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Abstract—In this paper we present two path
planning algorithms based on Bézier curves for au-
tonomous vehicles with waypoints and corridor con-
straints. Bézier curves have useful properties for
the path generation problem. This paper describes
how the algorithms apply these properties to gen-
erate the reference trajectory for vehicles to satisfy
the path constraints. Both algorithms join a set of
low-degree Bézier curves segments smoothly to gen-
erate the path. Additionally, we discuss the con-
strained optimization problem that optimizes the re-
sulting path for a user-defined cost function. The sim-
ulation demonstrates the improvement of trajectory
generation in terms of smoother steering control and
smaller cross track error compared to previous work.
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1 Introduction

Bézier Curves were invented in 1962 by the French engi-
neer Pierre Bézier for designing automobile bodies. To-
day Bézier Curves are widely used in computer graph-
ics and animation [6]. The Bézier curves have useful
properties for the path generation problem as described
in Section 2 of this paper. Hence many path planning
techniques for autonomous vehicles have been discussed
based on Bézier Curves in the literature. Cornell Uni-
versity Team for 2005 DARPA Grand Challenge [8] used
a path planner based on Bézier curves of degree 3 in a
sensing/action feedback loop to generate smooth paths
that are consistent with vehicle dynamics. Skrjanc [7]
proposed a new cooperative collision avoidance method
for multiple robots with constraints and known start and
goal velocities based on Bézier curves of degree 4. In this
method, four control points out of five are placed such
that desired positions and velocities of the start and the
goal point are satisfied. The fifth point is obtained by
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minimizing penalty functions. Lizarraga [5] used Bézier
curves for generating spatially deconflicted paths for mul-
tiple UAVs.

Choi has presented two path planning algorithms based
on Bézier curves for autonomous vehicles with waypoints
and corridor constraints [2]. Both algorithms join cubic
Bézier curve segments smoothly to generate the reference
trajectory for vehicles to satisfy the path constraints.
Also, both algorithms are constrained in that the path
must cross over a bisector line of corner area such that
the tangent at the crossing point is normal to the bi-
sector. Additionally, that paper discuss the constrained
optimization problem that optimizes the resulting path
for user-defined cost function. Since the Bézier curve
is uniquely defined by its control points, the optimiza-
tion problem is parameterized by the location of control
points. Even though the simulation provided in that pa-
per has shown the generation of smooth routes, disconti-
nuities of the yaw angular rate have appeared at junction
nodes between curve segments. This is because the curve
segments are constrained to connect each other by only
C1 continuity, so the curvature of the path is discontinu-
ous at the nodes. (Section 2 describes this more detail.)

To resolve this problem, new path planning algorithms
were proposed [3]. The algorithms impose constraints
such that curve segments are C2 continuous in order to
have curvature continuous for every point on the path.
In addition, they give the reference path more freedom
by eliminating redundant constraints used in [2], such as
the tangent being normal to the bisector, the initial/final
heading, and symmetry of curve segments on corner area.
The degree of each Bézier curve segments are determined
by the minimum number of control points to satisfy im-
posed constraints while cubic Bézier curves are used for
every segments in [2]. The optimized resulting path is ob-
tained by computing the constrained optimization prob-
lem for the same cost function as the one in [2]. The nu-
merical simulation results provided in the paper demon-
strate the improvement of trajectory generation in terms
of smoother steering control and smaller cross track error.

The paper is organized as follows: Section 2 begins by de-
scribing the definition of the Bézier curve and its useful
properties for path planning. Section 3 discusses the con-
trol problem for autonomous vehicles, the vehicle dynam-
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ics, and vehicle control algorithms. Section 4 proposes
two path planning methods based on Bézier curves, and
discusses the constrained optimization problem of these
methods. In Section 5, simulation results of control prob-
lem for autonomous vehicles are given. Finally, Section 6
provides conclusions.

2 Bézier Curve

A Bézier Curve of degree n can be represented as

P(t) =
n∑

i=0

Bn
i (t)Pi, t ∈ [0, 1]

where Pi are control points such that P(0) = P0 and
P(1) = Pn, Bn

i (t) is a Bernstein polynomial given by

Bn
i (t) =

(
n

i

)
(1− t)n−iti, i ∈ {0, 1, . . . , n}

Bézier Curves have useful properties for path planning:

• They always passes through P0 and Pn.

• They are always tangent to the lines connecting
P0 → P1 and Pn → Pn−1 at P0 and Pn respec-
tively.

• They always lie within the convex hull consisting of
their control points.

2.1 The de Casteljau Algorithm

The de Casteljau Algorithm is named after the French
mathematician Paul de Casteljau, who developed the al-
gorithm in 1959. The de Casteljau algorithm describes
a recursive process to subdivide a Bézier curve P(t) into
two segments. The subdivided segments are also Bézier
curves. Let {P0

0,P
0
1, . . . ,P

0
n} denote the control points

of P(t). The control points of the segments can be com-
puted by

Pj
i =(1− τ)Pj−1

i + τPj−1
i+1 ,

j ∈ {1, . . . , n}, i ∈ {0, . . . , n− j} (1)

where τ ∈ (0, 1). Then, {P0
0,P

1
0, . . . ,P

n
0} are the control

points of one segment and {Pn
0 ,Pn−1

1 , . . . ,P0
n} are the

another. Figure 1 shows an example of subdividing a
cubic Bézier curve by applying the de Casteljau algorithm
with τ = .4.

This algorithm leads to the following property [2]:

Remark 1. A Bézier curve P(t) constructed by control
points {P0

0,P
0
1, . . . ,P

0
n} always passes through the point

Pn
0 computed by applying the de Casteljau algorithm and

using (1). Also, it is always tangent to Pn−1
0 Pn−1

1 at Pn
0 .

The path planning method introduced in the Section 4.2
is motivated by this property.

Figure 1: Subdividing a cubic Bézier curve with τ = .4
by the de Casteljau Algorithm.

2.2 Derivatives, Continuity and Curvature

The derivatives of a Bézier curve, referred to as the hodo-
graph, can be determined by its control points [6]. For
a Bézier curve P(t) =

∑n
i=0 Bn

i (t)Pi, the first derivative
can be represented as:

Ṗ(t) =
n−1∑

i=0

Bn−1
i (t)Di (2)

where Di, control points of Ṗ(t) are

Di = n(Pi+1 −Pi)

Geometrically, (2) provides us with a tangent vector.

The first derivative of the Bézier curve P(t) at endpoints
can be rewritten as the following equations by applying
(2).

Ṗ(0) = n(P1 −P0)

Ṗ(1) = n(Pn −Pn−1)
(3)

The higher order derivative of a Bézier curve can be ob-
tained by using the relationship of (2), iteratively. Thus
the resulting second order derivatives of P(t) at endpoints
are

P̈(0) = n(n− 1)(P2 − 2P1 + P0)

P̈(1) = n(n− 1)(Pn − 2Pn−1 + Pn−2)
(4)

Two Bézier curves P(t) and Q(t) are said to be Ck at t0
continuous [6] if

P(t0) = Q(t0),

Ṗ(t0) = Q̇(t0),
...

P(k)(t0) = Q(k)(t0)

(5)
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Figure 2: Schematic drawing of dynamic model of vehicle
motion.

The curvature of a Bézier curve P(t) =
(
x(t), y(t)

)
at t

is given by [6]

κ(t) =
|ẋ(t)ÿ(t)− ẏ(t)ẍ(t)|

(ẋ2(t) + ẏ2(t))
3
2

(6)

We can come up with the following property:

Lemma 1. For the path constructed by two Bézier curve
segments P(t)|t∈[t0,t1] and Q(t)|t∈[t1,t2], if P(t) and Q(t)
are at least C2 continuous at t1 then the path has con-
tinuous curvature for every point on it.

Proof. The curvature is expressed in terms of the first and
the second derivative of a curve in (6). Since the Bézier
curves are defined as polynomial functions of t, their k-
th derivative for all k = 1, 2, . . . are continuous. Hence,
they always have continuous curvature for all t. For two
different Bézier curves P(t) and Q(t), it is sufficient that
κ(t1), the curvature at the junction node is continuous
if Ṗ(t) = Q̇(t) and P̈(t) = Q̈(t) are continuous at t1.
Therefore, if P(t) and Q(t) are at least C2 continuous at
t1 then the path have the curvature continuous for every
point on it.

3 Problem Statement

Consider the control problem of a ground vehicle with
a mission defined by waypoints and corridor constraints
in a two-dimensional free-space. Our goal is to develop
and implement an algorithm for navigation that satisfies
these constraints. Let us denote each waypoint Wi ∈ R2

for i ∈ {1, 2, . . . , N}, where N ∈ R is the total number
of waypoints. Corridor width is denoted as wj for j ∈
{1, . . . , N − 1}, j-th widths of each segment between two
waypoints, Wj and Wj+1.

Figure 3: The position error is measured from a point
z, projected in front of the vehicle, and unto the desired
curve to point p.

3.1 Dynamic Model of Vehicle Motion

This section describes a dynamic model for motion of a
vehicle that is used in the simulation in Section 5. Fig-
ure 2 shows the schematic drawing of dynamic model of
the vehicle that is used in the simulation.

For the dynamics of the vehicle, the state and the con-
trol vector are denoted q(t) = (xc(t), yc(t), ψ(t))T and
u(t) = (v(t), ω(t))T respectively, where (xc, yc) represents
the position of the center of gravity of the vehicle. The
vehicle yaw angle ψ is defined to the angle from the X
axis. v is the longitudinal velocity of the vehicle at the
center of gravity. ω = ψ̇ is the yaw angular rate. It
follows that

q̇(t) =




cosψ(t) 0
sin ψ(t) 0

0 1


u(t)

3.2 Controls

The vehicle uses the path following technique with feed-
back corrections as illustrated in Figure 3 [4]. A position
and orientation error is computed every 50 ms. The cross
track error ycerr is defined by the shortest distance be-
tween the reference trajectory and the position of the
center of gravity of the vehicle (xc, yc). A point z is com-
puted with the current longitudinal velocity and heading
of the vehicle from the current position. z is projected
onto the reference trajectory at point p such that zp is
normal to the tangent at p. The cross track error yerr is
defined by the distance between z and p.

The steering control ω uses PID controller with respect
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Figure 4: An example of the course with four waypoints.
Gray area is the permitted area for vehicles under a cor-
ridor constraint.

to cross track error yerr.

δω = kpyerr + kd
dyerr

dt
+ ki

∫
yerrdt

4 Path Planning Algorithm

In this section, two path planning methods based on
Bézier curves are proposed. To describe the algorithms,
let us denote b̂j as the unit vector codirectional with the
outward bisector of ∠Wj−1WjWj+1 for j ∈ {2, . . . , N−
1} as illustrated in Figure 4. The planned path must
cross over the bisectors under the waypoint and the cor-
ridor constraints. The location of the crossing point is
represented as Wj + dj · b̂j , where dj ∈ R is an scalar
value. The course is divided into segments Gi by bisec-
tors. Gi indicates the permitted area for vehicles under
corridor constraint wi, from Wi to Wi+1.

Bézier curves constructed by large numbers of control
points are numerically unstable. For this reason, it is
desirable to join low-degree Bézier curves together in a
smooth way for path planning [7]. Thus both methods
use a set of low-degree Bézier curves such that the neigh-
boring curves are C2 continuous at their end nodes. This
will lead to continuous curvature on the resulting path
by Lemma 1.

The Bézier curves used for the path plannings are denoted
as iP(t) =

∑ni

k=0 Bni

k (t)·iPk for i ∈ {1, . . . , M}, t ∈ [0, 1]
where M is the total number of the Bézier curves and ni

is the degree of iP . The planned path denoted as P is a
concatenation of all iP .

4.1 Path Planning Placing Bézier Curves
within Segments

In this path planning method, the Bézier curve iP for
i ∈ {1, . . . , N − 1} are used within each segment Gi. The
planned path P are designed such that it begins from W1

and ends to WN . Furthermore, the corridor and the C2

continuity constraints are satisfied.

The control points of iP, iPk for k = {0, . . . , ni} are
determined to maintain these conditions.

• The beginning and the end point are W1 and WN .

1P0 = W1,
N−1PnN−1 = WN (7)

• The adjacent curves, j−1P and jP are C2 continuous
at the crossing point, Wj +dj ·b̂j for j ∈ {2, . . . , N−
1}.

j−1Pnj−1 = jP0 = Wj + dj · b̂j

nj−1(j−1Pnj−1 − j−1Pnj−1−1) = nj(jP1 − jP0)

nj−1(nj−1 − 1)(j−1Pnj−1 − 2 · j−1Pnj−1−1+
j−1Pnj−1−2) = nj(nj − 1)(jP2 − 2 · jP1 + jP0)

(8)

• The crossing points are bounded within the corridor.

|dj | < 1
2

min(wj−1, wj) (9)

• iPk always lie within the area of Gi.

iP1 ∈ Gi, . . . ,
iPni−1 ∈ Gi (10)

Equation (8) is obtained by applying (3), (4) and (5).
Equation (10) makes the resulting Bézier curve satisfy
the corridor constraint by the convex hull property.

At each crossing point, three control points of each ad-
jacent Bézier curve are dedicated to the C2 continuity
constraint by (2), (6), and Lemma 1. So the minimum
number of control points to satisfy the constraints inde-
pendent on the others are four for 1P, N−1P and six for
the others. ni is determined by this:

{ ni = 3, i ∈ {1, N − 1}
ni = 5, i ∈ {2, . . . , N − 2} (11)

Note that 1P0 and N−1PnN−1 are fixed in (7). j−1Pnj−1

and jP0 rely on dj in (8). Also, j−1Pnj−1−1 and
j−1Pnj−1−2 rely on jP1 and j−1P2.

So the free variables are, ∀j ∈ {2, . . . , N − 1}, P1 =
{jP1}, P2 = {jP2} and d = {dj}. The number of the
variables or the degree of freedom is 5(N − 2). The vari-
ables are computed by minimizing the constrained opti-
mization problem:
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min
P1,P2,d

J =
N−1∑

i=1

Ji (12)

subject to (9) and (10), where Ji is the cost function
of iP(t) which is defined in Section 5. As the result,
the planned trajectory goes from W1 to WN through
inside of corridor with C2 continuity at the crossing point
on the bisectors. That is, the trajectory has curvature
continuous at every point on it by Lemma 1.

4.2 Path Planning Placing Bézier Curves on
Corners

In the Section 4.1, a Bézier curve is used within each seg-
ment. Another path planning method adds quadratic
Bézier curves on the corner area around Wj , j ∈
{2, . . . , N − 1}. The quadratic Bézier curves are denoted
as jQ(t) =

∑2
k=0 B2

k(t) · jQ0
k intersects the j-th bisector.

The first and the last control point, jQ0
0 and jQ0

2 are
constrained to lie within Gj−1 and Gj , respectively.

Let tc denote the Bézier curve parameter corresponding
to the crossing point of jQ(t) on the bisector, such that

jQ(tc) = Wj + dj · b̂j . (13)

Let θj denote the angle of the tangent vector at the cross-
ing point from X-axis, such that

jQ̇(tc) =
( |jQ̇(tc)| cos θj , |jQ̇(tc)| sin θj

)
. (14)

The notations are illustrated in Figure 5. Due to the con-
straint of jQ0

0 and jQ0
2 within Gj−1 and Gj , the feasible

scope of θj is limited to the same directions as Wj+1 is
with respect to b̂j . In other words, if Wj+1 is to the
right of b̂j , then θj must point to the right of b̂j , and
vice versa.

Given jQ0
0,

jQ0
2, dj , and θj , the other control point jQ0

1

is computed such that the crossing point is located at
Wj + dj · b̂j and the angle of the tangent vector at the
crossing point is θj .

Since each control point is two-dimensional, the degrees
of freedom of jQ(t) is six. Since dj and θj are scaler,
representing jQ(t) in terms of jQ0

0,
jQ0

2, dj , and θj does
not affect the degrees of freedom. However, it comes up
with an advantage for corridor constraint. If we com-
pute jQ0

1 such as above, then the points computed by
applying the de Casteljau algorithm such that two sub-
divided curves are separated by the j-th bisector are
represented as jQ0

0 and jQ0
2 as described in the fol-

lowing. Recall that the two curves are constructed by
{jQ0

0,
jQ1

0,
jQ2

0} and {jQ2
0,

jQ1
1,

jQ0
2}. We can test if the

convex hull of {jQ0
0,

jQ1
0,

jQ2
0} lies within Gj−1 and if

that of {jQ2
0,

jQ1
1,

jQ0
2} lies within Gj in (27), instead of

testing that of {jQ0
0,

jQ0
1,

jQ0
2}. (Note that jQ0

1 is not

Figure 5: The geometry of the jQ(t) on corner area
around Wj . tc is corresponding to the crossing point
of jQ(t) on the bisector. θj is the angle of the tangent
vector at the crossing point.

constrained to lie within corridor as shown in Figure 5.)
As the result, the convex hull property is tested for more
tight condition against the corridor constraint without
increasing the degrees of freedom.

It is important to note that jQ0
0 and jQ0

2 can not be
located on different sides with respect to the line passing
through the crossing point and co-linear with the tangent
vector. Recall that the sign of curvature of jQ(t) is never
changed for all t, since it is a quadratic Bézier curve. If
jQ0

0 and jQ0
2 are at different sides with respect to the line,

then the sign of curvature of Q(t) must change around
tc, which is infeasible. Let θ0

j denote the angle of the
vector jQ(tc)− jQ0

0 as shown in Figure 5. If mod (θj −
θ0

j , 2π) is less than π or jQ̇(tc) points to the left side of
the jQ(tc)− jQ0

0, then Q0
0 is at left side with respect to

the line. Otherwise, it is at the right. The calculation
depends on which side Wj+1 is at with respect to Wj −
Wj−1. In the figure, Wj+1 is at right side with respect to
the vector. In the other case, the computation is opposite.
The same computation can be applied to θ2

j , the angle of
jQ0

2 − jQ(tc). The range of feasible θ is chosen as the
range in which jQ0

0 and jQ0
2 locate on the same side with

respect to the line. In the example shown in Figure 5, it
ranges between θ0

j and −θ2
j . This property parallels with

Lemma 2.

In order to compute jQ0
1, the world coordinate frame T

is transformed and rotated into the local frame jT where
the origin is at the crossing point, jQ(tc) and X axis is
codirectional with the tangent vector of the curve at the
crossing point, jQ̇(tc).
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Figure 6: The geometry of the control points of jQ(t)
and the points computed by applying the de Casteljau
algorithm with τ∗ with respect to jT .

Let us consider the subdivision ratio, τ∗ ∈ (0, 1) such
that the location of jQ2

0 computed by applying the de
Casteljau algorithm with it is the crossing point. In other
words, τ∗ has jQ2

0 be at the origin with respect to jT
frame. Figure 6 illustrates the control points of jQ(t)
and the points computed by applying the de Casteljau
algorithm with τ∗ with respect to jT frame. Note that
jQ2

0 is at the origin by the definition of jT and τ∗. jQ1
0

and jQ1
1 are on the X axis by the definition of jT and

Remark 1.

It is important to note the following lemma that describes
the constraint of jQ0

0 and jQ0
2 for given dj and θj . To

describe this, let the coordinate of the control points be
denoted as Q0

i =
(
xi, yi

)
, i ∈ {0, 1, 2}, where all coordi-

nates are with respect to jT .

Lemma 2. Suppose dj ∈ R and θj ∈ R are given. For
the quadratic Bézier curve jQ(t) to intersect j-th bisector
with the crossing point determined by the dj and (13),
and the tangent vector at the point determined by the θj

and (14), it is necessary that y0y2 ≥ 0.

Proof. Let
(
x(t), y(t)

)
denote the coordinate of jQ(t)

with respect to jT . By the definition of jT and Remark 1,
Q(t) passes through the origin with tangent slope of zero
with respect to jT . That is, x(tc) = 0, y(tc) = 0 and
ẏ(tc) = 0. Suppose that y0 = y(0) < 0. Since y(t) is a
quadratic polynomial, ẏ(t) > 0 and ÿ(t) < 0 for t ∈ [0, tc).
Subsequently, ẏ(t) < 0 and ÿ(t) < 0 for t ∈ (tc, 1]. Thus,
y2 = y(1) < 0 and y0y2 > 0. Similarly, if y0 > 0 then
y1 > 0.

If y0 = 0 then ẏ(t) = 0 for t ∈ [0, 1] and y2 = 0. There-
fore, y0y2 = 0.

The geometrical meaning of Lemma 2 is that for given
a crossing point and the tangent vector on it, jQ0

0 and
jQ0

2 can not be located on different sides with respect to
the line passing through the crossing point and co-linear
with the tangent vector.

We are to calculate jQ0
1 depending on whether y0y2 is

nonzero. For simplicity, superscript j is dropped from
now on.

Without loss of generality, suppose that y0 < 0 and y2 <
0. Recall that Q2

0 is at the origin and that Q1
0 and Q1

1

are on the X axis with respect to jT . Q2
0 is represented

as

Q2
0 = (1− τ∗)Q1

0 + τ∗Q1
1

by applying (1). So the coordinates of Q1
0 and Q1

1 can be
represented as

Q1
0 =

(− ατ∗, 0
)
, Q1

1 =
(
α(1− τ∗), 0

)
, α > 0 (15)

where α > 0 is some constant. Applying (1) with i = 0
and j = 1 and arranging the result with respect to Q0

1 by
using (15) gives

Q0
1 =

(− α− 1− τ∗

τ∗
x0,−1− τ∗

τ∗
y0

)
(16)

Similarly, applying (1) with i = 1 and j = 1 and arrang-
ing the result with respect to Q0

1 yields

Q0
1 =

(
α− τ∗

1− τ∗
x2,− τ∗

1− τ∗
y2

)
(17)

where α and τ∗ are obtained by equating (16) and (17):

τ∗ =
1

1 +
√

y2/y0

, α =
x0y2 − y0x2

2y0

√
y2/y0

(18)

Notice that τ∗ and α have the square root of y2/y0. So, if
y0y2 < 0 then τ∗ and α are not determined, hence, Q(t)
is infeasible. That is, (18) ends up with Lemma 2.

If y0 = y2 = 0 then all control points of jQ are on X
axis (See proof of Lemma 2). In the geometric relation of
control points and the points computed by applying the
de Casteljau algorithm as shown in Figure 7, we obtain

x0 = −(α + β)τ
x2 = (α + γ)(1− τ)
α = β(1− τ) + γτ

(19)

where α > 0, β > 0, γ > 0 are some constants. Using
(19), Q0

1 = (x1, 0) is represented in terms of arbitrary
τ ∈ (0, 1):

x1 = −1
2
(1− τ

τ
x0 +

τ

1− τ
x2

)
(20)

Then Bézier curves iP(t) for i ∈ {1, 2, . . . , N − 1} are
used within each segment Gi so that j−1P and jQ are C2
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Figure 7: The geometry of jQ(t) with respect to jT when
y0 = y2 = 0.

continuous at jQ0, jP and jQ are C2 continuous at jQ2.
The degree of iP(t), ni is determined by the minimum
number of control points to satisfy the constraint:

{ ni = 3, i ∈ {1, N − 1}
ni = 5, i ∈ {2, . . . , N − 2}

The constraints imposed on the planned path are as fol-
lows:

• The beginning and end point of P are W1 and WN .
1P0 = W1,

N−1PnN−1 = WN (21)

• j−1P(t) and jQ(t) are C2 continuous at jQ0.

j−1P0
nj−1

= jQ0
0

nj−1(j−1P0
nj−1

− j−1P0
nj−1−1) = 2(jQ0

1 − jQ0
0)

nj−1(nj−1 − 1)(j−1P0
nj−1

− 2 · j−1P0
nj−1−1+

j−1P0
nj−1−2) = 2 · 1 · (jQ0

2 − 2jQ0
1 + jQ0

0)
(22)

• jP(t) and jQ(t) are C2 continuous at jQ2.

jP0
0 = jQ0

2

nj(jP0
1 − jP0

0) = 2(jQ0
2 − jQ0

1)

nj(nj − 1)(jP0
2 − 2 · jP0

1 + jP0
0)

= 2 · 1 · (jQ0
2 − 2jQ0

1 + jQ0
0)

(23)

• The crossing points are bounded within the corridor.

|dj | < 1
2

min(wj−1, wj) (24)

• The tangent vectors at the crossing points have the
same direction as Wj+1 is with respect to b̂j .

mod (∠(Wj+1 −Wj)− ∠b̂j , 2π) > π

⇒ mod (θj − ∠b̂j , 2π) > π,

mod (∠(Wj+1 −Wj)− ∠b̂j , 2π) < π

⇒ mod (θj − ∠b̂j , 2π) < π

(25)

• jQ0
0 and jQ0

2 with respect to jT satisfies Lemma 2.

y0y2 ≥ 0 (26)

where y0 and y2 are with respect to jT .

• jQ0
0 and jQ1

0 lie within Gj−1. jQ0
2 and jQ1

1 lie within
Gj .

jQ0
0 ∈ Gj−1,

jQ1
0 ∈ Gj−1,

jQ0
2 ∈ Gj ,

jQ1
1 ∈ Gj

(27)

• {iP1, . . . ,
iPni−1} always lie within the area of Gi.

iP1 ∈ Gi, . . . , iPni−1 ∈ Gi (28)

Then 6(N − 2) free variables Q = {jQ0}, d = {dj} and
θ = {θj} for j ∈ {2, . . . , N − 1} are computed by mini-
mizing the constrained optimization problem:

min
Q,d,θ

J =
N−1∑

i=1

Ji (29)

subject to (24), (25), (26), (27), and (28).

Notice that the convex hull property is tested for jQ1
0 and

jQ1
1 of the divided curves instead of jQ0

1 in (27). As the
result, it comes up with more tight condition for curves
against the corridor constraint.

5 Simulation Results

Simulations performed in this paper use the course with
waypoints W = {Wk}, k ∈ {1, . . . , N} and corridor
width wi = 8, i ∈ {1, . . . , N − 1} for N = 4 as illus-
trated in Figure 4. The location of waypoints are given
by two-dimensional world coordinates (X, Y ) in meter
scale: W1 = (10, 5), W2 = (55, 20), W3 = (47, 65),
W4 = (70, 50). The initial position is assumed to fit to
the first waypoint of the reference path. The constant
longitudinal velocity v(t) = 10 m/s is used. The magni-
tude of ω is bounded within |ω|max = 25 rpm. The PID
gains are given by: kp = 2, kd = 1, and ki = 0.1.

Path planning methods based on Section 4.1, and 4.2 are
denoted as Bézier1 and Bézier2 respectively. Figure 8(a)
and 8(c) show the path planned by Bézier1 of [2] and of
this paper, respectively. Figure 8(b) and 8(d) are ones
by Bézier2 of the two methods. Circles indicate the lo-
cation of control points of Bézier curve segments, iP. In
Figure 8(b) and 8(d), control points of jQ are marked by
stars. All of them are obtained by solving Equation (12)
or (29) with

Ji =
∫ 1

0

[
(ai

∣∣iκ(t)
∣∣2 + bi

∣∣iκ̇(t)
∣∣2

]
dt

Where ai = bi = 1. The cost function leads to resulting
paths with larger radii of curvature for Bézier curves.
Compared to the paths generated by [2], the proposed
algorithm generated smoother paths in the turning area.
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(a) Previous Bézier1 (b) Previous Bézier2

(c) Current Bézier1 (d) Current Bézier2

Figure 8: The planned paths by previous methods of [2] (top) and by current method (bottom). The paths at left
column are planned by applying Bézier1. Those at right column are by Bézier2. Control points of iP are indicated
as ’o’ and those of jQ are ’∗’.

(a) κ of Bézier1. (b) κ of Bézier2.

Figure 9: The curvature κ by method of [2] (x) and the proposed method (o). The results of Bézier1 is at left, that
of Bézier2 is at right.
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(a) ω of Bézier1. (b) ω of Bézier2.

Figure 10: The steering control ω by previous method of [2] (x) and by current method (o). The results of Bézier1
is at left, that of Bézier2 is at right.

(a) ycerr of Bézier1. (b) ycerr of Bézier2.

Figure 11: The cross track error ycerr by previous method of [2] (x) and by current method (o). The results of
Bézier1 is at left, that of Bézier2 is at right.
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(a) Arbitrary course 1

(b) Arbitrary course 2

(c) Arbitrary course 3

Figure 12: Tracking simulation results over arbitrary courses using Bézier2 method. The planned paths are indicated
as dotted lines and the actual trajectories are solid lines.
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Figure 13: The Overbot, the autonomous ground vehicle
at Autonomous Systems Lab at UCSC.

Main difference of the proposed algorithms from the pre-
vious ones of [2] is the degree of continuity at the junction
nodes: C2. We can verify that the paths planned by the
proposed algorithms have continuous curvature for every
point on it (See Lemma 1) in Figure 9. On other hand,
the paths planned by the previous algorithms, in which
curve segments are constrained to connect each other by
only C1 continuity are discontinuous at junction nodes.

Recall that

ω = κv.

Assuming that v is continuous, if κ is continuous then
ω is continuous. Especially when v is constant as this
simulation, since ω is proportional to κ, continuity char-
acter of ω tends to follow that of κ. We can verify this in
the graphs of the steering control ω by two methods in
Figure 10. The path planned by the proposed algorithms
in Figure 10(b) has smoother steering at junction nodes,
compared to the ones obtained by [2] in Figure 10(a). The
discontinuity of ω by that method imposes large forces
and large changes in forces on the vehicle in the lateral
direction. Moreover, the proposed algorithms result in
smaller cross track error in Figure 11(a) over the one by
[2].

More tracking results over arbitrary and longer courses
are shown in Figure 12. The results are obtained by ap-
plying Bézier2 method with the same parameters used
above. These simulation results demonstrate generation
of successful routes for vehicles using the algorithm as
well as control results.

6 Conclusions and Future Work

This paper presents two path planning algorithms based
on Bézier curves for autonomous vehicles with waypoints
and corridor constraints. Bézier curves provide an effi-
cient way to generate the optimized path and satisfy the
constraints at the same time. The simulation results also

show that the trajectory of the vehicle follows the planned
path within the constraints.

These path planning algorithms will be implemented on
the Overbot as shown in Figure 13, the autonomous
ground vehicle at Autonomous Systems Lab at UCSC.

Enabling autonomous vehicles to detect unknown obsta-
cles and safely avoid them is essential to future opera-
tions. Future work will employ receding horizon control
methods to generate real-time Bézier-based optimal tra-
jectories while avoiding obstacles.
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