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Abstract— In this paper, we focus on hierarchical
multiobjective linear programming problems where
multiple decision makers in a hierarchical organiza-
tion have their own multiple objective linear functions
together with common linear constraints, and propose
an interactive decision making method to obtain a sat-
isfactory solution which reflects not only the hierar-
chical relationships between multiple decision makers
but also their own preferences for their membership
functions. In the proposed method, instead of Pareto
optimal concept, a generalized Λ-extreme point con-
cept is introduced. In order to obtain a satisfactory
solution from among a generalized Λ-extreme point
set, an interactive algorithm based on linear program-
ming is proposed, and an interactive processes are
demonstrated by means of an illustrative numerical
example.
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1 Introduction

In the real-world decision making situations, it is often
required that the goal of the overall system is achieved in
the hierarchical structure, where many decision makers
who belong to its sections or divisions are in action to
seek their own goals independently and are affected each
other. The Stackelberg games [1, 10] can be regarded as
multilevel programming problems with multiple decision
makers. Although many kinds of techniques to obtain
a Stackelberg solution have been proposed, almost all of
such techniques are unfortunately not efficient in compu-
tational aspects.

In order to circumvent the computation inefficiency to
obtain such a Stackelberg solution and the paradox that
the lower level decision power often dominates the up-
per level decision power, Lai [3], Shih et al.[9] and Lee et
al.[4] introduced concepts of memberships of optimalities
and degrees of decision powers and proposed fuzzy ap-
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proaches to multilevel linear programming problems. In
their approaches, each decision maker elicits his/her own
membership functions for not only the objective functions
but also the decision variables. Following the fuzzy deci-
sion [5] together with membership functions, the math-
ematical programming problem of finding the maximum
decision is formulated and solved to obtain a candidate
of the satisfactory solution. However, in such fuzzy ap-
proaches for multilevel linear programming problems, the
decision makers are required to elicit each of membership
functions for not only the objective functions but also the
decision variables, and to update them in each of the iter-
ations. It seems to be very difficult to elicit membership
functions for the decision variables.

From a different point of view, Shi [8] especially focused
on multiple criteria linear programming problems with
multiple decision makers. In his approaches, it is as-
sumed that each decision maker has different resource
availability levels for the constraints. He formulated such
multiple criteria multiple constraint linear programming
problems called MC2 linear problems and introduced the
corresponding solution concept called potential solutions.

In this paper, we especially focus on hierarchical fuzzy
multiobjective linear programming problems [11] where
multiple decision makers in a hierarchical organization
have fuzzy goals for their own multiple objective linear
functions together with common linear constraints. In
section 2, hierarchical fuzzy multiobjective linear pro-
gramming problems are formulated and the correspond-
ing solution concept called a generalized Λ-extreme point
is introduced. In section 3, using reference member-
ship intervals [6], an interactive algorithm is proposed
to obtain the satisfactory solution from among a general-
ized Λ-extreme point set, where the corresponding hyper-
plane problem [7, 12] is solved. In section 4, interactive
processes of the proposed method are demonstrated by
means of an illustrative numerical example.

2 Hierarchical Fuzzy Multiobjective
Linear Programming Problems

We consider the following hierarchical multiobjective lin-
ear programming problems (HMOLP) [11], where each
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decision maker (DMr) has his/her own multiple objective
linear functions together with common linear constraints.

[HMOLP]

first level decision maker : DM1

min
x∈X

C1x = (c11x, c12x, · · · , c1k1x)
T

(1)

second level decision maker : DM2

min
x∈X

C2x = (c21x, c22x, · · · , c2k2x)
T

(2)

· · · · · · · · · · · · · · · · · · · · ·

p-th level decision maker : DMp

min
x∈X

Cpx = (cp1x, cp2x, · · · , cpkpx)
T

(3)

where x = (x1, x2, · · · , xn)
T

is n-dimensional decision
vector, X ∈ En is a linear constraint set of x, and
cri = (cri1, cri2, · · · , crin), i = 1, · · · , kr, r = 1, · · · , p are

n-dimensional row vectors, Cr = (cr1, cr2, · · · , crkr )
T
,

r = 1, · · · , p are (kr × n)-dimensional matrices.

By considering the vague nature of human’s subjective
judgements, it is quite natural to assume that the decision
makers may have fuzzy goals [5] for the objective func-
tions. Through the interaction with the decision maker
(DMr), these fuzzy goals can be quantified by eliciting
the corresponding membership functions, which are de-
noted by µri(crix), i = 1, · · · , kr. Then, HMOLP can be
formally transformed to the following hierarchical fuzzy
multiobjective linear programming problem (HFMOLP).

[HFMOLP]

first level decision maker : DM1

max
x∈X

µ1(C1x) = (µ11(c11x), · · · , µ1k1(c1k1x))
T

(4)

second level decision maker : DM2

max
x∈X

µ2(C2x) = (µ21(c11x), · · · , µ2k2
(c2k2

x))
T

(5)

· · · · · · · · · · · · · · · · · · · · ·

p-th level decision maker : DMp

max
x∈X

µp(Cpx) = (µp1(cp1(x)), · · · , µpkp(cpkpx))
T

(6)

In this paper, we assume that each decision maker (DMr)
in HFMOLP finds his/her satisfactory solution from
among Λr-extreme point set which can be regarded as
a generalized version of Pareto optimal solution set. Λr-
extreme point [13] is defined by a cone Λr in membership
space of DMr as follows.

Definition 1. y∗
r ∈ µr(CrX) is said to be a Λr-

extreme point of µr(CrX) to FMOLPr, if there is no
yr ∈ µr(CrX) such that y∗

r ∈ yr − Λr,y
∗
r ̸= yr, where

µr(CrX) = {µr(Crx) ∈ Ekr | x ∈ X}, Λr ⊂ Ekr is a
cone, and FMOLPr is DMr’s fuzzy multiobjective linear
programming problem formulated as follows:

[FMOLPr]

max
x∈X

µr(Crx) = (µr1(cr1x), · · · , µrkr (crkrx))
T

(7)

In the following, let us assume that each membership
function for the objective function is a linear function
defined as :

µri(crix) =


1 crix ≤ z1ri
crix− z0ri
z1ri − z0ri

z1ri ≤ crix ≤ z0ri

0 crix ≥ z0ri

(8)

where z0ri or z
1
ri denotes the value of the objective function

crix such that the degree of membership function is 0 or
1 respectively.

According to the notation of Yu [13], let us denote a
set of Λr-extreme points as Ext[µr(CrX) | Λr]. Unfor-
tunately, although Ext[µr(CrX) | Λr] can be applied
to FMOLPr, Ext[µr(CrX) | Λr] can not to be directly
applied to HFMOLP, because multiple decision makers
DMr, r = 1, · · · , p in the hierarchical structure have to
seek their common satisfactory solution to HFMOLP.
Therefore, in order to deal with HFMOLP, we introduce
the following extended concept called a generalized Λ-
extreme point where cones Λr, r = 1, · · · , p are integrated
in membership space of DMr, r = 1, · · · , p.

Definition 2. y∗ ∈ µ(CX) is said to be a generalized
Λ-extreme point to HFMOLP, if there is no y ∈ µ(CX)
such that y∗ ∈ y−Λ,y∗ ̸= y, where µ(CX) = {µ(Cx) =

(µ1(C1x), · · · ,µp(Cpx)) ∈ E
∑p

r=1
kr | x ∈ X}, and a

cone Λ is defined as follows.

Λ = Λ1 ⊗ Λ2 ⊗ · · · ⊗ Λp (9)

where ⊗ means Cartesian product.

Similar to Ext[µr(CrX) | Λr], let us denote a set of gen-
eralized Λ-extreme points in membership space of all de-
cision makers as Ext[µ(CX) | Λ], and the corresponding
set of Λ-extreme points in decision space as Ext[X | Λ],
respectively.

Since it is very difficult to deal with a cone Λ directly,
in the following, let us assume that Λr, r = 1, · · · , p are
polyhedral cones defined as follows:

Λr = {
kr∑
i=1

αrivri, αri ≥ 0, i = 1, · · · , kr} (10)
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where vri, i = 1, · · · , kr are generators of a cone Λr, i.e.,

vri = (vri1, vri2, · · · , vrikr )
T ∈ Ekr , (11)

and vri is assumed to satisfy the following condition.

∥ vri ∥=

√√√√ kr∑
j=1

v2rij = 1. (12)

Using generators vri, i = 1, · · · , kr, (kr × kr)-dimensional
generator matrix V r of a cone Λr can be formulated.

V r =


vr11 vr21 . . . vrkr1

vr12 vr22 . . . vrkr2

...
...

. . .
...

vr1kr vr2kr . . . vrkrkr

 (13)

Moreover, on the basis of matrices V r, r = 1, · · · , p,
(
∑p

r=1 kr ×
∑p

r=1 kr)-dimensional generator matrix V of
a cone Λ can be formulated as follows.

V =


V 1 0 . . . 0
0 V 2 . . . 0
...

...
. . .

...
0 0 . . . V p

 (14)

Then, an integrated cone Λ defined by (9) can be ex-
pressed as follows.

Λ = V ·αT (15)

where αr = (αr1, αr2, · · · , αrkr ) ≥ 0, r = 1, · · · , p, α =

(α1,α2, · · · ,αp) ∈ E
∑p

r=1
kr .

Since inverse matrices V −1
r for V r, r = 1, · · · , p exist, an

inverse matrix V −1 for V becomes as follows.

V −1 =


V −1

1 0 . . . 0

0 V −1
2 . . . 0

...
...

. . .
...

0 0 . . . V −1
p

 (16)

In order to generate a candidate of the satisfactory so-
lution from among a generalized Λ-extreme point set
Ext[µ(CX) | Λ], it has been suggested to ask the decision
makers to specify their reference levels of achievement of
the membership functions, called the reference member-
ship values [5]. However, considering the imprecise nature
of the decision makers’ judgements, it seems to be more
appropriate to obtain fuzzy-valued assessments of the ref-
erence membership values such as “it should be between
[µ

ri
, µri] for µri(cri(x))” called reference membership in-

tervals [6], where µ
ri

< µri,

µ
r

= (µ
r1
, µ

r2
, · · · , µ

rkr
), (17)

µr = (µr1, µr2, · · · , µrkr
), (18)

µ = (µ
1
,µ

2
, · · · ,µ

p
), (19)

µ = (µ1,µ2, · · · ,µp). (20)

Once the reference membership intervals are specified,
the corresponding generalized Λ-extreme point, which is,
in a sense, close to their requirement, is obtained by solv-
ing the following hyperplane problem [7, 12].

[ HP1(µ,µ) ]

min
x∈X,xn+1∈E1

xn+1 (21)

subject to

V −1 · {µ̄T − µ(Cx)− xn+1/d} ≤ 0, (22)

where

xn+1 = (xn+1, xn+1, · · · , xn+1)
T ∈ E

∑p

r=1
kr ,

dri =

(
1

µri − µ
ri

)
/

(
kr∑
i=1

1

µri − µ
ri

)
,

dr = (dr1, dr2, · · · , drkr ) ∈ Ekr ,

d = (d1,d2, · · · ,dkp)
T ∈ E

∑p

r=1
kr ,

xn+1/d
def
= (xn+1/d11, · · · , xn+1/d1k1 , xn+1/d21, · · · ,

xn+1/d2k2 , · · · , xn+1/dp1, · · · , xn+1/dpkp)
T

∈ E
∑p

r=1
kr .

In the above definitions, for the special case where µ
ri

=
µri, i = 1, · · · , kr, we define

dr
def
= (1/kr, 1/kr, · · · , 1/kr).

Then, it should be noted here that reference membership
values [5] can be regarded as a special case of reference
membership intervals.

The relationships between the optimal solution to
HP1(µ,µ) and the corresponding generalized Λ-extreme
point set Ext[X | Λ] can be characterized by the following
theorems.

Theorem 1. If (x∗, x∗
n+1) is a unique optimal solution

to HP1(µ,µ), then x∗ ∈ Ext[X | Λ].

(Proof) Assume x∗ ̸∈ Ext[X | Λ], then there exist x ∈ X
and λ ∈ Λ ( or equivalently α ≥ 0 ) such that

µ(Cx∗) = µ(Cx)− λ

= µ(Cx)− V ·αT .

If (x∗, x∗
n+1) is an optimal solution to HP1(µ,µ),

V −1{µ̄T − µ(Cx∗)− x∗
n+1/d} ≤ 0,

⇔ V −1{µ̄T − µ(Cx) + V ·αT − x∗
n+1/d} ≤ 0,

⇔ V −1{µ̄T − µ(Cx)− x∗
n+1/d} ≤ −αT ≤ 0.

This implies that x∗ is not a unique optimal solution to
HP1(µ,µ).
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Theorem 2. If x∗ ∈ Ext[X | Λ], then (x∗, x∗
n+1) is an

optimal solution to HP1(µ,µ) for some reference mem-

bership intervals [µ,µ], where (µ̄T−µ(Cx∗)−x∗
n+1/d) =

0.

(Proof) Assume that (x∗, x∗
n+1) is not an optimal solu-

tion to HP1(µ,µ). Then, there exist x ∈ X,xn+1 ∈ E1

such that

V −1{µ̄T − µ(Cx)− xn+1/d} ≤ 0, xn+1 < x∗
n+1.

Moreover, because of (µ̄T −µ(Cx∗)− x∗
n+1/d) = 0, the

following inequality relations must be satisfied.

V −1{µ̄T − µ(Cx)− xn+1/d} ≤ 0,

⇔ V −1{µ̄T − x∗
n+1/d− µ(Cx) + x∗

n+1/d

−xn+1/d} ≤ 0,

⇔ V −1{µ(Cx∗)− µ(Cx) + x∗
n+1/d− xn+1/d} ≤ 0.

Since 0 < x∗
n+1/d−xn+1/d ∈ Λ, there exists α ≥ 0 such

that x∗
n+1/d−xn+1/d = V ·αT . Therefore, it holds that

V −1{µ(Cx∗)− µ(Cx) + x∗
n+1/d− xn+1/d} ≤ 0,

⇔ V −1{µ(Cx∗)− µ(Cx)}
≤ −V −1 · (x∗

n+1/d− xn+1/d)

⇔ V −1 · {µ(Cx∗)− µ(Cx)} ≤ −αT ≤ 0.

There exists β such that V −1 · {µ(Cx∗) − µ(Cx)} =
−βT ≤ 0. This implies that µ(Cx)− V · βT = µ(Cx∗),
i.e., x∗ ̸∈ Ext[X | Λ].

It should be noted here that, in general, the generalized
extreme point obtained by solving HP1(µ,µ) does not
reflect the hierarchical structure between p decision mak-
ers where the upper level decision maker can take priority
for his/her membership functions over the lower level de-
cision makers. In order to cope with such a hierarchical
preference structure between p decision makers, we intro-
duce decision powers [3]

w = (w1, w2, · · · , wp)
T ∈ Ep (23)

in HP1(µ,µ), where the r-th level decision maker (DMr)
can specify the decision power wr+1 in his/her subjective
manner and the last decision maker (DMp) has no deci-
sion power. In order to reflect the hierarchical preference
structure between multiple decision makers, the decision
powers w = (w1, w2, · · · , wp)

T
have to satisfy the follow-

ing inequality condition.

w1 = 1 ≥ w2 ≥ · · · · · · ≥ wp−1 ≥ wp > 0 (24)

Then, the corresponding modified HP1(µ,µ) is reformu-
lated as follows:

[ HP2(w,µ,µ) ]

min
x∈X,xn+1∈E1

xn+1 (25)

subject to

V −1 ·


µ̄1 − µ1(C1x)− xn+1/(w1d1)
µ̄2 − µ2(C2x)− xn+1/(w2d2)

...
µ̄p − µp(Cpx)− xn+1/(wpdp)

 ≤ 0 (26)

where

µ̄r − µr(Crx)− xn+1/(wrdr)

def
= (µ̄r1 − µr1(Cr1x)− xn+1/(wrdr1), · · · ,

µ̄rkr − µrkr (Crkrx)− xn+1/(wrdrkr ))
T

In the following, let us denote (i, j)-element of V −1
r as

qrij . Then, the constraints (26) are equivalently ex-
pressed as follows.

kr∑
j=1

qrij(µ̄rj − µrj(crjx)− xn+1/(wrdrj)) ≤ 0,

i = 1, · · · , kr, r = 1, · · · , p. (27)

The relationships between the optimal solution of
HP2(w,µ,µ) and generalized Λ-extreme points can be
characterized by the following theorem.

Theorem 3. If (x∗, x∗
n+1) is a unique optimal solution

to HP2(w,µ,µ), then x∗ ∈ Ext[X | Λ].

It must be observed here that for generating a generalized
Λ-extreme point using the above theorem, uniqueness of
solution must be verified. In order to test whether a cur-
rent optimal solution x∗ of HP2(w,µ,µ) is a generalized
Λ-extreme point or not, we formulate and solve the fol-
lowing linear programming problem.

[ Test problem for x∗ ]

max
x∈X

p∑
r=1

kr∑
i=1

ϵri (28)

subject to

V −1 · (µ(Cx)− µ(Cx∗)) = ϵT (29)

ϵ = (ϵ11, · · · , ϵ1k1 , · · · , ϵp1, · · · , ϵpkp) ≥ 0 (30)

The following theorem guarantees that the optimal so-
lution x̄ of the above test problem is a generalized Λ-
extreme point.

Theorem 4. Let x∗ ∈ X be an optimal solution to
HP2(w,µ,µ), and x̄ ∈ X and ϵ̄ ≥ 0 be an optimal so-
lution to test problem for x∗. Then, if all ϵ̄ri = 0, r =
1, · · · , p, i = 1, · · · , kr, then x∗ ∈ Ext[X | Λ]. If at least
one ϵ̄ri > 0, then x̄ ∈ Ext[X | Λ].

(Proof) Let all ϵ̄ri = 0, r = 1, · · · , p, i = 1, · · · , kr. Then,
there is no x ∈ X and ϵ̄ ≥ 0(ϵ̄ ̸= 0) such that µ(Cx∗) =
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µ(Cx) − V · ϵ̄T . This means that x∗ ∈ Ext[X | Λ]. Let
some ϵ̄ri > 0. Then, it holds that µ(Cx∗) = µ(Cx̄) −
V · ϵ̄T . Assume x̄ ̸∈ Ext[X | Λ]. Then, there are some
x ∈ X and α ≥ 0 such that µ(Cx̄) = µ(Cx)− V · αT .
This means that

µ(Cx̄) = µ(Cx)− V ·αT = µ(Cx∗) + V · ϵ̄T ,
⇔ −µ(Cx∗) + µ(Cx) = V · (ϵ̄T +αT ),

⇔ V −1(µ(Cx)− µ(Cx∗)) = (ϵ̄T +αT ).

This contradicts that ϵ̄ is an optimal solution of test prob-
lem for x∗.

3 An Interactive Algorithm

After obtaining a generalized Λ-extreme point x∗ by solv-
ing HP2(w,µ,µ), each decision maker (DMr) must ei-
ther be satisfied with the current values of membership
functions, or update his/her decision power wr+1 and/or
his/her reference membership intervals [µ

ri
, µri], i =

1, · · · , kr.

In order to help each decision maker update his/her ref-
erence membership intervals and/or the decision powers,
trade-off information [2] is very useful. Such trade-off in-
formation is obtainable since it is related to the simplex
multipliers of HP2(w,µ,µ).

Theorem 5. Let (x∗, x∗
n+1) be a unique and nonde-

generate optimal solution of HP2(w,µ,µ), and let the
constraints with the reference membership intervals be
active. Then, the following relation holds.

−∂(µrj1(crj1x))

∂(µrj2(crj2x))

∣∣∣∣
x=x∗

=

∑kr

i=1 π
∗
riqrij2∑kr

i=1 π
∗
riqrij1

(31)

where π∗
ri > 0 is the corresponding simplex multipliers

for the constraint (27) of HP2(w,µ,µ).

Theorem 6. Let (x∗, x∗
n+1) be a unique and nonde-

generate optimal solution of HP2(w∗, ,µ,µ), and let the
constraint with the reference membership intervals be ac-
tive. Then, the following relation holds.

∂(µrj(crjx))

∂wr

∣∣∣∣
w=w∗

=
x∗
n+1

w∗2
r drj

−
x∗
n+1

w∗3
r drj

{
kr∑
i=1

π∗
ri

kr∑
ℓ=1

qriℓ
drℓ

}
(32)

where π∗
ri > 0 is a simplex multiplier for the constraints

(27) in HP2(w∗, ,µ,µ).

Now, we can construct the interactive algorithm to derive
the satisfactory solution of multiple decision makers in a
hierarchical organization from among the generalized Λ-
extreme point set.

Step 1: Elicit linear membership functions µri(crix)
for the objective functions cri(x), i = 1, · · · , kr from each
decision maker (DMr), r = 1, · · · , p.

Step 2: Set the initial decision powers wr = 1 and the
initial reference membership intervals µ

ri
, µri = 1, i =

1, · · · , kr, r = 1, · · · , p.

Step 3: For the specified decision powers and the spec-
ified reference membership intervals, solve HP2(w,µ,µ),
and obtain the corresponding generalized Λ-extreme
point (x∗, x∗

n+1) and trade-off information. If x∗
n+1 ≥ 0,

then go to Step 4. If x∗
n+1 < 0, then update ref-

erence membership intervals as µ̂ri ← µ̄ri − x∗
n+1/wr,

i = 1, · · · , kr, r = 1, · · · , p. Solve HP2(w, µ̂, µ̂) again,
and go to Step 4.

Step 4: If each decision maker is satisfied with the
current values of his/her membership functions, then
stop. Otherwise, let the s-th level decision maker (DMs)
be the uppermost of the decision makers who are not
satisfied with the current values. Considering the cur-
rent values of his/her membership functions and two
kinds of trade-off rates, DMs updates his/her decision
power ws+1 and/or his/her reference membership inter-
vals [µ

si
, µsi], i = 1, · · · , ks according to the following two

rules, and return to Step 3.

(1) the rule of updating ws+1: In order to satisfy the
condition (24), ws+1 must be set as ws+1 ≤ ws. After
updating ws+1, if ws+1 < wt, s+1 < t ≤ p, wt is replaced
by ws+1 (wt ← ws+1). Here, it should be noted for DMs

that the less value of the decision power ws+1 gives better
values of membership functions of DMr(1 ≤ r ≤ s) at the
expense of the ones of DMr(s+1 ≤ r ≤ p) for some fixed
reference membership intervals.

(2) the rule of updating [µ
si
, µsi], i = 1, · · · , ks: Af-

ter setting µ
ri
, µri ← µri(crix∗), i = 1, · · · , kr, r =

1, · · · , p, r ̸= s, DMs updates his/her reference member-
ship intervals [µ

si
, µsi], i = 1, · · · , ks. Here, it should be

stressed for DMs that any improvement of one member-
ship function can be achieved only at the expense of at
least one of the other membership functions for some
fixed decision powers.

4 A Numerical Example

In order to demonstrate the proposed method and the
interactive process, we consider the following hierarchical
two-objective linear programming problem.

[HMOLP]

first level decision maker : DM1

maxC1x =

(
c11x
c12x

)
=

(
10x1 + 2x2 + x3 + x4

x1 + 13x2 + 2x3 + x4

)
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second level decision maker : DM2

maxC2x =

(
c21x
c22x

)
=

(
x1 + 2x2 + 11x3 + x4

2x1 + x2 + x3 + 14x4

)
subject to

X = {x = (x1, x2, x2, x4)
T ≥ 0 | x1 + x2 + x3 + x4 ≤ 30}

By considering the maximum values and the mini-
mum values of the objective functions crix, i, r =
1, 2, the hypothetical decision makers (DM1 and
DM2) set their membership functions as µ11(c11x) =
c11x/300, µ12(c12x) = c12x/390, µ21(c21x) = c21x/330,
µ221(c22x) = c22x/420 respectively.

[HFMOLP]

first level decision maker : DM1

maxµ1(C1x) =

(
(10x1 + 2x2 + x3 + x4)/300
(x1 + 13x2 + 2x3 + x4)/390

)
second level decision maker : DM2

maxµ2(C2x) =

(
(x1 + 2x2 + 11x3 + x4)/330
(2x1 + x2 + x3 + 14x4)/420

)
In HFMOLP, let us assume that DM1 and DM2 find their
satisfactory solution from Ext[C1X | Λ1] and Ext[C2X |
Λ2], where the generators of the polyhedral cones Λ1 and
Λ2 in membership space are defined as follows:

V 1 = (v11,v12) =

(
5/
√
26 −1/

√
65

−1/
√
26 8/

√
65

)

V 2 = (v21,v22) =

(
7/
√
50 −1/

√
17

−1/
√
50 4/

√
17

)
According to Step 2, the initial values are set as w =
(w1, w2)

T
= (1, 1)

T
, and µ

ri
= µri = 1, i = 1, 2, r = 1, 2.

Then, at Step 3, HP2(w,µ,µ) is formulated to obtain
the corresponding generalized Λ-extreme point.

min
x∈X,x5∈E1

x5

subject to
1.045953 0.1307441 0 0
0.2067246 1.033623 0 0

0 0 1.047566 0.2618914
0 0 0.1527076 1.068953



·


µ̄11 − c11x/300− x5/w1

µ̄12 − c12x/390− x5/w1

µ̄21 − c21x/330− x5/w2

µ̄22 − c22x/420− x5/w2

 ≤


0
0
0
0


The optimal solution of HP2(w,µ,µ),
which is the generalized Λ-extreme point,

is obtained as (x1, x2, x3, x4, x5) =
(6.967248, 7.779573, 7.275372, 7.977807, 0.665051),
(µ11, µ12, µ21, µ22) = (0.334949, 0.334949, 0.334949,
0.334949), (π11, π12, π21, π22) = (0.208719, 0.184302,
0.215918, 0.198964). Is should be noted here that x5 ≥ 0.
According to Theorems 5 and 6, the trade-off rates
between membership functions and the decision power
w2 become as follows:

−∂µ11(c11x)

∂µ12(c12x)
=

π11q112 + π12q122
π11q111 + π12q121

= 0.8493697

−∂µ21(c21x)

∂µ22(c22x)
=

π21q212 + π22q222
π21q211 + π22q221

= 1.049339

∂µ2j(c2jx)

∂w2
=

x5

w2
2

− x5

w3
2

{
π21(q211 + q212)

+ π22(q221 + q222)

}
= 0.3153653

At Step 4, let us assume that, DM1 updates his/her
decision power as w2 = 0.9 in order to improve
his/her membership functions, and go to Step 3.
Then, the corresponding problem HP2(w,µ,µ)
is solved and the corresponding generalized Λ-
extreme point is obtained as (x1, x2, x3, x4, x5) =
(8.047015, 9.074458, 6.053371, 6.825155, 0.628341),
(µ11, µ12, µ21, µ22) = (0.371659, 0.371659, 0.301843,
0.301843), (π11, π12, π21, π22) = (0.197199, 0.174129,
0.204000, 0.187982, where DM1’s membership functions
are improved at the expense of DM2’s ones. At Step 4, let
us assume that DM1 is satisfied with the current values,
and DM2 updates his/her reference membership inter-
vals as µ

21
= 0.31, µ21 = 0.33, µ

22
= 0.27, µ22 = 0.29,

in order to improve µ21(c21x) at the expense of
µ22(c22x). According to the rule (2) of Step 4,
DM1’s reference membership intervals are fixed as
the optimal values of membership functions, i.e.,
µ
11

= 0.371659, µ11 = 0.371659, µ
12

= 0.371659, µ12 =
0.371659. Then, at Step 3, the corresponding problem
HP2(w,µ,µ) is solved and the corresponding general-
ized Λ-extreme point is obtained as (x1, x2, x3, x4, x5) =
(7.941169, 8.883159, 6.861872, 6.313800, 0.003813),
(µ11, µ12, µ21, µ22) = (0.367846, 0.367846, 0.325763,
0.285763). At this point, both DM1 and DM2 are
satisfied, and the interactive processes are terminated.

5 Conclusions

In this paper, hierarchical fuzzy multiobjective linear pro-
gramming problems (HFMOLP) have been formulated,
where multiple decision makers in a hierarchical orga-
nization have their own multiple objective linear func-
tions together with common linear constraints. In or-
der to deal with HFMOLP, concepts of a generalized Λ-
extreme point, decision powers and reference membership
intervals have been introduced and a linear programming
based interactive algorithm has been proposed to obtain
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the satisfactory solution. In the proposed method, not
only the hierarchical relationships between multiple deci-
sion makers but also their own preferences for their mem-
bership functions can be reflected for the satisfactory so-
lution. Applications of the proposed method will require
further investigation.
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