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Abstract—In this work, we study a class of polynomial 

order-even penalty functions for solving linear 
programming problems with the essential property that 
each member is convex polynomial order-even when viewed 
as a function of the multiplier. Under certain assumption on 
the parameters of the penalty function, we give a rule for 
choosing the parameters of the penalty function. We also 
give an algorithm for solving this problem. 
  

Index Terms—linear programming, penalty method, 
polynomial order-even.  
 
 

I. INTRODUCTION 
 

The basic idea in penalty method is to eliminate 
some or all of the constraints and add to the objective 
function a penalty term which prescribes a high cost to 
infeasible points (Wright, 2001; Zboo, etc., 1999). 
Associated with this method is a parameter σ, which 
determines the severity of the penalty and as a 
consequence the extent to which the resulting 
unconstrained problem approximates the original problem 
(Kas, etc., 1999; Parwadi, etc., 2002). In this paper, we 
restrict attention to the polynomial order-even penalty 
function. Other penalty functions will appear elsewhere. 
This paper is concerned with the study of the polynomial 
penalty function methods for solving linear programming. 
It presents some background of the methods for the 
problem. The paper also describes the theorems and 
algorithms for the methods. At the end of the paper we 
give some conclusions and comments to the methods.  

 
 

II. STATEMENT OF THE PROBLEM 
 

Throughout this paper we consider the problem 
               minimize     
               subject to Ax = b                                                                                                                                                            

                     x ≥ 0,                                               (1)                                                                                                                              
where A ∈ nmR × , c, x ∈ nR , and  b ∈ mR .   Without 
loss of generality we assume that A has full rank m. We 
assume that problem (1) has at least one feasible solution. 
In order to solve this problem, we can use Karmarkar’s 
algorithm and simpelx method (Durazzi, 2000). But in 
this paper we propose a polynomial penalty method as 
another alternative method to solve linear programming 
problem (1). 
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III. POLYNOMIAL PENALTY METHOD 

 
For any scalar σ > 0, we define the polynomial 

penalty function ),( σxP  for problem (1); ),( σxP :

RRn →  by 

),( σxP  = xc T   + ∑
=

ρ−σ
m

i
ii bxA

1

)( ,    (2)                  

where ρ > 0 is an even number. Here, iA  and ib  denote 
the ith row of matrices A and b, respectively. The positive 
even number ρ is chosen to ensure that the function (2) is 
convex. Hence, ),( σxP  has a global minimum. We 
refer to σ as the penalty parameter.  

This is the ordinary Lagrangian function in which in 
the altered problem, the constraints ii bxA −  (i =1,..,m)  

are replaced by ρ− )( ii bxA . The penalty terms are 

formed from a sum of polynomial order−ρ of constrained 
violations and the penalty parameter  σ  determines the 
amount of the penalty. 

The motivation behind the introduction of the 
polynomial order-ρ term is that they may lead to a 
representation of an optimal solution of problem (1) in 
terms of a local unconstrained minimum. Simply stating 
the definition (2) does not give an adequate impression of 
the dramatic effects of the imposed penalty. In order to 
understand the function stated by (2) we give an example 
with some values for σ. Some graphs of ),( σxP  are 
given in Figures 1−3 for the trivial problem 

minimize xxf =)(                                                

subject to 01 =−x , 
for which the polynomial penalty function is given by 

),( σxP  = ρ−σ+ )( 1xx . 
Figures 1, 2 and 3 depict the one-dimensional variation of 
the penalty function of ρ = 2, 4 and 6, for three values of 
penalty parameter  σ, that is σ = 1, σ = 2 and σ = 6, 
respectively.  
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Figure 1  The quadratic penalty function for ρ = 2 
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Figure 2 The polynomial penalty function for ρ = 4 
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Figure 3 The polynomial penalty  function for ρ = 6 
 
 
The y-ordinates of these figures represent ),( σxP  for ρ 
= 2, ρ = 4, ρ = 6, respectively. Clearly, if the solution x * 
= 1 of this example is compared with the points which 

minimize ),( σxP , it is clear that x * is a limit point of 
the unconstrained minimizers of ),( σxP  as σ → ∞.  

The intuitive motivation for the penalty method is 
that we seek unconstrained minimizers of ),( σxP  for 
value of σ increasing to infinity. Thus the method of 
solving a sequence of minimization problem can be 
considered. 

The polynomial penalty method for problem (1) 
consists of solving a sequence of problems of the form 

        minimize ),( kxP σ  

                                subject to   0≥x ,                      (3)                  

where { }kσ  is a penalty parameter sequence satisfying 
10 +σ<σ< kk   for all k,  ∞→σk . 

 
The method depends for its success on sequentially 
increasing the penalty parameter to infinity. In this paper, 
we concentrate on the effect of the penalty parameter. 

The rationale for the penalty method is based on the 
fact that when ∞→σk , then the term  

∑
=

ρ−σ
m

i
ii

k bxA
1

)( , 

when added to the objective function, tends to infinity if 
0≠− ii bxA  and equals zero if 0=− ii bxA  for 

all i. Thus, we define the function 
],(: ∞+−∞→nRf  by

⎩
⎨
⎧

≠−∞
=−

=
.allfor0if
,allfor0if

)(
ibxA
ibxAxc

xf
ii

ii
T

 

The optimal value of the original problem (1) can be 
written as 
f * = xcT

xbAx 0≥= ,
inf   =  )(inf

0
xf

x≥  

                                 
= 

  
),(liminf k

kx
xP σ

∞→≥0
.               (4)                    

On the other hand, the penalty method determines, via the 
sequence of minimizations (3), 

),(inflim k

xk
xPf σ=

≥∞→ 0
.              (5)                  

Thus, in order for the penalty method to be successful, the 
original problem should be such that the interchange of 
“lim” and “inf” in (4) and (5) is valid. Before we give a 
guarantee for the validity of the interchange, we 
investigate some properties of the function defined in (2). 

First, we derive the convexity behavior of the 
polynomial penalty function defined by (2) is stated in the 
following stated theorem. 
 
Theorem 1 (Convexity)  
The polynomial penalty function ),( σxP  is convex in 
its domain for every σ > 0. 
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Proof. 
It is straightforward to prove convexity of ),( σxP  using 

the convexity of xc T  and ρ− )( ii bxA . Then the 
theorem is proven.  
 
The local and global behavior of the polynomial penalty 
function defined by (2) is stated in next the theorem. It is 
a consequence of  Theorem 1. 
 
Theorem 2 (Local and global behavior)  
Consider the function ),( σxP  which is defined in (2). 
Then  
(a) ),( σxP  has a finite unconstrained minimizer in its 

domain for every σ > 0 and the set Mσ of 
unconstrained minimizers of ),( σxP  in its domain 
is convex and compact for every σ > 0. 

(b) Any unconstrained local minimizer of ),( σxP  in 
its domain is also a global unconstrained   minimizer 
of ),( σxP . 

 
Proof. 
It follows from Theorem 1 that the smooth function 

),( σxP  achieves its minimum in its domain. We then 
conclude that ),( σxP  has at least one finite 
unconstrained minimizer.  
 By Theorem 1 ),( σxP  is convex, so any local 
minimizer is also a global minimizer. Thus, the set Mσ of 
unconstrained minimizers of ),( σxP  is bounded and 
closed, because the minimum value of ),( σxP  is 
unique, and it follows that Mσ is compact. Clearly, the 
convexity of Mσ follows from the fact that the set of 
optimal points ),( σxP  is convex. Theorem 2 has been 
verified.  
 As a consequence of Theorem 2 we derive the 
monotonicity behaviors of the objective function problem 
(1), the penalty terms in ),( σxP  and the minimum 
value of the polynomial penalty function ),( σxP . To do 

this, for any kσ  > 0 we denote kx  and ),( kkxP σ  as 
a minimizer and minimum value of problem (3), 
respectively.  
 
Theorem 3 (Monotonicity)  
Let }{ kσ  be an increasing sequence of positive penalty 

parameters such that ∞→σk  as ∞→k .  
Then 
(a) { }kT xc  is non-decreasing.  

(b) 
⎭
⎬
⎫

⎩
⎨
⎧

−∑
=

ρ
m

i
i

k
i bxA

1

)(  is non-increasing. 

(c) { }),( kkxP σ   is non-decreasing. 
 
 
 

Proof. 
Let kx  and 1+kx  denote the global minimizers of 
problem (3) for the penalty parameters kσ  and 1+σk , 
respectively. By definition of kx  and 1+kx  as 
minimizers and kσ  < 1+σk , we have 

kkT xc σ+ ∑
=

ρ−
m

i
i

k
i bxA

1

)(  ≤  1+kT xc  + 

kσ ∑
=

ρ+ −
m

i
i

k
i bxA

1

1 )( ,                              (6a) 

1+kT xc  + kσ ∑
=

ρ+ −
m

i
i

k
i bxA

1

1 )(   ≤  1+kT xc +  

σk +1∑
=

ρ+ −
m

i
i

k
i bxA

1

1 )( ,                     (6b) 

1+kT xc  + σk +1∑
=

ρ+ −
m

i
i

k
i bxA

1

1 )(   ≤  kT xc  +  

σk +1∑
=

ρ−
m

i
i

k
i bxA

1

)( .                        (6c) 

 
We multiply the first inequality (6a) with the ratio 1+σk /
kσ , and add the inequality to the inequality (6c) we 

obtain 

1
11

11 +
++

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

σ
σ

≤⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

σ
σ kT

k

k
kT

k

k

xcxc . 

Since 0 < kσ  < 1+σk , it follows that 1+≤ kTkT xcxc  
and part (a) is established. 
 
To prove part (b) of the theorem, we add the inequality 
(6a) to the inequality (6c) to get 

( ) ( )∑∑
=

ρ+

=

ρ++ −σ−σ≤−σ−σ
m

i
i

k
i

kk
m

i
i

k
i

kk bxAbxA
1

1

1

11 )()(

, 
thus  

∑∑
=

ρ

=

ρ+ −≤−
m

i
i

k
i

m

i
i

k
i bxAbxA

11

1 )()(  

as required for part (b). 
 
Using inequalities (6a) and (6b), we obtain 

kkT xc σ+ ∑
=

ρ−
m

i
i

k
i bxA

1

)(  ≤  1+kT xc + σk +1

∑
=

ρ+ −
m

i
i

k
i bxA

1

1 )( . 

Hence, part (c) of the theorem is established.  
 
We now give the main theorem concerning polynomial 
penalty method for linear programming problem (1). 
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Theorem 4 (Convergence of polynomial penalty 
function)  
Let }{ kσ  be an increasing sequence of positive penalty 

parameters such that ∞→σk  as ∞→k . Denote 
kx  and ),( kkxP σ  as in Theorem 3. Then 

(a) bAx k →  as ∞→k . 

(b) *fxc kT →  as ∞→k . 

(c) *),( fxP kk →σ  as ∞→k . 
 
Proof. 
By definition of kx  and ),( kkxP σ , we have 

kT xc   ≤ ),( kkxP σ  ≤ ),( kxP σ  for all 0≥x .  (7)                                                 
Let f * denotes the optimal value of the problem )(P . We 
have 

f *  = xcT
xbAx 0≥= ,

inf  = ),(inf k

x
bAx

xP σ
≥
=
0

. 

Hence, by taking the infimum of the right-hand side of 
(7) over 0≥x  and bAx = , we obtain 

),( kkxP σ  = kT xc  + kσ  ∑
=

ρ−
m

i
i

k
i bxA

1
)(  ≤  f *. 

Let x  be a limit point of }{ kx . By taking the limit 
superior in the above relation and by using the continuity 
of xc T  and ii bxA − , we obtain 

xc T  + ∑
=

ρ

∞→
−σ

m

i
i

k
i

k

k
bxA

1

)(suplim   ≤  f *.    (8)                                                  

Since ∑
=

ρ−
m

i
i

k
i bxA

1

)(  ≥ 0 and ∞→σk , it follows 

that we must have 

∑
=

ρ−
m

i
i

k
i bxA

1
)( 0→  

and 
0=− ii bxA  for all i = 1, …, m,       9)                                                                

otherwise the limit superior in the left-hand side of (8) 
will equal to +∞. This proves part (a) of the theorem. 
 

Since }0{ ≥∈ xRx n  is a closed set we also obtain 

that 0≥x . Hence, x  is feasible, and 
f * ≤  xc T .                                   (10) 

Using (8)-(10), we obtain 

f * + ∑
=

ρ

∞→
−σ

m

i
i

k
i

k

k
bxA

1

)(suplim  ≤ xc T  + 

∑
=

ρ

∞→
−σ

m

i
i

k
i

k

k
bxA

1

)(suplim  ≤ f *. 

Hence,  

∑
=

ρ

∞→
−σ

m

i
i

k
i

k

k bxA
1

)(suplim  = 0 

 
and  

f * =  xc T , 
which proves that x  is a global minimum for problem 
(1). This proves part (b) of the theorem. 
 
To prove part (c), we apply the results of parts (a) and (b), 
and then taking ∞→k  of the definition ),( kkxP σ . 

 
 

Some notes about this theorem will be taken. First, it 
assumes that the problem (3) has a global minimum. This 
may not be true if the objective function of the problem 
(1) is replaced by a nonlinear function. However, this 
situation may be handled by choosing appropriate value 
of ρ. We also note that the constraint 0≥x  of the 
problem (3) is important to ensure that the limit point of 
the sequence }{ kx  satisfies the condition 0≥x . 
 

IV. ALGORITHM 
 

The implications of these theorems are remarkably 
strong. The polynomial penalty function has a finite 
unconstrained minimizer for every value of the penalty 
parameter, and every limit point of a minimizing 
sequence for the penalty function is a constrained 
minimizer of a problem (1). Thus the algorithm of solving 
a sequence of minimization problems is suggested. Based 
on Theorems 4, we formulate an algorithm for solving 
problem (1). 
 
Algorithm 1  
Given Ax = b, 1σ  > 0, the number of iteration  N  and  ε 
> 0. 
1. Choose 1x  ∈ nR such that A 1x  = b and 1x  ≥ 0.  
2. If the optimality conditions are satisfied for problem 

(1) at 1x , then stop. 

3. Compute ),( 11 σxP  := ),(min 1

0
σ

≥
xP

x
 and the 

minimizer 1x .  

4. Compute ),( kkxP σ  := ),(min
0

kxP
x

σ
≥

, the 

minimizer kx   and  
         kσ  := 10 1−σk  for k = 2. 

5. If || 1−− kk xx || < ε or | ),( kkxP σ  – 

),( 11 −− σkkxP | < ε or  

|| bAx k − || < ε or k = N; then stop. 
Else k := k + 1 and go to step 4.  
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Examples: Consider the following problems. 
1.Minimize 321 752 xxxf ++=  

   subject to  632 321 =++ xxx , 

      0≥jx ,  for j = 1, 2, 3. 

2.Minimize 21 5.04.0 xxf +=           

   subject to 7.21.03.0 21 ≥+ xx , 

       65.05.0 21 =+ xx ,  

            0≥jx ,  for j = 1, 2. 

3.Minimize 21 34 xxf +=  

  subject to 632 21 ≥+ xx , 

                44 21 ≥+ xx , 

                0≥jx ,  for j = 1, 2. 

 

4.Minimize 21 43 xxf +−=   

   subject to  021 ≥− xx , 

                  22 21 ≥+− xx , 

                  0≥jx ,  for j = 1, 2. 

5. Minimize 21 83 xxf +=   

    subject to 2043 21 ≤+ xx , 

                        123 21 ≥+ xx , 

  0≥jx ,  for j = 1, 2.  

Table 1 reports the results of computational for Algorithm 
1(ρ = 2), Algorithm 1(ρ = 4) and Karmarkar’s Algorithm. 
The first column of Table 1 contains the problem number 
and the next two columns of each algorithm in this table 
contain the total iterations and the times (in seconds) of 
each algorithm.  

Tabel 1 Algorithm 1(ρ = 2), Algorithm 1(ρ = 4) and Karmarkar’s Algorithm test statistics 
 
 

Problem No. 

Algorithm 1(ρ = 2) Algorithm 1(ρ = 4) Karmarkar’s Algorithm 

Total 
Iterations 

Time 
(Secs.) 

Total 
Iterations 

Time 
(Secs.) 

Total 
Iterations 

Time 
(Secs.) 

1. 
2. 
3. 
4. 
5. 

10 
9 
9 
10 
10 

3.4 
3.9 
8.5 
8.7 
9.9 

25 
7 
9 

12 
19 

189.1 
75.3 
851.4 
2978.9 
5441.7 

16 
19 
19 
12 
18 

3.6 
3.7 
3.7 
2.8 
3.8 

  
 

V. CONCLUSION 
 

As mentioned above, the paper has described the 
penalty functions with penalty terms in polynomial order-
σ for solving problem (1). The algorithms for these 
methods are also given in this paper. The Algorithm 1 is 
used to solve the problem (1). We also note the important 
thing of these methods which do not need an interior 
point assumption.  
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