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Abstract—We consider the differential equation

−y′′ + q(x)y = ρ2φ2(x)y for x ∈ I := [0, 1], (i)

where I contain three turning points, that is here, ze-
ros of φ. Using of the asymptotic estimates provided
in [5] for a special fundamental system of solutions of
(i) in I, we study the infinite product representation
of solutions of (i). Also, we use the infinite product
representations of the solutions to derive dual differ-
ential equations of the second order.

Keywords: Turning point, Asymptotic form,

Hadamard factorization theorem, Infinite products

1 Introduction

Differential equations with turning points have various
applications in mathematics, elasticity, optics, geophysics
and other branches of natural sciences(see[6,10,11]). The
importance of asymptotic analysis in obtaining informa-
tion on the solution of a Sturm-Liouville equation with
multiple turning points was realized by Leung [11], Olver
[15-16], Heading [6], and Eberhard, Freiling and schnei-
der in [4]. The results of [10,2,3] bring important inno-
vations to the asymptotic approximation of solutions of
Sturm-Liouville equations with two turning points. Nea-
maty and Dabbaghian [13], authors obtained Asymptotic
form of the solution of (i)with m turning points of odd-
even order. Marasi and Jodayree [12], authors considered
that the weight function has m turning points that one
is of odd order and others are of even order. In [15], au-
thors considered duality for an indefinite inverse Sturm-
Liouville problem with one turning point. In this paper
we obtain The canonical product of the solution of differ-
ential equation with turning points in a case where the
weight function has three turning points that x1 is of even
order, x2 is of odd order and x3 is of even order. Such, we
use the infinite product representations of the solutions
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to derive dual differential equations of the second order.
In future paper we will apply the the dual equations to
find the solution of an inverse problem.

2 Notations

Let us consider the real second - order differential equa-
tion

−y′′ + q(x)y = λφ2(x)y , x ∈ I = [0, 1], (1)

where λ = ρ2 is a real parameter, φ2 and q are functions.
we suppose that

φ2(x) =
3∏

ν=1

(x− xν)lνφ0(x)

where 0 < x1 < x2 < x3 < 1, lν ∈ N , φ0(x) > 0 for
x ∈ I, and φ0 is twice continuously differentiable on I.
In the other words, φ2 has in I, three zeros xν , of order
lν , ν = 1, 2, 3, where l1 is even, l2 is odd and l3 is even.
In the terminology of [ 5 ], x1 is of type I, x2 is of type
IV and x3 is of type II. Zeros xν of φ2 are called turning
points. We also assume that q is bounded and integrable
on I. Now let C(x, λ) be the solution of (1) corresponding
to the initial conditions C(0, λ) = 1, C ′(0, λ) = 0. In
order to represent the solution C(x, λ) as on Asymptotic
form we use a suitable fundamental system of solutions
(FSS) for Eq.(1) as constructed in [5 ]. Introducing some
terminology at this point we write:

[1] ≡ 1 +O(
1
λ

) , as λ −→ ∞,

[α] ≡ α+O( 1
ρσ0 ) where α ∈ C and

σ0 = min{μ1, μ2, μ3},

μν =
1

2 + lν
,

Dν,ε = [xν + ε, xν+1 − ε] and Iν,ε = [xν−1 + ε, xν − ε] ∪
[xν − ε, xν + ε] ∪ [xν + ε, xν+1 − ε].
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We know from [5] that in the sector

S−1 = {ρ| arg ρ ∈ [−π
4
, 0]},

there exists an FSS of (1) {W1,1(x, ρ),W2,1(x, ρ)}
and such that

W1,1(x, ρ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
|φ(x)|− 1

2 e
ρ
∫ x

x1
|φ(t)|dt

[1], 0 ≤ x < x1,

|φ(x)|− 1
2 cscπμ1

e
ρ
∫ x

x1
|φ(t)|dt

[1], x1 < x < x2,

W2,1(x, ρ) =

⎧⎪⎪⎨⎪⎪⎩
|φ(x)|− 1

2 e
−ρ

∫ x

x1
|φ(t)|dt

[1], 0 ≤ x < x1,

|φ(x)|− 1
2 sinπμ1 (2)

e
−ρ

∫ x

x1
|φ(t)|dt

[1], x1 < x < x2.

Since x2 is of type IV, we also have the following FSS

V1,2(x, ρ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
|φ(x)|− 1

2 e
ρ
∫ x

x2
|φ(t)|dt

[1], x1 < x < x2,

1
2 |φ(x)|− 1

2 csc πμ2
2 {eiρ

∫ x

x2
|φ(t)|dt−i π

4 [1]+

e
−iρ

∫ x

x2
|φ(t)|dt+i π

4 [1]}, x2 < x < x3,

V2,2(x, ρ) =

⎧⎪⎪⎨⎪⎪⎩
|φ(x)|− 1

2 e
−ρ

∫ x

x2
|φ(t)|dt

[1], x1 < x < x2,

2|φ(x)|− 1
2 sin πμ2

2 (3)

e
−iρ

∫ x

x2
|φ(t)|dt−i π

4 [1], x2 < x < x3,

Since x3, is of type II, we also have the following FSS

U1,3(x, ρ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
|φ(x)|− 1

2 e
iρ

∫ x

x3
|φ(t)|dt

[1], x2 < x < x3,

|φ(x)|− 1
2 cscπμ3{eiρ

∫ x

x3
|φ(t)|dt

[1] + i

cosπμ3e
−iρ

∫ x

x3
|φ(t)|dt

[1]}, x3 < x < 1,

U2,3(x, ρ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
|φ(x)|− 1

2 {e−iρ
∫ x

x3
|φ(t)|dt

[1] + i

cosπμ3e
iρ

∫ x

x3
|φ(t)|dt

[1]}, x2 < x < x3,

|φ(x)|− 1
2 sinπμ3 (4)

e
iρ

∫ x

x3
|φ(t)|dt

[1], x3 < x < 1,

It follows that the Wronskian of FSS satisfies

W (ρ) ≡W (W1,1(x, ρ),W2,1(x, ρ)) = −2ρ[1],
W (V1,2(x, ρ), V2,2(x, ρ)) = −2ρ[1],
W (U1,2(x, ρ), U2,2(x, ρ)) = −2iρ[1]

as ρ→ ∞.
We also need
{W1,1(x1, ρ),W2,1(x1, ρ)}, {V1,2(x2, ρ), V2,2(x2, ρ)}

and {U1,3(x3, ρ), U2,3(x3, ρ)}. From [5] we have

W1,1(x1, ρ) =
√

2π
2

(iρ)
1
2−μ1cscπμ1e

iπ(− 1
4+

μ1
2 )

2μ1ψ(x1)
Γ(1 − μ1)

[1],

W2,1(x1, ρ) =
√

2π
2

(iρ)
1
2−μ1eiπ(− 1

4+
μ1
2 ) 2μ1ψ(x1)

Γ(1 − μ1)
[1],

where

ψ(x1) = lim
x→x1

φ−
1
2 (x){

∫ x

x1

φ(t)dt} 1
2−μ1 . (3)

At the x = x2, we have

V1,2(x2, ρ) =
√

2π
2

(ρ)
1
2−μ2cscπμ2

2μ2ψ(x2)
Γ(1 − μ2)

[1],

V2,2(x2, ρ) =
√

2π
2

(ρ)
1
2−μ2e−i

πμ2
2 sec(

πμ2

2
)
2μ2ψ(x2)
Γ(1 − μ2)

[1].

At the x = x3, we have

U1,3(x3, ρ) =
√

2π
2

(ρ)
1
2−μ3cscπμ3e

iπ( 1
4−

μ3
2 ) 2μ3ψ(x3)

Γ(1 − μ3)
[1],

U2,3(x3, ρ) =
√

2π
2

(ρ)
1
2−μ3eiπ( 1

4−
μ3
2 ) 2μ3ψ(x3)

Γ(1 − μ3)
[1].

3 Asymptotic form of the solution

We consider the differential equation (1) with the follow-
ing conditions

C(0, λ) = 1 , C ′(0, λ) = 0· (6)

Applying the FSS {W1,1(x, ρ),W2,1(x, ρ)} for x ∈ I1,ε, we
have

C(x, ρ) = c1W1,1(x, ρ) + c2W2,1(x, ρ), (7)

that using of Cramer’s rule leads to the equation

C(x, ρ) =
1

W (ρ)
(W ′

2,1(0, ρ)W1,1(x, ρ)

−W ′
1,1(0, ρ)W2,1(x, ρ)), (8)

where W (ρ) = −2ρ[1].
Taking (2) in to account we derive
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C(x, ρ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2 |φ(x)|− 1

2 |φ(0)| 12 (eρ
∫ x

0
|φ(t)|dt[1]

+e−ρ
∫ x

0
|φ(t)|dt[1]), 0 ≤ x < x1,

1
2 |φ(x)|− 1

2 |φ(0)| 12 (cscπμ1(ρ)

e
ρ
∫ x

x1
|φ(t)|dt

[1] + sinπμ1(ρ)

e
−ρ

∫ x

x1
|φ(t)|dt

[1]), x1 < x < x2.

(9)

By virtue of (12), the following estimates are also valid:

C(x, ρ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
2 |φ(x)|− 1

2 |φ(0)| 12 eρ
∫ x

0
|φ(t)|dt

Ek(x, ρ), 0 ≤ x < x1

1
2 |φ(x)|− 1

2 |φ(0)| 12 cscπμ1e
ρ
∫ x

0
|φ(t)|dt

Ek(x, ρ), x1 < x < x2,

(10)

where

Ek(x, ρ) = [1] +
ν(x)∑
n=1

eραkβkn(x)[bkn(x)],

and α−2 = α1 = −1 , α0 = −α−1 = i , βkν(x) 	= 0
, 0 < δ ≤ βk1(x) < βk2(x) < · · · ≤ βkν(x)(x) ≤
2 max{R+(1), R−(1)}, where the integer-valued functions
ν and bkn are constant in every interval Dj,ε, j = 1, 2, 3
and

R+(x) =
∫ x

0

√
max{0, φ2(t)}dt ,

R−(x) =
∫ x

0

√
max{0,−φ2(t)}dt· (11)

Similarly using of (5) and (11) for x = x1 we find that

C(x1, ρ) =
√

2π|φ(0)| 12 (iρ)
1
2−μ1cscπμ1e

iπ(− 1
4+

μ1
2 )

2μ1ψ(x1)
4Γ(1 − μ1)

× e
ρ
∫ x1

0
|φ(t)|dt

Ek(x1, ρ). (12)

Hence we have estimated the solution of (1) defined by the
initial conditions (9) in I1,ε. In order to find the solution
in I2ε, we fix x ∈ (x1, x2) and use (3) and Cramer’s rule to
determine the connection coefficients N1(ρ), N2(ρ) with{

C(x, ρ) = N1(ρ)V1,2(x, ρ) +N2(ρ)V2,2(x, ρ),

C ′(x, ρ) = N1(ρ)V ′
1,2(x, ρ) +N2(ρ)V ′

2,2(x, ρ).
(13)

Consequently

N1(ρ) =
1
2
|φ(0)| 12 cscπμ1e

ρ
∫ x2

0
|φ(t)|dt[1],

N2(ρ) =
1
2
|φ(0)| 12 sinπμ1e

−ρ
∫ x2

0
|φ(t)|dt[1]· (14)

Substituting (12) and estimates of V1,2(x, ρ) and
V2,2(x, ρ) from (3) in the case
x2 < x < x3 we derive the continuation of the solution
to interval (x2, x3) in the form:

C(x, ρ) =
1
2
|φ(x)|− 1

2 |φ(0)| 12 (T1(ρ)e
iρ

∫ x

x2
|φ(t)|dt

[1]+

T2(ρ)e
−iρ

∫ x

x2
|φ(t)|dt

[1]) (15)

where

T1(ρ) =
1
2

cscπμ1 csc
πμ2

2
e
ρ
∫ x2

0
|φ(t)|dt−i π

4 ,

T2(ρ) =
1
2

cscπμ1 csc
πμ2

2
e
ρ
∫ x2

0
|φ(t)|dt+i π

4

+2 sinπμ1 sin
πμ2

2
e
−ρ

∫ x2

0
|φ(t)|dt−i π

4 ,

or

C(x, ρ) = 1
4 |φ(x)|− 1

2 |φ(0)| 12 cscπμ1 csc πμ2
2

×eρ
∫ x2

0
|φ(t)|dt+iρ

∫ x

x2
|φ(t)|dt−i π

4Ek(x, ρ), x2 < x < x3·
(16)

In addition, the value of C(x, ρ) at x = x2 can be calcu-
lated by taking account of (7) and (16)

C(x2, ρ) =
√

2π|φ(0)| 12 ρ 1
2−μ22μ2ψ(x2)cscπμ1cscπμ2

4Γ(1 − μ2)

×eρ
∫ x2

0
|φ(t)|dt

Ek(x2, ρ). (17)

Now for fixed x ∈ (x2, x3) and use (4) we determine the
connection coefficients B1(ρ), B2(ρ) with

C(x, ρ) = B1(ρ)U1,3(x, ρ)+B2(ρ)U2,3(x, ρ) , x2 < x < x3,

consequently

B1(ρ) = 1
2 |φ(0)| 12T1(ρ)e

iρ
∫ x3

x2
|φ(t)|dt

[1]−
i
2 |φ(0)| 12 cosπμ3T2(ρ)e

−iρ
∫ x3

x2
|φ(t)|dt

[1],

B2(ρ) = i
2 |φ(0)| 12T2(ρ)e

−iρ
∫ x3

x2
|φ(t)|dt

[1]·

(18)

By the continuation of the solution to the interval (x3, 1)

we have

C(x, ρ) = B1(ρ)U1,3(x, ρ) +B2(ρ)U2,3(x, ρ) (19)
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, x3 < x < 1,

then by (4) we obtain

C(x, ρ) = |φ(x)|− 1
2 [D1(ρ)e

iρ
∫ x

x3
|φ(t)|dt

[1]+

D2(ρ)e
−iρ

∫ x

x3
|φ(t)|dt

[1]] , x3 < x < 1, (20)

where
D1(ρ) = B1(ρ) cscπμ3,

D2(ρ) = iB1(ρ) cosπμ3 +B2(ρ) sinπμ3·

By substituting (21) in (23)we obtain the leading term of
C(x, ρ) in (x3, 1) as follows:

C(x, ρ) = 1
4 |φ(x)|− 1

2 |φ(0)| 12 cscπμ1 csc πμ2
2 cscπμ3

e
ρ
∫ x2

0
|φ(t)|dt+iρ

∫ x

x2
|φ(t)|dt−i π

4Ek(x, ρ) , x3 < x < 1·
(21)

In addition from (8) and (22) we can get the value of
C(x, ρ) at x = x3:

C(x3, ρ) =
√

2π|φ(0)| 12 ρ 1
2−μ32μ3ψ(x3)eiπ( 1

4−
μ3
2 )

8Γ(1 − μ3)
(22)

cscπμ1csc
πμ2

2
cscπμ3

×eρ
∫ x2

0
|φ(t)|dt+iρ

∫ x3

x2
|φ(t)|dt

Ek(x3, ρ)

4 The Asymptotic representation of the
canonical product

We consider the boundary value problem L1 =
L1(φ2(x), q(x), b) for Eq.(1) with boundary conditions

y(0, λ) = 1, y′(0, λ) = 0, y(b, λ) = 0.

The boundary value problem L1 for b ∈ (0, x1) has a
countable set of negative eigenvalues {λ−n (b)}n≥0. The
asymptotic distribution of each function λn(b) is of the
form

√
λ−n (b) = i

nπ∫ b

0
|φ(t)|dt

+O(
1
n

) (23)

and for x = x1 similarly from (15) we have√
−λ−n (x1) =

nπ + (πμ1
2 − π

4 )∫ x1

0
|φ(t)|dt +O(

1
n

). (24)

Such,for b ∈ (x1, x2) has a countable set of negative eigen-
values {λ−n (b)}n≥0:√

λ−n (b) = i
nπ∫ b

0
|φ(t)|dt

+O(
1
n

), (25)

and for x = x2 similarly from (20) we have√
−λ−n (x2) =

nπ + (πμ2
2 − π

4 )∫ x2

0
|φ(t)|dt +O(

1
n

). (26)

For xυ < x < xυ+1,υ ≥ 2, the boundary value prob-
lem L1, has an infinite number of positive and negative
eigenvalues,√

λ+
n (b) =

nπ − π
4∫ b

x2
|φ(t)|dt

+O(
1
n

), (27)

√
λ−n (b) = i

nπ − π
4∫ x2

0
|φ(t)|dt +O(

1
n

). (28)

Similarly for x = x3,√
λ+

n (x3) =
nπ + (πμ3

2 − π
2 )∫ x3

x2
|φ(t)|dt +O(

1
n

), (29)

√
λ−n (x3) =

nπ − π
4∫ x3

x2
|φ(t)|dt +O(

1
n

). (30)

Since the solution C(x, ρ) of the Sturm -Liouville equa-
tion defined by a fixed set of initial conditions is an entire
function of ρ for each fixed x ∈ [0, 1], thus it follows from
the classical Hadamard’s factorization theorem that such
solution is expressible as an infinite product.
Therefore, by using Hadamard’s theorem, C(x, λ) can be
represented in the form

C(x, λ) = c(b)
∞∏

n=1

(1 − λ

λn(b)
) (31)

where c(b) is a function independent of λ but may
depend on b. The sequence of λn is a zero set of C(b, λ)
for each b, so that C(b, λn) = 0, which corresponds to
eigenvalues of the boundary value problem L1

on the closed interval [0, b], 0 < b < x1. We rewrite the
infinite product as

C(b, λ) = c(b)
∏

(1 − λ

λn(b)
) = c1(b)

∏ λ− λn(b)
z2
n

(32)

with

c1(b) := c(b)
∏ −z2

n

λn(b)
,
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where zn = nπ
R−(x) . Now (26) implies that −z2

n

λn(b) =
1 + O( 1

n2 ). It follows from [7] that the infinite product∏ −z2
n

λn(b) is absolutely convergent on any compact subin-

terval of (0, x1). The function −z2
n

λn(b) is continuous and so
the O-term is uniformly bounded in b.
Theorem 1. Let C(x, λ) be the solution of (1) satisfying
the initial conditions C(0, λ) = 1, C ′(0, λ) = 0. Then for
0 < x < x1,

C(x, λ) = |φ(x)|− 1
2 |φ(0)| 12R−(x)

∏
n≥1

λ− λn(x)
z2
n

(33)

where zn = nπ
R−(x) .

proof. Let {λn(x)} be the eigenvalues of the boundary
value problem L1 on [0, x], for fixed x, 0 < x < x1 then
according to [9] we have

∏
(
λ− λn(x)

z2
n

) =
sinhR−(x)

√
λ

R−(x)
√
λ

(1 +O(
logn
n

)). (34)

Thus from (13) and (35), we obtain

c1(x) = |φ(x)|− 1
2 |φ(0)| 12R−(x).

Similarly for b = x1 again by Hadamard’s theorem we
that

C(x1, λ) = A
∏

(1 − λ

λn(x1)
) (35)

where A is constant. Let jn, n = 1, 2, ... be the sequence
of positive zeros of the Bessel function of order μ1, then

−j2n
R2−(x1)λn(x1)

= 1 +O(
1
n2

),

so the infinite product∏ −j2n
R2−(x1)λn(x1)

are absolutely convergent.Consequently we may write as
before,

C(x1, λ) = A1

∏ (λ− λn(x1))R2
−(x)

j2n
(36)

where

A1 = A
∏ −j2n

R2−(x1)λn(x1)
.

Theorem 2. For b = x1,

C(x1, λ) =
|φ(0)| 12ψ(x1)R−(x1)

1
2+μ1

2μ1

×
∏
n≥1

(λ− λn(x1))R2
−(x1)

j2n
(37)

where the sequence λn(x1) represents the sequence of neg-
ative eigenvalues of the boundary value problem L1 on
[0, x1].
proof. According to [14] the infinite product∏
n≥1

(λ− λn(x1))R2
−(x1)

j2n
= 2μ1Γ(1 + μ1)[i

√
λR−(x1)]−μ1

Jμ1(i
√
λR−(x1))(1 +O(

logn
n

))

uniformly on the Circles |λ| = n2π2

R2
−(x1)

.

Thus it follows from (15), we obtain

A1 =
|φ(0)| 12ψ(x1)R−(x1)

1
2+μ1

2μ1
.

Theorem 3. For x1 < x < x2,

C(x, λ) = |φ(x)|− 1
2 |φ(0)| 12R−(x) cscπμ1

∏
m≥1

λ− λm(x)
z2
m

(38)

proof. Similarly for x1 < x < x2, we use from (13) and
(35).
Theorem 4. For x = x2, we have

C(x2, λ) =
|φ(0)| 12ψ(x2)R−(x2)

1
2+μ2 cscπμ1

2μ2

∏
n≥1

(λ− λn(x2))R2
−(x2)

j2n
. (39)

proof. The proof is similar in every respect to that of
theorem 2 and so is omitted.
For x2 < x < x3, the boundary value problem L1 on [0, x]
has an infinite number of positive and negative eigenval-
ues , say, respectively, {λ+

n }, {λ−n }. By Hadamard’s the-
oram, the solution on [0, x], x2 < x < x3 is of the form

C(x, λ) = d(x)
∏

(1 − λ

λ−n (x)
)(1 − λ

λ+
n (x)

). (40)

Now let j̃n, n = 1, 2, 3, ..., be the positive zeros of J ′
1(z),

derivative of the Bessel function of order one. The distri-
bution of j̃n is of the form

j̃n = m2π2 − mπ2

2
+O(1), (41)

(see [1]). Consequently, we have

j̃2n
R2

+(x)λ+
n (x)

= 1 +O(
1
n2

),
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−j̃2n
R2−(x)λ−n (x)

= 1 +O(
1
n2

). (42)

Consequently, the infinite products

∏ j̃2n
R2

+(x)λ+
n (x)

,
∏ −j̃2n

R2−(x)λ−n (x)
(43)

are absolutely convergent for each x2 < x < x3. There-
fore we may write

C(x, λ) = c2(x)
∏ (λ− λ−n (x))R2

−(x2)
j̃2n

∏ (λ+
n (x) − λ)R2

+(x)
j̃2n

(44)

where

c2(x) = d(x)
∏ j̃2n

R2
+(x)λ+

n (x)

∏ −j̃2n
R2−(x)λ−n (x)

.

Theorem 5. For x2 < x < x3,

C(x, λ) =
π

8
|φ(x)|− 1

2 |φ(0)| 12

×(R−(x)R+(x))
1
2 cscπμ1 cscπ

μ2

2

×
∏
n≥1

(λ− λ−n (x))R2
−(x2)

j̃2n

∏
n≥1

(λ+
n (x) − λ)R2

+(x)

j̃2n
. (45)

proof. From [14] we have

∏
n≥1

(λ− λ−n (x))R2
−(x2)

j̃2n

∏
n≥1

(λ+
n (x) − λ)R2

+(x)

j̃2n

=
4eR−(x)

√
λ

πR
1
2−(x)R

1
2
+(x)

√
λ
{cos(R+(x)

√
λ− π

4
) +O(

1√
λ

)}

as λ→ ∞. Thus we get

C2(x) =
π

8
|φ(x)|− 1

2 |φ(0)| 12 (R−(x)R+(x))
1
2

cscπμ1 cscπ
μ2

2
.

Theorem 6. For x3 < x < 1,

C(x, λ) =
π

8
|φ(x)|− 1

2 |φ(0)| 12 (R−(x)R+(x))
1
2

cscπμ1 cscπ
μ2

2
cscπμ3 (46)

×
∏
n≥1

(λ− λ−n (x))R2
−(x2)

j̃2n

∏
n≥1

(λ+
n (x) − λ)R2

+(x)

j̃2n
.

proof. This follows from (24) and (47).
We can proceed similarly for b = x3 to obtain

C(x3, λ) = C3(x)
∏
n≥1

(λ− λ−n (x3))R2
−(x2)

j̃n

∏
n≥1

(λ+
n (x3) − λ)R2

+(x3)
r̃n

. (47)

where C3(x) are constant and j̃n is the sequence of pos-
itive zeros J ′

1(z) and r̃n is the sequence of positive zeros
of Jμ3+

3
2
(z).

Theorem 7. For x = x3, we have

C(x3, λ) =
√
π|φ(0)| 12ψ(x3)R−(x2)

1
2Rμ3

+ (x3)
4Γ(μ3 + 1

2 )
(48)

× cscπμ1 cscπ μ2
2

×
∏
n≥1

(λ− λ−n (x3))R2
−(x2)

j̃n

∏
n≥1

(λ+
n (x3) − λ)R2

+(x3)
r̃n

.

proof. We have∏
n≥1

(λ− λ−n (x3))R2
−(x2)

j̃n

∏
n≥1

(λ+
n (x3) − λ)R2

+(x3)
r̃n

= 2μ3+
1
2 Γ(μ3 +

1
2
)(R+(x3)

√
λ)−(μ3− 1

2 )M, (49)

where

M =
1

2πρ
√
R+(x3)R−(x2)

eρR−(x2)+iρR+(x3)−πμ3
2 i[1],

thus, we get

C3(x) =
√
π|φ(0)| 12ψ(x3)R−(x2)

1
2Rμ3

+ (x3)
4Γ(μ3 + 1

2 )

cscπμ1 cscπ
μ2

2
.

5 The dual equation

In this section, we drive the dual equations associated
with (1) by use of infinite product representation.
Theorem 8. For 0 < x < x1, the sequences of functions
{λn(x)} satisfy

λ′′ +
2c′(x)λ′n
c(x)

+ 2λnλ
′
n

∑
i�=n,1≤i

λ′

λ2
i

(1 − λn(x)
λi(x)

)−1
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−2
(λ′n)2

λn
= 0, (50)

where c(x) is defined in (35).
proof. For 0 < x < x1,the condition C(x, λn(x)) = 0
gives,

∂C

∂x
+
∂C

∂λ
λ′n = 0,

The sequence λn represents the sequence of negative
eigenvalues of L1 on (0, x1). With differentiating again

∂2C

∂x2
+ 2

∂2C

∂x∂λ
λ′n +

∂2C

∂λ2
(λ′n)2 +

∂C

∂λ
λ′′n = 0. (51)

The first term in (53) is zero at (x,n (x)) by virtue of (1).
Thus

2
∂2C

∂x∂λ
λ′n +

∂2C

∂λ2
(λ′n)2 +

∂C

∂λ
λ′′n = 0. (52)

Now, we first calculate the various derivatives of C(x, λ).
In the case, from (35), it can be written

C(x, λ) = c(x)
∞∏

k=1

(1 − λ

λk(x)
). (53)

We calculate ∂C
∂λ , ∂2C

∂λ2 and ∂2C
∂x∂λ at the points (x, λn(x))

by using (56). In forming ∂2C
∂λ∂x from (56), the interchange

of summation and differentiation in

d

dx

∑
k≥1

(1 − λ

λk(x)
)

will be valid if the differentiated series∑
k �=n

−λn(x)λ′k(x)
(λk(x) − λn(x))λk(x)

is uniformly convergent which is the case from [16]. We
define Tn by

Tn = Tn(x, λn(x)) =
∏

k �=n,1≤k

(1 − λn(x)
λk(x)

). (54)

We have

∂C

∂λ
(x, λn) =

−cTn

λn(x)
,

∂2C

∂λ2
(x, λn) =

2cTn

λn(x)

∑
i�=n,1≤i

1
λi

(1 − λn(x)
λi(x)

)−1,

∂2C

∂λ∂x
(x, λn) =

−c′Tn

λn(x)
+
cλ′nTn

λ2
n(x)

−c(x)Tn

∑
i�=n,1≤i

λ′i
λ2

i

(1 − λn(x)
λi(x)

)−1 −

cλ′nTn

λn

∑
i�=n,1≤i

1
λi

(1 − λn(x)
λi(x)

)−1.

Placing these terms into (55), we obtain

λ′′ +
2c′(x)λ′n
c(x)

+

2λnλ
′
n

∑
i�=n,1≤i

λ′

λ2
i

(1 − λn(x)
λi(x)

)−1 − 2
(λ′n)2

λn
= 0. (55)

where c(x) is defined in (35).
We note that dividing Eq. (53) by λ′n and integrating
from a fixed number α 	= −1 up to x, we obtain

λ′n(x) =
λ2

n(x)λ′n(α)c2(α)
λ2

n(α)c2(x)
e−2sn(x,λn), (56)

where

Sn(x, λn) =
∑
i�=n

∫ x

α

λ′iλn

λi
(λi − λn)−1.

Similarly, for x1 < x < x2, using λn, the sequence of
negative eigenvalues on (x1, x2) and

C(x, λ) = u(x)
∞∏

k=1

(1 − λ

λk(x)
), (57)

where u(x) = |φ(x)|− 1
2 |φ(0)| 12R−(x) cscπμ1, we obtain

λ′n(x) =
λ2

n(x)λ′n(α)u2(α)
λ2

n(α)u2(x)
e−2sn(x,λn), (58)

Sn(x, λn) =
∑
i�=n

∫ x

β

λ′iλn

λi
(λi − λn)−1.

where x1 < β < x < x2.

2
∂2C

∂x∂λ
λ′n +

∂2C

∂λ2
(λ′n)2 +

∂C

∂λ
λ′′n = 0. (59)

Theorem 9. For x2 < x < x3, the sequences of functions
{λ+

n } and {λ−n } satisfy

λ+′′
n +

2d′(x)λ+′
n

d(x)

+2λ+
nλ

+′
n {

∑
i�=n,1≤i

λ+′
i (λ+

i (x) − λ+
n (x))−1

λ+
i
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+
∑
i�=n

λ−
′

i

λ−i
(λ+

i (x) − λ+
n (x))−1} − 2

(λ+′
n )2

λ+
n

= 0, (60)

λ−
′′

n +
2d′(x)λ−

′
n

d(x)

+2λ−n λ
+′
n {

∑
i�=n,1≤i

λ−
′

i

λ−i
(λ−i (x) − λ−n (x))−1

+
∑
i�=n

λ+′
i (λ−i (x) − λ−n (x))−1

λ+
i

} − 2
(λ−

′
n )2

λ−n
= 0, (61)

proof. The conditions ϕ(x, λ+
n (x)) = 0 and

ϕ(x, λ−n (x)) = 0 give the equations

2
∂2ϕ

∂x∂λ
λ+′

n +
∂2ϕ

∂λ2
(λ+′

n )2 +
∂ϕ

∂λ
λ+′′

n = 0,

2
∂2ϕ

∂x∂λ
λ−

′
n +

∂2ϕ

∂λ2
(λ−

′
n )2 +

∂ϕ

∂λ
λ−

′′
n = 0. (62)

From (43), we have

C(x, λ) = d(x)
∏

(1 − λ

λ−n (x)
)(1 − λ

λ+
n (x)

). (63)

As before, we calculate the various derivatives of C(x, λ)
and evaluate these at the fixed points (x, λ+

n (x)),
(x, λ−n (x)). Suppose

Gn = Gn(x, λ+
n (x)) =

∏
k �=n,1≤k

(1 − λ+
n (x)
λ+

k (x)
), (64)

Hn = Hn(x, λ+
n (x)) =

∏
1≤k

(1 − λ+
n (x)
λ−k (x)

). (65)

We have

∂C

∂λ
(x, λ+

n ) =
−dHnGn

λ+
n (x)

,

∂2C

∂λ2
(x, λ+

n ) =
2dHnGn

λ+
n (x)

∑
1≤i

1
λ−i (x) − λ+

n (x)
+

2dHnGn

λ+
n (x)

∑
1≤i,i �=n

1
λ+

i (x) − λ+
n (x)

,

∂2C

∂λ∂x
(x, λ+

n ) =
−d′(x)HnGn

λ+
n (x)

+
d(x)λ+′

n HnGn

λ+2
n (x)

−d(x)λ
+′
n HnGn

λ+
n (x)

∑
1≤i

1
λ−i (x) − λ+

n (x)

−d(x)HnGn

∑
1≤i

λ−
′

i

λ−i
(λ−i (x) − λ+

n (x))−1

−d(x)HnGn

∑
1≤i,i �=n

λ+′
i

λ+
i

(λ+
i (x) − λ+

n (x))−1

−d(x)λ
+′
n HnGn

λ+
n (x)

∑
1≤i,i �=n

1
λ+

i (x) − λ+
n (x)

Placing these terms into (65), we obtain (63).
Similarly for negative Eigenvalue λ−n (x) we get (64). In
this case, dividing Eq. (63) by λ+′

n , Eq. (64) by λ−
′

n and
integrating from b up to x, we obtain

λ+′
n (x) =

λ+2
n (x)λ+′

n (b)d2(b)
λ+2

n (b)d2(x)
e2Zn(x,λ+

n ,λ−
n ), (66)

λ−
′

n (x) =
λ−2

n (x)λ−
′

n (b)d2(b)
λ−2

n (b)d2(x)
e2Zn(x,λ−

n ,λ+
n ), (67)

where

Zn(x, λ−n , λ
+
n ) =

∑
i�=n

∫ x

b

λ+′
i λ+

n

λ+
i

(λ+
i − λ+

n )−1dν

+
∑

i

∫ x

b

λ−
′

i λ+
n

λ−i
(λ−i − λ+

n )−1dν (68)

Similarly, for x3 < x < 1,

λ+′
n (x) =

λ+2
n (x)λ+′

n (1)f2(1)
λ+2

n (1)f2(x)
e2Zn(x,λ+

n ,λ−
n ), (69)

λ−
′

n (x) =
λ−2

n (x)λ−
′

n (1)f2(1)
λ−2

n (1)f2(x)
e2Zn(x,λ−

n ,λ+
n ), (70)

where

Zn(x, λ−n , λ
+
n ) =

∑
i�=n

∫ 1

x

λ+′
i λ+

n

λ+
i

(λ+
i − λ+

n )−1dν

+
∑

i

∫ 1

x

λ−
′

i λ+
n

λ−i
(λ−i − λ+

n )−1dν. (71)
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