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Abstract—In this paper we study the diffusion limit
of the Vlasov-Maxwell-Fokker-Planck System. Here,
we generalize the one and one half dimensional case,
obtained in [5] to the case of several space dimen-
sions using global renormalized solutions. The limit
equation consists in a Drift-Diffusion equation where
the drift velocity is defined by means of the Maxwell
relation.

Keywords: Vlasov-Maxwell-Fokker-Planck system,

Drift-Diffusion model, moment method, velocity aver-

aging lemma, renormalized solution.

1 Introduction

We consider a plasma in which the dilute charged par-
ticles interact both through collisions and through the
action of their self-consistent electro-magnetic field. The
evolution of the plasma is governed by the following equa-
tions

∂tf
ε +

1
ε
v.∇xfε + (

1
ε
Eε + δ2v ∧Bε).∇vfε =

θ

ε2
LFP (fε)

:=
θ

ε2
∇v.(vf +∇vf), (t, x, v) ∈]0, T [×Rd × Rd, (1)

∂tE
ε − curlxBε = −Jε, (t, x) ∈]0, T [×Rd, (2)

δ2∂tB
ε + curlxEε = 0, (t, x) ∈]0, T [×Rd, (3)

divxEε = ρε, (t, x) ∈]0, T [×Rd, (4)

divxBε = 0, (t, x) ∈]0, T [×Rd, (5)

where δ, θ and ε are dimensionless parameters. The sys-
tem (1), (2), (3), (4), (5) is refered to as the rescaled
Vlasov-Maxwell-Fokker-Planck (VMFP for short) system
on Rd×Rd where d ≥ 1. Here fε(t, x, v) ≥ 0 is the distri-
bution function of particles, Eε, Bε stand for the electric
and magnetic fields respectively.

ρε(t, x) =
∫

Rd
fεdv, Jε(t, x) =

1
ε

∫

Rd
vfεdv.
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are respectively the charge and current densities of fε.
The dimensionless parameter ε is proportional with the
scaled thermal mean free path and also with the scaled
macroscopic velocity. We are interested in the asymptotic
regime 0 < ε << 1. For simplicity, we take δ = θ = 1.
If we neglect the magnetic field we obtain the Vlasov-
Poisson-Fokker-Planck system (VPFP for short) on Rd×
Rd where d ≥ 2,





∂tf
ε +

1
ε
v.∇xfε − 1

ε
∇xφε.∇vfε =

LFP (fε)
ε2

,

LFP (f) = ∇v.(vf +∇vf),
−4φε = ρε − p(x)

(6)
where p(x) is the density of a background of positive
charges which is assumed to be fixed. The asymptotic
behavior of this system when ε goes to 0 was stud-
ied in [11], [7] and [4]. It was shown that the limit
(ρ, φ) = lim

ε→0
(ρε, φε) solves the following Drift-Diffusion

limit
{

∂tρ +∇x.(−∇xρ− ρ∇xφ) = 0,
−4xφ = ρ− p(x). (7)

By taking as a small parameter ε the square of the ra-
tio of the thermal mean free path with respect to the
Debye length and by assuming that the distance trav-
eled by the light during the relaxation time is of the De-
bye length, Bostan-Goudon [5] has proved, in this case,
the convergence of the following VMFP system in one
and one half dimensional case, i.e fε = fε(t, x, p1, p2),
Eε = (Eε

1(t, x), Eε
2(t, x), 0) and Bε = (0, 0, Bε(t, x)) for

any (t, x, p1, p2) ∈ [0, T ]× R3.

∂tf
ε +

1
ε
v1(p).∂xfε +

(1
ε
Eε

1 + δ2v2(p)Bε
)
∂p1f

ε

+
(1

ε
Eε

2 − δ2v1(p)Bε
)
∂p2f

ε =
θ

ε2
L(fε)

:=
θ

ε2
divp(∇pf

ε + v(p)fε), (8)

∂tE
ε
1 = −1

ε

∫

Rd
v1(p)fε(t, x, v)dv + J(t, x), (9)
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∂tE
ε
2 + ∂xBε = −1

ε

∫

Rd
v2(p)fεdv, (10)

ε2δ2∂tB
ε + ∂xEε

2 = 0, (11)

∂xEε
1 = ρε(t, x)−D(t, x), (12)

where D, J : [0, T ]×R −→ R are the charge and current
densities of a background particle distribution of an op-
posite sign, satisfying D ≥ 0 and the continuity equation

∂tD + ∂xJ = 0.

The following limit system was obtained
{

θ∂tE1 + ρE1 − ∂2
xE1 = ∂xD + θJ,

∂xE1 = ρ−D
(13)

In this paper, we generalize the study done in [5]. In-
deed, if we want to work with global solutions we have
only to deal with solutions to the VMFP system which
are defined in the renormalized sense. Notice that in (1)
the main difficulty relies on the non linear term Eε.∇vfε

which is the same order of magnitude in the diffusion
Fokker-Planck term. The system is completed by pre-
scribing the initial conditions for the distribution function
fε and the electro-magnetic field (Eε, Bε)

fε(t = 0, x, v) = fε
0 (x, v), (14)

Eε(t = 0, x) = Eε
0(x), Bε(t = 0, x) = Bε

0(x), (15)

satisfying

divxEε
0(x) =

∫

Rd
fε
0 (x, v)dv, divxBε

0(x) = 0. (16)

Now, note that the Fokker-Planck operator can be writ-
ten as the following

LFP (f) = divv(e−
|v|2
2 ∇v(fe

|v|2
2 )), (17)

and therefore (1) becomes

∂tf
ε +

v

ε
.∇xfε + (v ∧Bε).∇vfε

=
1
ε2

divv(e−
|v−εEε|2

2 ∇v(fe
|v−εEε|2

2 )) (18)

We can expect from (18) that when ε → 0, the distribu-
tion fε converge to

fε(t, x, v) ' ρ(t, x)M(v), (19)

where M is the normalized Maxwellian with zero mean
velocity:

M(v) = (2π)−
d
2 e−

|v|2
2 . (20)

Let us define the Hilbert space L2
M (Rd) as

L2
M (Rd) = {f ∈ L2(Rd)/

∫

Rd
f2 dv

M
< +∞},

equipped with the inner product

< f, g >
L2

M
(Rd

)
=

∫

Rd
fg

dv

M
.

The operator LFP acting on L2
M (Rd) is unbounded, with

domain

D(LFP ) = {f ∈ L2
M (Rd)/∇v(M∇v(

f

M
)) ∈ L2

M (Rd)},

and it satisfies the following proposition

Proposition 1.1 [4] The operator LFP is continuous
on L1(dv) and satisfies
1. −LFP is self adjoint on L2

M (Rd).
2. Ker(LFP ) = RM.

3. R(LFP ) = {g ∈ L2
M (Rd)/

∫

Rd
g(v)dv = 0},

4.For all g ∈ R(LFP ), there exists f ∈ D(LFP ) such that
LFP (f) = g. This solution is unique under the solvability

condition
∫

Rd
f(v)dv = 0. We denote that f = L−1

FP (g).

5. LFP satisfies the following H-theorem for all f ∈
L1(dv) ∩D(LFP ),

∫

Rd
LFP (f) ln(

f

M
)dv = −

∫

Rd
f |∇v ln(

f

M
)|2dv.

The VMFP system is motivated to the plasma physics,
as for instance in the theory of semiconductors, the evolu-
tion of laser-produced plasmas or the description of toka-
maks. The diffusion limit has been analyzed in the kinetic
theory of semiconductors in [10] and [9] and we can see
also [4] for the VPFP system. Before giving the main
result, let us assume that the sequence of initial data sat-
isfies:
A1 : fε

0 ≥ 0,
∫
Rd

∫
Rd fε

0 (1+|x|+ |v|2
2 +| ln(fε

0 )|) dvdx < C,
for some constant C > 0 independent of ε.
A2 : Eε

0 and Bε
0 are uniformly bounded in L2(Rd).

Here, our main result to state as the following (see sec-
tion 2. for the definition of renormalized solution)

Theorem 1.2 Assume that the assumptions A1 and
A2 are satisfied. Let (fε, Eε, Bε) be a renormalized so-
lution of the VMFP system (1)-(5). Then,

fε → ρM(v) in L1(0, T ; L1(Rd × Rd)),
Eε ⇀ E in L2(0, T ; L2(Rd))− weakly.
Bε ⇀ B in L2(0, T ; L2(Rd))− weakly.

In particular, ρε converges weakly in L1(0, T ; L1(Rd))
towards ρ and (ρ, E, B) is a weak solution of the Drift-

IAENG International Journal of Applied Mathematics, 40:3, IJAM_40_3_05

(Advance online publication: 19 August 2010)

 
______________________________________________________________________________________ 



Diffusion-Maxwell system





∂tρ +∇x.J = 0, (t, x) ∈]0, T [×Rd,

∂tE − curlxB = −J, (t, x) ∈]0, T [×Rd,

∂tB + curlxE = 0, (t, x) ∈]0, T [×Rd,

divxE = ρ, (t, x) ∈]0, T [×Rd,

divxB = 0, (t, x) ∈]0, T [×Rd,
ρ(t = 0, x) = ρ0(x) =

∫
Rd f0(x, v)dv,

(21)

where f0 is the weak limit of fε
0 and J := −∇xρ + ρE.

The proof of this Theorem is as the following.
In section 2, we recall the existence of renormalized
solutions of the VMFP system. Then, in section 3, we
establish some a priori uniform estimates. In section
4, we prove the compactness of ρε using an averaging
lemma. This result will be essential in order to pass to
the limit in the equation which will be done in section 5.
In the last section we prove the regularity estimates of
(ρ,E) which will end the proof of Theorem 1.2.

2. Existence of renormalized solutions

Let us now present the definition of solutions we are go-
ing to deal with.

Definition 2.1 We say that (fε, Eε, Bε) is a renor-
malized solution to the VMFP system (1)-(5) if it satisfies
1. ∀ β ∈ C1(R+), |β(t)| ≤ C min(

√
t, 1), |√tβ′(t)| ≤ C

and |tβ′′(t)| ≤ C, β(fε) is a weak solution of





ε∂tβ(fε) + v.∇xβ(fε) +∇v.((Eε + ε(v ∧Bε))β(fε))

= β′(fε)
LFP (fε)

ε
β(fε)(t = 0) = β(fε

0 ).
(22)

2. ∀ λ > 0, θε,λ =
√

fε + λM satisfies

ε∂tθε,λ+v.∇xθε,λ+∇v.((Eε+ε(v∧Bε))θε,λ) =
LFP (fε)
2εθε,λ

+
λM

2θε,λ
v.(Eε + ε(v ∧Bε)) (23)

Remark 2.2 We point out here that the method is
based on a double renormalization. First, we write the
equation satisfied by βδ(fε) where βδ(s) = 1

δ β(δs) for all
s > 0 and fixed parameter δ > 0 and then weakly pass to
the limit when ε goes to zero. then, we renormalize the
resulting limit equation using the function

√
s + λM .

Let us define the free energy functional

Eε(t) =
1
2

∫

Rd
(|Eε|2 + |Bε|2)+

∫

Rd

∫

Rd
fε(

|v|2
2

+ ln(fε))

Proposition 2.3 The VMFP system (1)-(5) has a
renormalized solution in the sense of definition 2.1 which
satisfies in addition
1. The continuity equation

∂tρ
ε +∇x.Jε = 0, (24)

2. The entropy inequality

Eε(t) +
2
ε2

∫

Rd

∫

Rd
fε ln(

fε

ρεM
)dvdx ≤ Eε(0). (25)

Proof. After integration of (1) with respect to v ∈ Rd

we deduce that the charge and current densities of the
particles verify the conservation law:

∂tρ
ε + divx(Jε) = 0.

Now, multiplying (1) by |v|2
2 and integrating it with re-

spect to (x, v), this implies that

d

dt

∫

Rd

∫

Rd

|v|2
2

fεdvdx−
∫

Rd

∫

Rd

1
ε
Eε.vfεdvdx

= − 1
ε2

∫

Rd

∫

Rd
(vfε +∇vfε).v dvdx (26)

Multiplying (2), (3) by Eε, resp Bε and integrating it
with respect to x yields

1
2

d

dt

∫

Rd
(|Eε|2 + |Bε|2)dx = −

∫

Rd
Eε.Jεdx (27)

by combining (26) and (27), we obtain

d

dt
(
∫

Rd

∫

Rd

|v|2
2

fεdvdx +
1
2

∫

Rd
(|Eε|2 + |Bε|2)dx)

= − 1
ε2

∫

Rd

∫

Rd
(vfε +∇vfε).v dvdx. (28)

We multiply now (1) by (1+ln(fε)) and after integration
with respect to (x, v), we get

d

dt

∫

Rd

∫

Rd
fε ln(fε) dvdx

= − 1
ε2

∫

Rd

∫

Rd
(vfε +∇vfε).

∇vfε

fε
dvdx. (29)

Combining (28) and (29), we deduce that

d

dt
Eε = − 1

ε2

∫

Rd

∫

Rd
(vfε +∇vfε).(v +

∇vfε

fε
) dvdx

= − 1
ε2

∫

Rd

∫

Rd
(vfε +∇vfε)2

1
fε

dvdx

= − 1
ε2

∫

Rd

∫

Rd
(v

√
fε + 2∇v

√
fε)2 dvdx

= − 4
ε2

∫

Rd

∫

Rd
|∇v

√
fεe

|v|2
2 |2e− |v|

2

2 dvdx.

≤ − 2
ε2

∫

Rd

∫

Rd
fε ln(

fε

ρεM
)dvdx
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which is obtained by using the logarithmic Sobolev in-
equality.

3. Uniform estimates

The goal of this section is to derive uniform estimates
needed for the proof of Theorem 1.2 one can establish
for these renormalized solutions. We point out that we
try here to generalize energy estimates obtained in [5].
The following Proposition states the usual bounds for the
mass, energy and entropy.

Proposition 3.1 Assume that assumptions A1 and A2
are satisfied. Then, there exists a renormalized solution
(fε, Eε, Bε) of the VMFP system (1)-(5)which satisfies
the conclusions of Proposition 2.2.
Besides, the following quantities are bounded for any t ∈
[0, T ], with bounds which are independent of ε and t:

∫

Rd

∫

Rd
(1 + |x|+ |v|2 + | ln(fε)|)fε dvdx,

∫

Rd
(|Eε|2 + |Bε|2) dx

and

1
ε2

∫ t

0

∫

Rd

∫

Rd
|∇v

√
fεe

|v|2
2 |2e− |v|

2

2 dvdxds.

Moreover, fε is weakly relatively compact in
L1((0, T )× Rd × Rd).

Proof. Integrating (1) with respect to (x, v) yields
the mass conservation

d

dt

∫

Rd

∫

Rd
fε(t, x, v)dvdx = 0,

which implies that
∫

Rd

∫

Rd
fε(t, x, v)dvdx =

∫

Rd

∫

Rd
fε
0 (x, v)dvdx.

From Proposition 2.2 we deduce that

Eε(t) +
4
ε2

∫ t

0

∫

Rd

∫

Rd
|∇v

√
fεe

|v|2
2 |2e− |v|

2

2 ≤ Eε(0). (30)

In order to use the following inequality with k = 1
4 which

is based on classical arguments due to Carleman
∫

Rd

∫

Rd
fε| ln(fε)|dvdx ≤

∫

Rd

∫

Rd
fε ln(fε)dvdx

+2k

∫

Rd

∫

Rd
(|x|+ |v|2

2
)fεdvdx + Ck, (31)

where the constant

Ck = 2C

∫

Rd

∫

Rd
exp(−k

2
(|x|+ |v|2

2
)) dvdx

with C = sup
0<y<1

{−√y ln(y)}. Let us multiply (1) by |x|
and integrate with respect to (x, v) . We deduce that

d

dt

∫

Rd

∫

Rd
|x|fε dvdx =

1
ε

∫

Rd

∫

Rd

(v.x)
|x| fε dvdx

≤ 1
2

∫

Rd
ρε dx +

1
2

∫

Rd

∫

Rd

∣∣∣v
√

fε + 2∇v

√
fε

ε

∣∣∣
2

dvdx

implying that
∫

Rd
|x|fε dvdx ≤

∫

Rd
|x|fε

0 dvdx +
t

2
‖fε

0‖L1(Rd×Rd
)

+
2
ε2

∫ t

0

∫

Rd

∫

Rd
|∇v

√
fεe

|v|2
2 |2e− |v|

2

2 dvdxds. (32)

Combining (30), (31) and (32) yields

∫

Rd

∫

Rd
(|x|+ |v|2

2
+ | ln(fε)|)fε dvdx

+
1
2

∫

Rd
(|Eε|2 + |Bε|2)dx

+
2
ε2

∫ t

0

∫

Rd

∫

Rd
|∇v

√
fεe

|v|2
2 |2e− |v|

2

2 dvdxds

≤ C 1
4

+ Eε(0) + ‖( t

2
+ |x|)fε

0‖L1(Rd×Rd
)
,

which leads to the desired results.

Lemma 3.2 The current density Jε is bounded in
L1((0, T )× Rd).
Proof. The current density can be written as the follow-
ing

Jε =
1
ε

∫

Rd
(v

√
fε + 2∇v

√
fε)

√
fε dv

So, by using Cauchy-Schwartz we get the estimate.

Corollary 3.3 Assume that assumption A1 is satis-
fied. Then, |∇v

√
fε|2 is bounded in L1((0, T )×Rd×Rd).

Proof. Notice that

|∇v

√
fε|2 =

1
4
|v

√
fε + 2∇v

√
fε|2 − 1

4
|v|2fε

−v
√

fε.∇v

√
fε.

Hence, by integrating with respect to (t, x, v) we conclude
by using Proposition 3.1.

Corollary 3.4 ρε is weakly relatively compact in
L1((0, T )× Rd).
Proof. Consider the convex function ϕ : [0, +∞[→ R,

IAENG International Journal of Applied Mathematics, 40:3, IJAM_40_3_05

(Advance online publication: 19 August 2010)

 
______________________________________________________________________________________ 



ϕ(s) = s ln(s), s > 0, ϕ(0) = 0 and the probability mea-
sure on Rd M(v)dv. By applying Jensen inequality

ρ ln(ρ) = ϕ(ρ) = ϕ(
∫

Rd

f

M
Mdv)

≤
∫

Rd
ϕ(

f

M
)Mdv

=
∫

Rd
f(
|v|2
2

+ ln(f))dv +
d

2
ln(2π)

∫

Rd
fdv.

Integrating with respect to x yields
∫

Rd
ρ ln(ρ)dx

≤
∫

Rd

∫

Rd
f(
|v|2
2

+ln(f))dvdx+
d

2
ln(2π)

∫

Rd

∫

Rd
fdvdx.

Thus, we have to use the inequality of Carlemann

ρ| ln(ρ)| ≤ ρ ln(ρ) + |x|ρ + Ce−
|x|
4 ,

with C = sup
0<y<1

{−√y ln(y)} and therefore, we deduce

that
∫

Rd
ρ| ln(ρ)|dx ≤

∫

Rd
ρ(ln(ρ) + |x|)dx + C

∫

Rd
e−

|x|
4 dx.

The proposition 3.1 lead to
∫

Rd
(1 + | ln(ρ)|)ρdx ≤ CT ,

which implies the L1((0, T ) × Rd) weak compactness of
the sequence ρε.

Let us define

rε =
1

ε
√

M
(
√

fε −
√

ρεM).

Using the logarithmic Sobolev inequality and Young in-
equality, we deduce as in [4] that

Proposition 3.5 rε is such that |rε|2M is bounded
in L1((0, T ) × Rd × Rd), ε|rε|2|v|2M is bounded in
L1((0, T ) × Rd × Rd) and

√
ε|rε|2|v|M is bounded in

L1((0, T )× Rd × Rd).

4. Compactness of the density

Proposition 4.1 The density ρε is relatively compact
in L1((0, T ) × Rd) and there exists ρ ∈ L1((0, T ) × Rd)
such that, up to extraction of a subsequence if necessary,

ρε → ρ in L1 and a.e.

The proof of this proposition is done in two steps. We
first prove the compactness of ρε with respect to the x
variable and then show the compactness in time.

In the sequel, we will use the following

β(s) =
s

1 + s
, βδ(s) =

1
δ
β(δs), ∀s > 0.

We recall that for all fixed parameter δ > 0, we have

1. 0 ≤ βδ(s) ≤ min(s, 1
δ ),

2. |βδ(s)| ≤ Cδ min(
√

s, 1),

3. |√sβ′δ(s)| ≤ Cδ,

4. |sβ′′δ (s)| ≤ Cδ.

We remark that if we want to prove the Propo-
sition 4.1, we only need to show for all (fixed) δ > 0,
the compactness (βδ(fε))ε. This is a consequence of the
following averaging lemma (see [10] for the proof).

Lemma 4.2 [10] Assume that hε is bounded in
L2((0, T ) × Rd × Rd), that hε

0 and hε
1 are bounded in

L1((0, T )× Rd × Rd), and that

ε∂th
ε + v.∇xhε = hε

0 +∇v.hε
1. (33)

Then, for all ψ ∈ C∞0 (Rd),

‖
∫

Rd
(hε(t, x + y, v)− hε(t, x, v))ψ(v) dv‖L1

t,x
→ 0 (34)

when y → 0 uniformly in ε where hε(t, x, v) has been pro-
longed by 0 for x /∈ Rd.

Remark 4.3 This lemma only gives the compactness
in the x variable of the averages in v of hε(t, x, v). This is
due to the presence of an ε in front of the time derivative
in 33.
Proof of Proposition 4.1. Let δ be a (fixed) nonneg-
ative parameter. Let us verify that the rescaled VMFP
system (in the renormalized sense) satisfies the assump-
tions of the previous lemma. Indeed, βδ(fε) is a weak
solution of

ε∂tβδ(fε) + v.∇xβδ(fε) = hε
0 +∇v.hε

1. (35)

where

hε
0 = − (vfε +∇vfε)

ε
∇vfεβ′′δ (fε)

and

hε
1 =

(vfε +∇vfε)
ε

β′δ(f
ε)− Eεβδ(fε)− ε(v ∧B)βδ(fε).

We remark that we can rewrite hε
0 and hε

1 as the following

hε
0 = −2

(vfε +∇vfε)
ε
√

fε
∇v

√
fεβ′′δ (fε)fε

hε
1 =

(vfε +∇vfε)
ε
√

fε
β′δ(f

ε)
√

fε − Eεβδ(fε)
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−ε(v
√

fε ∧Bε)
βδ(fε)√

fε
.

The sequence (βδ(fε))ε is bounded in L∞ ∩ L1((0, T ) ×
Rd×Rd) and hence in L2((0, T )×Rd×Rd). Moreover, by
applying Hölder’s inequality and using the uniform bound
of βδ(fε) in L2 (for fixed δ) and by using the Proposition
3.1 and Corollary 3.3 and 3.4, we obtain

‖Eεβδ(fε)‖
L1((0,T )×Rd

,L2(Rd
))
≤ C sup

t≤T
‖Eε‖

L2(Rd
)
,

and
‖ε(v ∧Bε)βδ(fε)‖

L1((0,T )×Rd
,L2(Rd

))

≤ C

2
(sup
t≤T

‖Bε‖
L2(Rd

)
+ sup

t≤T

∫

Rd

∫

Rd
|v|2fεdvdx),

The assumptions of the above lemma are satisfied and
we get the compactness in x of

∫
Rd βδ(fε)ψ(v) dv for

all ψ ∈ D(Rd), namely (34) holds with hε replaced by
βδ(fε).

Next, using that (βδ(fε))ε is bounded in
L∞(0, T ; L1((1 + |v|2)dxdv)), we see that we can
take ψ(v) to be constant equal to 1 in (34) and hence
we deduce, after also sending δ to 0 and using the
equi-integrability of fε, that

‖ρε(t, x + y)− ρε(t, x)‖L1
t,x
→ 0

when y → 0 uniformly in ε. Finally, using that ∂tρ
ε =

−∇x.Jε is bounded in L1(0, T ; W−1,1(Rd)), we deduce
that ρε is relatively compact in L1((0, T ) × Rd) which
ends the proof of the proposition.

Remark 4.4 Notice that we are renormalizing the
equation satisfied by fε to get the compactness of ρε and
we need the equation satisfied by θε,λ to pass to the limit
in Jε.

5. Passage to the limit

We would like to pass to the limit in the continuity equa-
tion

∂tρ
ε +∇x.Jε = 0.

The question is to identify the limit of the current density.

Corollary 5.1

fε → ρM in L1
t,x,v and a.e.

Proof. We write

fε − ρM = (fε − ρεM) + (ρε − ρ)M.

By using the previous section, there exists ρ ∈ L1((0, T )×
Rd) such that

ρε → ρ in L1
t,x and a.e.

Hence, it remains to discuss fε−ρεM . By the logarithmic
Sobolev inequality, we obtain

∫

Rd

∫

Rd
fε ln(

fε

ρεM
)dvdx

≤ γ

∫

Rd

∫

Rd
|∇v

√
fεe

|v|2
2 |2e− |v|

2

2 dvdx

for some γ > 0. By Proposition 3.1, after integration
with respect to time, this quantity is dominated by CT ε2.
Eventually, we conclude by using the Csiszar-Kullback-
Pinsker inequality

(
∫

Rd

∫

Rd
|fε−ρεM |dvdx)2 ≤ µ

∫

Rd

∫

Rd
fε ln(

fε

ρεM
)dvdx

for some µ > 0 which implies that
∫ T

0

∫

Rd
|
∫

Rd
(fε − ρεM) dx| dv dt

≤ √
T (

∫ T

0

(
∫

Rd

∫

Rd
|fε − ρεM | dv dx)2 dt)

1
2

≤ √
µT (

∫ T

0

∫

Rd

∫

Rd
fε ln(

fε

ρεM
) dv dx dt)

1
2

≤ ε
√

γµTCT −→ 0ε→0

Let us denote by J the weak limit of Jε when ε goes to
zero and r is the weak limit of rε in L2((0, T ) × Rd ×
Rd, M(v)dtdxdv).

Proposition 5.2

Jε ⇀D′ 2
√

ρ

∫

Rd
rvM dv, in L1

t,x.

Proof. Using rε, we can write

fε = ρεM + 2εM
√

ρεrε + ε2r2
εM.

Then, we obtain

Jε = 2
√

ρε

∫

Rd
rεvM dv + ε

∫

Rd
r2
εvM dv.

Moreover, we know that ρε → ρ in L1
t,x and a.e.

Since (
√

a−
√

b)2 ≤ |a− b| we have
√

ρε → √
ρ in L2

t,x and a.e.

Thus, using Proposition 3.5 leads to

Jε = 2
√

ρε

∫

Rd
rεvM dv +O(

√
ε)L1

t,x,v

⇀ 2
√

ρ

∫

Rd
rvM dv in L1

t,x.

We denote by χ the unique solution in [R(LFP ) ∩
D(LFP )]d of

LFP χ = vM
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Proposition 5.3

Jε ⇀D′ J := −2
√

ρ D.(∇x
√

ρ− 1
2
E
√

ρ)

where D is the diffusion matrix defined by

D = −
∫

Rd
χ(v)⊗ v dv.

Proof. We can pass to the limit in (23) for λ > 0, up to
extraction of a subsequence, we get

v.∇x

√
(ρ + λ)M +∇v.(E

√
(ρ + λ)M) =

√
ρLFP (rM)√
(ρ + λ)M

+
λMv.E

2
√

(ρ + λ)M
(36)

where E is the L2
t,x−weak limit of Eε and we have used

that fε converges strongly to ρM in L1
t,x,v. Sending λ to

0, we infer that

(∇x
√

ρ− 1
2
E
√

ρ).vM = LFP (rM). (37)

Let us go back to the expression of the current density
computed in Proposition 5.2. Using (37), we get

J = 2
√

ρ

∫

Rd
rvMdv

= 2
√

ρ

∫

Rd
rM

LFP χ

M
dv

= 2
√

ρ

∫

Rd
LFP (rM)χ

dv

M

= 2
√

ρ

∫

Rd
[(∇x

√
ρ− 1

2
E
√

ρ).vM ]χ
dv

M

= −2
√

ρ [−
∫

Rd
χ⊗ v dv].(∇x

√
ρ− 1

2
E
√

ρ)

6. Regularity of the density

Now, we would like to explain how we can rewrite the
current J . Precisely, we shall prove that the limit ρ ∈
L2(0, T ; L2(Rd)) and that

√
ρ ∈ L2(0, T ; H1(Rd)).

Lemma 6.1 Let ρ be a positive function such that
ρ ∈ L∞(0, T ; L1(Rd)), satisfying




∇x
√

ρ− 1
2E

√
ρ = G ∈ L2(0, T ; L2(Rd)),

divxE = ρ.

E ∈ L∞(0, T ; L2(Rd)),
(38)

then

ρ ∈ L2(0, T ; L2(Rd)),
√

ρ ∈ L2(0, T ; H1(Rd)),

and
E
√

ρ ∈ L2(0, T ; L2(Rd)).

Proof. The first and the third equation of (38) imply

that ∇x
√

ρ ∈ L1.
Let βδ be an approximation of identity, namely βδ(s) =
1
δ β(δs) where β is a C∞ function satisfying β(s) = s for
−1 ≤ s ≤ 1, 0 ≤ β′(s) ≤ 1 for all s and β(s) = 2 for
|s| ≥ 3.
Hence, βδ(s) goes to s and β′δ(s) goes to 1, when δ goes
to 0.
Now, we have

∇xβδ(
√

ρ) = ∇x
√

ρβ′δ(
√

ρ).

Hence, we can renormalize the first equation appearing
in (38), it gives

∇xβδ(
√

ρ)− 1
2
E β′δ(

√
ρ)
√

ρ = Gβ′δ(
√

ρ). (39)

Then, using that for fixed δ > 0,

|E β′δ(
√

ρ)
√

ρ| ≤ 3
δ
|E| ∈ L2.

We deduce that ∇xβδ(
√

ρ) ∈ L2 for fixed δ. Then, by
taking the L2 norm of (39), we get

‖∇xβδ(
√

ρ)‖2L2 +
1
4
‖E β′δ(

√
ρ)
√

ρ‖2L2

−
∫ T

0

∫

Rd
E∇xβδ(

√
ρ)β′δ(

√
ρ)
√

ρdxdt ≤ ‖G‖2L2 . (40)

Let β̃ be given by β̃(s) =
∫ s

0
τβ′(τ)2dτ and β̃δ(s) =

1
δ2 β̃(δs). Hence β̃δ(s) goes to s2 when δ goes to 0.
Computing the third term in (40), we get
∫

Rd
E∇xβδ(

√
ρ)β′δ(

√
ρ)
√

ρdx =
∫

Rd
E∇xβ̃δ(

√
ρ)dx

= −
∫

Rd
ρβ̃δ(

√
ρ)dx.

Hence, we deduce that for all δ > 0,

‖∇xβδ(
√

ρ)‖2L2 +
1
4
‖E β′δ(

√
ρ)
√

ρ‖2L2

+
∫ T

0

∫

Rd
ρβ̃δ(

√
ρ)dxdt ≤ ‖G‖2L2 .

Letting δ go to 0, we get

‖∇x
√

ρ‖2L2 +
1
4
‖E√ρ‖2L2 +

1
2

∫ T

0

∫

Rd
|ρ|2dxdt ≤ ‖G‖2L2 ,

which end the proof of the Lemma.
Now, using the previous lemma, we can see easily that
we can rewrite the current

J = −2
√

ρ D[∇x
√

ρ− 1
2

√
ρ E]

= −D[∇xρ− ρ E].

and we conclude by using that χi = viM and D = I.
Now, using that E, B ∈ L∞(0, T ; L2(Rd)) we see that
∂tB = −curlxE is bounded in L∞(0, T ; H−1(Rd)) and
∂tE = curlxB − J is bounded in L∞(0, T ; H−1(Rd)) +
L1((0, T )×Rd). This ends the proof of the main Theorem
1.2.
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