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Global Existence of Solution for Reaction
Diffusion Systems
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Abstract—The aim of this paper is to study the
global existence in time of solutions for some class of
reaction-diffusion systems. Our techniques of proof
are based on Lyapunov functional methods and some
L? estimates. Our goal is to show, under suitable
assumptions, that the proposed model have a global
solution for a large class of the functions f and g.
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1 Introduction

This paper is devoted to study the global existence of
solutions of the following reaction-diffusion system

%—a&u: [ (u,v) in ]0,+o0[ x 2 (1)
owv .
m—b&v:g(u,v) in]0,+o0[ x 2  (2)
with the following boundary conditions
gi?; - %Z =0 in 10, oo x Q. (3)

Additionally we have initial conditions
u (0,.) = ug, v(0,.) =1vg in Q (4

where u = u (t,z), v =v(t,x), ¢ € Q, A denotes the
Laplacian operator with respect to the = variable, € is
a regular and bounded domain of R™, (n > 1), @ and b
are positive constants. The initial data are assumed to
be nonnegative. Concerning the functions f and g, we
assume the following hypothesis: f (r,s) and g (r, s) are
continuously differentiable on RT x R*, such that

f(0,s) >0, and g (r,0) >0 Vr,s >0 (5)
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Assume further that

sup (| f (r,8)],]g(r,s)) <C(r+s+1)", ¥Vr,s>0
(6)

where C' is a positive constant and m > 1.

Also, we suppose that, one of the following conditions
is satisfied:

e There exist p > 2, ¢(p) > 0 and positive numbers
(B; (p)>0§i§p such that

Bi(p) f (r,8) + Bi1(p) g (r,s) < c(p) (r+s+1) (7)

where

4ab
mBi,l (p) -Bit+a(p)- (8)

e There exist ¢(1) > 0 and B; (1), 0 < ¢ <1 such that

{ Bi(1) f (r;s)+Bo(1)g(r,s) < c(1)(r+s+1)
B()(l), B1(1) >0

B} (p) <

(9)
The study of the asymptotic behavior of the system (1)-
(4) has been the object of intensive work. Many authors
have discussed this problem in some particular situa-
tions, and several results concerning global existence
and blow up have been established. We will mention
some known results about the global existence of the
system (1)-(4).

Note that, when f (u,v) = —g (u,v) = —uv?, Alikakos
[1], studied the system (1)-(4) and established a global
existence result under the assumption

2
1<cr<n:; . (10)

The method used in [1] based on some Sobolev embed-
ding theorems. In [11] Masuda obtained a global exis-
tence result for a large class of the parameter . In fact,
by using some LP estimates, he showed that the solu-
tion of problem (1)-(4) exists globally in time if ¢ > 1.
We point out that it is early known by standard results
for reaction diffusion systems that once we have the L>°
estimates then the global existence result will be a con-
sequence of these estimates. While, the L'-bound in
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time doesn’t ensure the global existence of classical so-
lutions except when a = b.

The same result in [11] was obtained by Hollis et al [§]
by exploiting the duality arguments on LP techniques,
allowing to derive the uniform boundeness of the solu-
tion.

Following Masuda’s approach, Haraux and Youkana [6]
established a global existence result of system (1)-(4)
for a large class of the function f and g. More precisely
they showed that for

f (u,v) =-9 (u,v) = —up (U) (11)

the problem (1)-(4) admits a global solution provided
that the following condition holds:

L [Log (140 ()]

v—+00 v

=0.

In the general case, that is to say for

fu,v) = =g (u,v) (12)

the positivity of the function g (u,v) together with the
maximum principle of the heat operator give the follow-
ing uniform estimate of the solution in L ()

[l (#) ] oo

where Ti,ax is the maximal time of existence. See Pazy
[12] for more details.

< ||U0 (t)”ooa vt € [07Tmax[

Based on the Lyapunov functional method and for f and
g satisfying (12), Kouachi [9] proved that the solution
of problem (1)-(4) exists globally in time if

lim [Log (14 f (u,v))] - 8ab

v——+00 v

n(a—b)* ol

We also mention the result due to Bonaved and Schmitt
[3] where the authors considered the problem (1)-(4) and
proved a global existence result of the solution under the
condition

IK>0,0>0: |f4+g9|<K(u+v+1)°

Recently, Pierre and Schmitt [13] have showed with a
counter-example that if

f(u,0) + g(u,v) <0,

the solution of the above problem may blows up in finite
time. For more general results on problems of reaction
diffusion systems, the interested reader is referred to
[4, 5,10, 2, 13, 14, 3] and the references cited therein for
more detailed account of the reaction diffusion systems.

In the present work we consider the problem (1)-(4),
where the function f and g are assumed to satisfy the
condition (6) and by adopting the Lyapunov method
combined with some LP estimates we will establish a
global existence result of the solution.

The content of this paper is as follows. In section 2,
we introduce some notations and give a local existence
result. Our main result is stated in section 3.

2 Local existence

In this section, we present some material that we shall
use in this paper, and for the sake of completeness,
we state a local existence result of the solution.
By (.,.) we denote the scalar product in L?*(Q) i.e.

o)) = |

LP() norm for 1 <p < oo, ie. |ull) = ﬁ [ u ()" dx
)

u(z,t)v(z, t)dz, and we mean by ||.||, the

and |ul|,, = ess suplu(z)|, also we denote by
z€Q

”“”c(ﬁ) = r;leag |u (z)|, the usual norms in C (9).

Since the functions f and g are continuously differen-
tiable on R™ x RT then, for any initial data in C (Q) it
is easy to check the Lipschitz continuity on bounded
subsets of the domain associated to the operator

—aA 0
A= ( oh 0 > |
Then, from the basic existence theory ( see Pazy [12])
the problem (1)-(4) admits unique classical solution

(u,v) defined on [0, Tiax[ X €. More precisely, under
the above assumptions, we have the following theorem.

Theorem 2.1 ([9]. Proposition 2.1). System (1)-
(4) admits a unique classical solution (u,v) defined on
(0, Thnaz] X Q. Moreover, if Tae < 00, then

liTm {Hu(tv )Hoo + ”’U(tv )Hoo} = 0.

t—=Tmax

In this case Taz(||uollco, ||U0]|co) called the blowing up
time.

3 Global existence

In this section we state and prove our main result on
the global existence of solution of problem (1)-(4). To
do this, it is well known that, it suffices to derive an
uniform estimate of the quantity

sup ([1£ (. ), llg (u,0)1l, )
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for some ¢ > n/2. (See [7] for instance).

The following lemma is the key element of the proof of
our result.

Lemma 3.1 Let (u(t,.),v(t,.)) be a solution of (1)-
(4). If one of the conditions (7) or (9) has been satisfied,
there would exist an integer p > 1 and a continuous
function Cp, : RT — R such that

sup (Jlw (8, )l 0 (4 ),) < G (8), ¢ < T

Proof. Let us consider the function L, defined by

Lo - | (ZC;;Bi ) u> i
i=0
= /<Zai(p)uiup_i> dx (13)
2 \i=o
where

ai(p) =CyB; (p),  i=0,..,p. (14)

Differentiating L, with respect to t yields

Q i=1
= v
_ i, p—i—1
+/<z£(p i) ; (p) u'v >8td
Q =
Consequently,
- ou
_ . i—1 —1
L, (t)-/(Zzai (p) u'~ 0P )atdx
Q i=1
. 1 i) O
*/@@ﬁl)az_l(p)u’ R ) it

Also, a simple computation leads

0+ [ (Seris-)

Q
x (f (u,v) + aAu) dx

which implies

P , ,
L, (t) = <z§1aiai (p) ullvplAu) dx

Q

Q \i=l

+/ (;iai (p) u' " P~ f (u, v)) dx

Q

From the above equality, it follows that

P
L, (t) = /Zi%‘ (p) f (u,v) '~ 1P~ dx
o i=1

+/ (Z (p—i+1) a1 (p)u'""vP"'g (u,v)

+/ <Zb (p—i+1)a;_1(p) uilvpiAv> dx

>dm

P
+ / Z (p—i+1)a;_1(p)g(u,v)u P dr
o i=1
p . .
+ / Z {aic; (p) Au}u'~'oP " dx
g =1
p . .
+ / Z (b(p—i+1)a;_1 (p) Av)u' " toP ide

At this point, we distinguish two cases:
Case 1: when p = 1, we obtain from (15)

L= / (acq (1) Au + bayg (1) Av) dx
Q

+ / (o (1) £ (u,0) + o (1) g (u,0)) d

Q

By a simple use of Green’s formula, we obtain

L (1) = / (a1 (1) £ (us0) + a0 (1) g (u,0)) d

Q
— /(Bl (1) f (u,v) + Bo (1) g (u,v)) da
Q

Using condition (9) we deduce,

L < c(l)/(u+v+1)das

Q

(15)

= c(l)/(u+v)d:ﬂ+c(1)mes(ﬂ)

Q

Then the functional L; satisfies

Lll (t) <a (1) Ly (t) + c2 (1) 5 vt < Tinax
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where

c(1)
min (o (1), a9 (1))’

e (1) = c2 (1) = ¢ (1) mes(2)

A simple integration of the above inequality gives, for
all £ < Tinax

Ly (1) < [La (0) + 2(5] exp (er (1)) — 2.

It’s not hard to see that from (13) we obtain

Ly (t) > min (s (1), a0 (1)) / (u+ v) da
> min (as (1) a0 (1)) sup (Ju (6,1 - 1o (6, )1])
Then we get
sup Ju (¢, )1y o (6 )y € 2 (8), ¥ ¢ < T (16)
where

S S
C1 (t) - min((xl(l),(xo(l))

es(1) — ed)
X { |:L1 (O) + cj(l) exp (Cl (1) t) cf(l) }

Case 2: when p > 2, we set

T= /Z {a;0 (p) Au} v~ P dx

g =1

{b(p—i+1)a;_1(p) Av}u' = P ide

+
I

i=1

A{aia; (p)u} v~ twPidx
1

<.
Il

Ab(p—i+D) a1 (p)v)u " oP de

+

:3\ D* b\
NE

o

1=1

which implies
P . .
T=Y [ Afaia; (p)u} v~ 1P~ dx
i=1

P , ,
+3 [ A{b(p—i+1)aiq (p)v}u P dx
i=1
Q

Then, Green’s formula gives
P , ,
T=-% [ V{aic; (p)u} V ('~ oP7") da
i=1

Q
_Z:p:l \Y {b (p — 1+ 1) o1 (p) ’U} \V4 (uiflvpfi) da

which implies
p . .
T= —/ Za (i — 1) i (p) u' 20~ Vudz
Qi
p—1 ?

+/ Zai (p — i) u " toP~ " VuVudr
Q

=1

P
—|—/ Zb (i—1)(p—i+1)a;_1(p)u 2P~ VuVudx
Qi
!
+/ Zb (p—i+1)(p—i)a;_1 (p)u' =P~ " 1V0dx
i=1
and therefore,

r=-{ /Ii[ai (i +1) ais (p) V2u
Q =1

+d(a+b)i(p—1)ay(p) VuVu

+o(p—i)(p—i+1)aii(p) V2v]uiflv”’ifldw}

Hence, (15) becomes

p—1
—/Q {Zai (i+1) igr (p) Vu
+b)i(p—1)a; (p) VuVou

+(
+b(p—9i)(p—i+1)a;—1 (p) V2v]ui_lvp_i_1}dx

Since «; (p) = CyB;(p), i =0,...,p then,

L, (1)

/Z {iCIi,Bi (p) fu' " oP da
i=1

P

{Z {p—i+1)C'Bi_1(p) g}

+
SR

X (uiflvpfi)}dx

p—1

[l G+ ) B ()

i=1
+ (a+b)i(p—1i)CLB;(p) VuVv
blp—i)(p—i+1)
X C’;lei_l (p) VZU]uiflvpfifl}dz

_|_
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Using the fact that

iC’; = (p—i—&—l)C’]’;l = pC’Z,:ll.

and also

i+t = i(p—1i)C}
= p-i)p-i+1C!

= p(p—-1)Cih

we conclude

> pC,Z1 [Bi(p) f + Bio1 (p) 9]

z 1

h
N
=
I
D\

x  (uT P Z)}
- /{Z YaBit1 (p) Vu
+ ( + b) i ( ) VUV’U

bB;_1 (p) V2u]u'~toP~ " 1 da.

+

The quadratic forms
aBiy1 (p) V2u + (a +b) B; (p) VuVo + bB;_1 (p) Vv

are positive since from (8) we have

9 4ab , 4
B (p) < @t b) 5Bi—1(p) Bit1(p)
Consequently,
L < p [ > CHBG) fw)
o i=1

Using condition (7) we deduce that

L,(t) < /(ZC’ T u—|—v+1)ui_lvp_i> dx

Q

P
d (p)/Zngu%P*’dl«
i=1

P
ZC’;illulflvpﬂde

IN

_|_
O\
S
—_ ©

Q
+ /Zcz 1 1 17)17 zdm
Q

p
< (p)/ZC’;:lluivp_idx
o =1
p—1
+ (p)/ Cl_jutvP e
& =0
p—1
+ (p)/ Cp_u'v?
& =0
p
< (p)/( C;,uivp_i> dz
5 \i=0
p—1
+ (p)/( C;)_luivp_i_1> dx
& \i=0

Using the fact that

ZCZ P = (w4 o)t

=0
Therefore, the last inequality can be written as
Ly0) Sl () Ly () + ¢ ) [ (o)™ do
Q

Applying Holder’s inequality to the second term in the
right hand side of the above inequality, we obtain

p—1
P
X (mes(Q))? /(u—i—v) d
Q
Since the following inequality holds,
sup C” p
0<i<p P
u+v)? Clu’U” t<—=L N "0, (p)utoP?
(u+ ; ~ min o (p); i)
0<i<p =

(Advance online publication: 13 May 2010)
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Then, we have

=

Ly, (t) < e1(p) Ly () + ¢ (p) (mes)

sup C” ’
0<i<p p=1

Nppaw | O

Hence, the functional L, satisfies the following differen-
tial inequality

Ly(t) < cr(p) Ly () +c2(p) (Lp (D)7, ¥t < Thnax
(17)
sup CZ 7
1 0<:<
c2(p) = (p)(mesQ)” m:i()
ogigp TP

which gives us, by a simple integration

(00 < (10" + S et 10 - 25

c2 (p)
p

=2 ana  p) -

By using the inequality

/Q (gai (p) uivp_’) dz

/ lop (D) P + 00 (p) Pz (18)
Q

Ly (2)

Y

It follows that

L, () > min (a0 (p), ap (p)) sup ( Iy d)
Q

Q

Hence,

"=

(L, ()7 > [min(ao(p), ap(p))]

ol (foa) (o)

And therefore, for all ¢ < Tpax
sup (Jlu (t, ), 1o (1))
(Ly (1)

(min (ag (p), ap (p))]

X

=

<

=

With (18) and (19) we obtain

sup ([l (£ )l 0 (8 )1, ) < e (), ¥ ¢ < Thnax (20)

where

cp(t) =

X

(o )0 512)

)

The proof of Lemma 3.1 is complete.

Our main result of this paper reads as follows:

Theorem 3.1 Let (u(t,.),v(t,.)) be a solution of
problem (1)-(4). We assume that the condition (6) holds
and one of the conditz'ons (7) or (9) are satisfied . In
addition if p > 22 then the solution (u(t,.),v(t,.))
exists globally in tzme.

Proof. From (6) we have
sup (| f (u,0)],1g (u,v)]) < C(u+v+1)"
Then, it follows that

sup (/ | (u,0)|% da, /g@,mdx)
Q Q
SC%/(u—H}—&—l)pdm
Q

which implies

sup (1 o) E g (w0 £) < OF [ (w ot 17
Q
(22)
On the other hand, we have
p
/(u+v+1)pda: = / ZCS(u—&-v)k dx
Q Q Lk=0
= /[1+(u—|—v)p]dx
o)
+ ZC}’;/ u+v) *da
Q

An application of Holder’s inequality leads

Zz::ig/(u—i—v)k dx )
Ko (/mdz)” (/w
Q Q
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Hence

/(u+v+1)pdx

Q
< mes (Q)-f—!(u—l-v) dzx 3
filc;]; (mes (Q))% /(u+v)” dz
k=1 )
using (21) we get
/(u—|—v)p de| = Ju(t,)+ov(t)l,

Q
< u(@ ), + v @I,
< 26 ()

and the inequality (23) can be written as follows

/(u+v+1)pdﬂc

Q
< mes (Q) + 2 (¢, ()" + Z;z’fc;f (mes (Q)) (¢, (1))

<Y "2RCE (mes () (cp ()"
k=0

Therefore,
P P
sup (11 (w,0) 1% , g (uw,v) 1% )

< Cw

> 2G5 (mes () (¢ (t))ﬂ

k=0

which gives that

sup [[f (w,0)[ 5 g (w, )l 2 < cpm (), VE < Tinax

(24)

where
P a b n
Cpom (1) = ¢ L;?“q’; (mes () (¢, (t))k] and — > o
(25)

Remark 3.1 It’s clear that conditions (5) implies the
positivity of the solution on its interval of existence. See
[7], for more details.

Remark 3.2 From both Lemma 3.1 and Theorem
3.1, we have obtained an uniform estimate of

sup (|| (w0l g (w,0)ll,) with q = £ > 4. By the

preliminary remarks, we conclude that the solution of
the given problem exists globally in time.
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