x f x k x t u t dt dx   

1

0
0

1
lim ( ) ( ) ( , ) ( ( ))

i
i n x

i i i
n

i

u x f x k x t u t dt
n

 
 




             

11

0 0

1
lim ( ) ( ) ( , ) ( )

j ii n

i i i j jn
i j

u x f x h k x t u t
n


  


 

   
                                                                                (15)

To solve (8), we find ui=u(xi) ( 1,2, , ),i n  so that 
(15) is minimized. We are now dealing with an NLP 
problem and we can use different software to find a 
solution for this problem such as Matlab or 
Mathematica. By theorem 2.3, (15) is a convex 

function; hence, if zero is a local minimum of (8), it is 
also a global minimum of (15).

After finding ui ( 1,2, , ),i n  we can use an 
interpolation method to fit a curve to these data and 
find a relation for u(x). 

To make this approach more clear, let us choose 
n=10, and divide the interval [0,1] into ten 
equidistance subintervals, so h=0.1, then we have

1

0 0
( ) ( ) ( , ) ( ( ))

x
u x f x k x t u t dt dx   
.1

0 0
( ) ( ) ( , ) ( ( ))

x
u x f x k x t u t dt dx    

.2

.1 0
( ) ( ) ( , ) ( ( ))

x
u x f x k x t u t dt dx    

.3

.2 0
( ) ( ) ( , ) ( ( ))

x
u x f x k x t u t dt dx     

1

.9 0
( ) ( ) ( , ) ( ( ))

x
u x f x k x t u t dt dx    

0

0
0.1 (0) (0) (0, ) ( ( ))u f k t u t dt    

.1

0
0.1 (.1) (.1) (.1, ) ( ( ))u f k t u t dt    

.2

0
0.1 (.2) (.2) (.2, ) ( ( ))u f k t u t dt     

.9

0
0.1 (.9) (.9) (.9, ) ( ( ))u f k t u t dt    
0.1 (0) (0)u f   

(.1) (.1) 0.1 (.1, 0) ( (0))u f k u   
.1

0
(.2) (.2) ( (.2, ) ( ( ))u f k t u t dt    

.2

.1
                 (.2, ) ( ( )) )k t u t dt  

.1

0

.2 .9

.1 .8

(.9) (.9) ( (.9, ) ( ( ))

 + (.9, ) ( ( )) (.9, ) ( ( )) )

u f k t u t dt

k t u t dt k t u t dt

 

 

  

  



 

0.1 (0) (0)u f  
(.1) (.1) .1 (.1, 0) ( (0))u f k u   

(.2) (.2) .1 [ (.2, 0) ( (0))

                   + (.2, .1) ( (.1))]

u f k u

k u

 



  



(.9) (.9) .1 [ (.9,0) ( (0))

(.9,.1) ( (.1)) (.9,.8) ( (.8))]   (16)

u f k u

k u k u

 

 

  

   

Now, by finding the minimum value of (16) and 
determining approximate values for u(xi)
( 1,2, , ),i n  and using an interpolation function, 
we can find a relation for the unknown function u(x).
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Remark 3: If in (9), we choose p >1, we can change 
the problem to a nonlinear programming problem and 
use special software to solve the problem and find 
more accurate results. 

Remark 4: In this method, we can control the 
accuracy of the results. For example, if we want the 
total error to be less than a given number ε, it is just 
needed to add this as a constraint to the problem, and 
instead of solving (9), solve the following:

           
[0,1]

p

u pu Pc
Min E


                            

                    s.t

                    
p

u p
E         

where 0 1,x   and for any 1.p 

IV. Some numerical examples of NVIE and LVIE
      

In this section, we solve some examples by our
method, and compare the numerical results with the 
values of exact solutions.

Example 4.1. Consider the following Volterra integral 
equation:

0
( ) 2cos( ) 3 ( )sin( ) ,   0 1.

x
u x x u t t dt x       (17)

We intend to use (9) to solve this problem. Clearly,
(0) 2.u  The exact solution of this problem is

         3(cos 1)( ) (2 / 3) 1 2 .xu x e   
Now, we use our method to solve this equation. 
Instead of solving (17), we consider the following 
optimization problem. Let p=2, from (9) we have

1 2

0 0
   | ( ) 2cos( ) 3 ( )sin( ) |

x
Min u x x u t t dt dx  

.01 .02 12 2 2

0 .01 .99
,Min dx dx dx          

                                                                                 (18)

where  
0

( ) 2 cos( ) 3 ( ) sin( ) .
x

u x x u t t dt    
Here we choose h=.01 and use a finite series instead of 
an infinite one. Similar to the process which results in
(16), we conclude that (18) equals to the following:

20

0

2.01

0

2.02

0

2.99

0

 .01( (0) 2cos(0) 3 ( )sin )

  +.01( (.01) 2cos(.01) 3 ( )sin )

  +.01( (.02) 2cos(.02) 3 ( )sin )

  +.01( (.99) 2cos(.99) 3 ( )sin ) .  

Min u u t tdt

u u t tdt

u u t tdt

u u t tdt

 

 

  

 











Now by using theorem 2.1 for solving inner integrals,
we have

2

2

2.01 .02

0 .01

2.01 .99

0 .98

 .01[ (0) 2 cos(0)]

  +.01[ (.01) 2 cos(.01) 3 (0) sin 0]

  +.01[ (.02) 2 cos(.02)

 3( ( ) sin ( ) sin )]

 +.01[ (.99) 2 cos(.99)

 3( ( ) sin ( ) sin )] .  

Min u

u u

u

u t tdt u t tdt

u

u t tdt u t tdt



 


  



  

 

 





Finally, we have the following optimization problem
to solve

2

2

2

2

 .01[ (0) 2cos(0)]

  +.01[ (.01) 2cos(.01)]

  +.01[ (.02) 2cos(.02) .03 (.01)sin(.01)]

  +.01[ (.03) 2cos(.03)

 .03( (.01)sin(.01) (.02)sin(.02))]  

  +.01[ (.99) 2cos(.99)

 .03( (.01)sin(.01)

Min u

u

u u

u

u u

u

u





 


  


  




2(.98)sin(.98))] .    (19)u

                                                             

With an initial condition u(0)=2, we have solved (19) 
by Matlab software, and obtained data , u(xi)  for 

1,2, ,100i    are collected in table I. According to
these data, the value of (19) is 1.0172e-008, which is 
very close to zero. According to theorem 3.1, the 
function u(x), with the values in table I, is a solution 
for (17). By plotting these data and comparing this
graph with the graph of the exact solution, the 
accuracy of the obtained results are clear (see Fig.1). 
Obviously, if we choose a smaller h, (say h=.001)  
better results will be achieved. Now, what has just
remained is to find a formula for u(x) which
interpolates u(xi), or find a curve that fits these data in 
the best possible way. By using Spline interpolation, 
good results will be achieved.

In the following figures, dots and circles show the 
approximate values obtained by our approach and the 
connected line indicates the graph of exact solutions.

             Fig. 1. The values u(xi) of example 4.1
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Example 4.2. Solve the following non-linear integral 
equation

2

0
        ( ) 2 (4 ( )) ,   0 0.88.

x
u x t u t dt x        

Clearly u(0)=0. The exact solution of this equation is
2( ) 2 tan(2 )u x x , the results obtained by applying 

our method are gathered in table II, and the objective 
function value is 0.0015. Fig.2 shows the result.

         Fig. 2. The values u(xi) of example 4.2

Example 4.3. Consider the following NVIE:
4 2

0
( ) 2 (1/12) 0.25 ( ) ( ) ,  0 1

x
u x x x x t u t dt x           

With the exact solution u(x)=2x. Clearly u(0)=0. Using 
the proposed method and considering h=0.1, 
approximate values of u(xi) ( 1, 2, ,10)i   are 
collected in table III. In this case, the objective 
function value is 5.1270e-010. It is clear that these data 
are very close to the values of the exact solution 

( ) 2 .u x x

Example 4.4. Consider the non-linear Volterra integral 
equation,

5 3

0
    ( ) (1/5) ( ) ,   0 1,

x
u x x x tu t dt x         

with exact solution u(x)=x and u(0)=0. By choosing 
h=0.1, then the values of u(xi) ( 1,2, ,10)i   are 
given in table IV. The function value is 1.2460e-011.

Example 4.5.([9]) Now, we solve the non-linear 
Volterra integral equation as follows:

20

1
( ) tan( ) .25sin(2 ) ,

1 ( )

x
u x x x dt

u t
  


                                                                           0≤x≤1,
with the exact solution ( ) tan( ).u x x  Using the 
proposed method and  letting h=0.01,  values for u(xi) 
are presented in table V. The function value is  

4.4747e-009 . See Fig.3.

Table I. Approximate values for u(xi) of example 4.1
i=1:10 i=10:20 i=20:30 i=30:40 i=40:50 i=50:60 i=60:70 i=70:80 i=80:90 i=90:100

2.0000    
2.0012    
2.0012    
2.0017    
2.0026    
2.0039
2.0057    
2.0079    
2.0105    
2.0136

2.0171
2.0210
2.0253
2.0301
2.0354
2.0410
2.0471
2.0537
2.0607
2.0681

2.0760    
2.0844    
2.0932    
2.1025    
2.1122    
2.1225
2.1332    
2.1444    
2.1562    
2.1684

2.1812
2.1945
2.2083
2.2227
2.2377
2.2532
2.2694
2.2861
2.3035
2.3216

2.3402
2.3596
2.3796
2.4004
2.4219
2.4441
2.4671
2.4909
2.5155
2.5409

2.5672
2.5944
2.6225
2.6515
2.6815
2.7124
2.7444
2.7774
2.8114
2.8466

2.8829
2.9204
2.9590
2.9989
3.0401
3.0826
3.1264
3.1716
3.2183
3.2664

3.3160
3.3672
3.4199
3.4744
3.5305
3.5884
3.6481
3.7097
3.7732
3.8387

3.9063
3.9759
4.0477
4.1218
4.1982
4.2770
4.3583
4.4421
4.5285
4.6177

4.7097
4.8045
4.9024
5.0034
5.1075
5.2150
5.3259
5.4403
5.5583
5.6801

Table IV. Approximate values for u(xi) of 
example 4.4

i=1:2 i=3:4 i=5:6 i=7:8 i=9:10

0
0.1000

0.2001
0.3003

0.4011
0.5027

0.6056
0.7104

0.8172
0.9261

Table III. Approximate values for u(xi) of 
example 4.3

i=1:2 i=3:4 i=5:6 i=7:8 i=9:10

0
0.2000

0.4000
0.5999

0.7999
0.9998

1.1997
1.3995

1.5993
1.7991

Table II. Approximate values for u(xi) of example 4.2
i=1:10
  

i=11:20
  

i=21:30
      

i=31:40
      

i=41:50
      

i=51:60
      

i=61:70
  

i=71:80
  

i=81:90
  

i=91:100
  

0         
0         
0.0008    
0.0023    
0.0046    
0.0076    
0.0112    
0.0155    
0.0205    
0.0260

0.0322
0.0389
0.0463
0.0541
0.0625
0.0714
0.0808
0.0907
0.1011
0.1119

0.1232
0.1350
0.1472
0.1598
0.1729
0.1864
0.2003
0.2146
0.2294
0.2445

0.2601
0.2762
0.2926
0.3095
0.3269
0.3447
0.3630
0.3818
0.4011
0.4209

0.4412
0.4621
0.4836
0.5058
0.5286
0.5521
0.5763
0.6013
0.6271
0.6538

0.6814
0.7100
0.7397
0.7706
0.8026
0.8360
0.8709
0.9072
0.9453
0.9851

1.0269
1.0709
1.1172
1.1660
1.2176
1.2723
1.3303
1.3920
1.4579
1.5282

1.6035
1.6845
1.7717
1.8659
1.9680
2.0791
2.2002
2.3329
2.4788
2.6400

2.8189
3.0185
3.2424
3.4952
3.7827
4.1124
4.4938
4.9399
5.4681
6.1028

6.8789
7.8482
9.0909
10.7365
13.0081
16.3179
21.5051
30.5094
48.6854
95.2489
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           Fig. 3. The values u(xi) of example 4.5

Example 4.6: Consider the following Volterra integral 
equation of the first kind

0
            cos( ) ( ) sin .

x
x t u t dt x x 

This integral equation has been solved by an 
approximate method in [7] and the exact solution of 
this integral equation is ( ) 2sin .u x x  We have 
compared the results obtained from our method by the 
exact solution in Fig.4. 

               Fig. 4. The values u(xi) of example 4.6

V. Conclusion
In this paper, we proposed a numerical method for 

solving LVIE and NVIE of the first and the second 
kind. We showed the accuracy of this method by 
solving different examples, and compared the exact 
solutions with the approximate solutions. We can also 
suggest that this approach be used for solving Volterra 
integro-differential equations as well. For this purpose,

we just need to use some approximate formulas for the 
derivatives of unknown function u. For example, we 

can use 
i

ii

x

xuxu


 )()( 1  instead of ( ),u x  and for 

higher order derivatives, one can use other formulas 
from numerical calculus. Afterward, by substituting 
these in (10) and doing the same procedure as we did 
before, we reach a discrete problem. Then, we solve 
this problem instead of solving the main integro-
differential equation.
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Table V. Approximate values for u(xi) of example 4.5
i=1:10
  

i=11:20
  

i=21:30
      

i=31:40
      

i=41:50
      

i=51:60
      

i=61:70
  

i=71:80
  

i=81:90
  

i=91:100
  

0         
0.0101    
0.0201    
0.0302    
0.0403    
0.0503    
0.0604    
0.0705    
0.0806    
0.0908

0.1009
0.1111
0.1213
0.1315
0.1417
0.1519
0.1622
0.1725
0.1829
0.1932

0.2037    
0.2141    
0.2246    
0.2351    
0.2457    
0.2563    
0.2670    
0.2777    
0.2885    
0.2994

0.3103
0.3213
0.3323
0.3434
0.3546
0.3659
0.3772
0.3887
0.4002
0.4118

0.4235    
0.4353    
0.4472    
0.4593    
0.4714    
0.4837    
0.4960    
0.5085    
0.5212    
0.5339 

0.5468
0.5599
0.5731
0.5865
0.6000
0.6137
0.6276
0.6416
0.6558
0.6703

0.6849
0.6997
0.7147
0.7300
0.7455
0.7612
0.7771
0.7934
0.8098
0.8266

0.8436
0.8609
0.8785
0.8964
0.9146
0.9332
0.9521
0.9714
0.9910
1.0110

1.0314
1.0523
1.0736
1.0953
1.1175
1.1402
1.1634
1.1872
1.2115
1.2364

1.2620
1.2881
1.3150
1.3425
1.3708
1.3999
1.4298
1.4605
1.4922
1.5248

IAENG International Journal of Applied Mathematics, 40:2, IJAM_40_2_04

(Advance online publication: 13 May 2010)

 
______________________________________________________________________________________ 




