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Abstract–The present study discusses the retailer’s
optimal replenishment policy for products with a sea-
sonal demand pattern. The demand of seasonal mer-
chandise such as clothes, sporting goods, children’s
toys and electrical home appearances tends to de-
crease with time. In this study, we focus on “Special
Display Goods”, which are heaped up in end displays
or special areas at retail store. They are sold at a
fast velocity when their quantity displayed is large,
but are sold at a low velocity if the quantity becomes
small. We develop the model with a finite time hori-
zon (period of a season) to determine the optimal re-
plenishment policy, which maximizes the retailer’s to-
tal profit. Numerical examples are presented to illus-
trate the theoretical underpinnings of the proposed
model.

Keywords: optimal replenishment policy, seasonal de-

mand, special display goods

1 Introduction

The demand rate of seasonal merchandise such as clothes,
sporting goods, children’s toys and electrical home ap-
pearances tends to decrease with time. The seasonal
items have a relatively short selling season (eight to 12
weeks), while they have a relatively long ordering lead-
time (three to nine months)[1]. For this reason, the re-
tailers have to commit themselves to a single order to
purchase the seasonal items, prior to the start of the sea-
son. Recently, Quick Response (QR) system has widely
used by manufacturing industries[2]. Quick Response is
a vertical strategy where the manufacturer strives to pro-
vide products and services to its retail customers in ex-
act quantities on a continuous basis with minimum lead
time[3]. Appling the QR system to the manufacture and
distribution allows the retailer to re-order the seasonal
items during the selling season.

Inventory models with a finite planning horizon and time-
varying demand patterns have extensively been stud-
ied in the inventory literature[4-10]. Resh et al.[4] and
Donaldson[5] established an algorithm to determine the
optimal number of replenishment cycles and the opti-

∗Department of Information & Economics, University of Mar-
keting and Distribution Sciences, 3-1 Gakuen-nishimachi Nishi-ku,
Kobe Japan 651-2188 Tel:+81-78-796-4843 Fax:+81-78-794-3510 E-
mail: Hidefumi Kawakatsu@red.umds.ac.jp

mal replenishment time for a linearly increasing demand
pattern. Barbosa and Friedman[6] and Henery[7] respec-
tively extended the demand pattern to a power demand
form and a log-concave function. Hariga and Goyal[8]
and Teng[9] extended Donaldson’s work by considering
various types of shortages. For deteriorating items such
as medicine, volatile liquids and blood banks, Dye[10]
developed the inventory model under the circumstances
where shortages are allowed and backlogging rate linearly
depends on the total number of customers in the waiting
line during the shortage period. However, there still re-
main many problems associated with replenishment poli-
cies for retailers that should theoretically be solved to
provide them with effective indices. We focus on a case
where special display goods[11, 12, 13] are dealt in. The
special display goods are heaped up in the end displays or
special areas at retail store. Retailers deal in such special
display goods with a view to introducing and/or exposing
new products or for the purpose of sales promotions in
many cases. They are sold at a fast velocity when their
quantity displayed is large, but are sold at a low veloc-
ity when their quantity becomes small. Baker[14] and
Baker and Urban[15] dealt with a similar problem, but
they expressed the demand rate simply as a function of
a polynomial form without any practical meaning.

Our previous work has developed an inventory model for
the special display goods with a seasonal demand rate
over a finite time horizon to determine the optimal re-
plenishment policy, which maximizes the retailer’s total
profit[16]. However, the salvage value which is the dis-
posal value of unsold inventory at the end of the season
was assumed to be equal to the purchase cost. In this
study, we relax this restriction on the salvage value in
order to derive a more general solution. Numerical ex-
amples are presented to illustrate the theoretical under-
pinnings of the proposed model.

2 Notations and Assumptions

The main notations used in this paper are listed be-
low:
H: planning horizon.
p: selling price per item.
c: acquisition cost per item.
h: inventory holding cost per item and unit of time.
K: ordering cost per lot.
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Figure 1: Transition of inventory level (n = 3)

θ: salvage value, per item, of unsold inventory at the
end of the planning horizon.

g(t): stock-dependent consumption rate parameter at
time t (

R
g(t)dt = G(t) + C).

μ(t): demand rate, at time t, which is independent of
the quantity displayed.

QU : maximum inventory level.
Qj, qj: the order-up-to level and the re-order point,

respectively, in the jth replenishment cycle(q0 = 0,
0 ≤ qj < Qj ≤ QU , j = 1, 2, · · · , n).

n: the number of replenishment cycles during the plan-
ning horizon.

tj: the time of the jth replenishment (tj−1 < tj , t0 = 0,
tn = H).

The assumptions in this study are as follows:

(1) The finite planning horizon H is divided into n re-
plenishment cycles.

(2) The demand rate is deterministic and significantly
depends on the quantity displayed: the items sell well
if their quantity displayed is large, but do not when
their quantity displayed becomes small. We express
such a behavior of special display goods in terms of
the following differential equation:

d

dt
mj(t) = g(t) [Qj−1 −mj(t)] + μ(t) (1)

where mj(t) denotes the cumulative quantity of the
objective product sold during [tj−1, t] (t < tj+1) and
Qj−1 signifies the order-up-to level at the beginning
of the jth replenishment cycle. A mathematically
identical equation has been used to express the be-
havior of deteriorating items and their optimal order-
ing policy has been obtained by Abad[17]. Under the
model proposed in this study, the demand depends
on the quantity heaped and thus depends on time.

(3) The retailer deals in the seasonal merchandise. The
demand rate rapidly reaches its maximum value, and
then becomes a constant or decreases with time. The
growth stage of this class of item is negligibly short,
so that we focus on the maturity and saturation

stages. We therefore assume that μ0(t) ≤ 0 and
g0(t) ≤ 0 (0 ≤ t ≤ H).

(4) The end of season is defined by the retailer as the
point before which any units that are left in inventory
are sold below cost, i.e., we assume that θ ≥ c.

(5) The rate of replenishment is infinite and the delivery
is instantaneous.

(6) Backlogging and shortage are not allowed.

(7) The retailer orders (Qj−qj) units when her/his inven-
tory level reaches qj . Figure 1 shows the transition
of inventory level in the case of n = 3.

(8) We assume v(t) = (p − c)g(t) − h > 0. This as-
sumption, v(t) > 0, is equivalent to (p − c)(Qj −

qj) > h
Qj−qj
g(t) . The left-hand-side of the inequality,

(p− c)(Qj − qj), denotes the cumulative gross profit
during [tj−1, tj), and the right-hand-side of the in-

equality, h
Qj−qj
g(t) , approximately expresses the cumu-

lative inventory holding cost during [tj−1, tj). There-
fore, v(t) > 0 signifies that the gross profit exceeds
the inventory holding cost during one replenishment
cycle.

3 Total Profit

By solving the differential equation in Eq. (1) with the
boundary condition mj(tj−1) = 0, the cumulative quan-
tity, mj(t), of demand for the product at time t(≥ tj−1)
is given by

mj(t) = Qj−1
n
1− e−[G(t)−G(tj−1)]

o
+e−G(t)

Z t

tj−1

eG(u)μ(u)du. (2)

Since we have I(tj) = qj , the inventory level of the prod-
uct at time t becomes

I(t) = Qj−1 −mj(t)

= e−G(t)
·
qje

G(tj) +

Z tj

t

eG(u)μ(u)du

¸
. (3)

Therefore, the initial inventory level in jth replenishment
cycle is given by

Qj−1 = I(tj−1)

= e−G(tj−1)

×

"
qje

G(tj) +

Z tj

tj−1

eG(u)μ(u)du

#
. (4)

By letting Qj−1 = I(tj−1) in Eq. (2), the cumulative
quantity of demand during [tj−1, tj) becomes

m(tj−1, tj) = qj

h
eG(tj)−G(tj−1) − 1

i
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+e−G(tj−1)
Z tj

tj−1

eG(u)μ(u)du. (5)

There obviously exists a time t = tUj (> tj−1) at which
the inventory level reaches zero, where tUj is unique finite
positive solution to

e−G(tj−1)
Z t

tj−1

eG(u)μ(u)du = Qj−1. (6)

The left-hand-side of Eq. (6) indicates that the cumula-
tive demand of the product in jth replenishment cycle
when the re-order point qj is set to be zero. The maxi-
mum value of tj can therefore be given by t

U
j .

On the other hand, the cumulative inventory,
A(tj−1, tj), held during [tj−1, tj) (tj ≤ tUj ) is expressed
by

A(tj−1, tj) =

Z tj

tj−1

I(t)dt

=

Z tj

tj−1

μ(u)eG(u)

ÃZ u

tj−1

e−G(t)dt

!
du

+qje
G(tj)

Z tj

tj−1

e−G(t)dt. (7)

Hence, the total profit is given by

Pn =
nX
j=1

·
p ·m(tj−1, tj)− c · (Qj−1 − qj−1)

−h ·A(tj−1, tj)

¸
+ θqn − nK

= (θ − c)qn − nK

+(p− c)
nX
j=1

½
qj

h
eG(tj)−G(tj−1) − 1

i
+e−G(tj−1)

Z tj

tj−1

eG(u)μ(u)du

¾
−h

nX
j=1

½
qje

G(tj)

Z tj

tj−1

e−G(t)dt

+

Z tj

tj−1

eG(u)μ(u)

ÃZ u

tj−1

e−G(t)dt

!
du

¾
. (8)

4 Optimal Policy

This section analyzes the existence of the optimal pol-
icy (Qj−1, qj , tj) = (Q∗j−1, q

∗
j , t

∗
j ) for a given n (j =

1, 2, · · · , n), which maximizes Pn in Eq. (8).

4.1 Optimal Order-up-to Level and Re-
order Point

In this subsection, we examine the existence of (Q∗j , q
∗
j ),

under a general form of g(t), in case tj−1 and tj are fixed

to a suitable value.

Let R(tj−1, tj) be defined by

R(tj−1, tj) ≡ e−[G(tj)−G(tj−1)]

×

"
QU −

Z tj

tj−1

eG(u)−G(tj−1)μ(u)du

#
(> 0). (9)

The optimal order-up-to level and the optimal re-order
point can be given by

(Q∗j , q
∗
j ) = (QU , R(tj−1, tj)) . (10)

The proofs are given in Appendix A.

By letting (Qj−1, qj) = (QU , R(tj−1, tj)) in Eq. (8), the
total profit on (Qj−1, qj) = (QU , R(tj−1, tj)) becomes

Pn = (p− c)
nX
j=1

(
QU

h
1− e−{G(tj)−G(tj−1)}

i
+e−G(tj)

Z tj

tj−1

eG(u)μ(u)du

¾

−h
nX
j=1

½Z tj

tj−1

μ(u)eG(u)

ÃZ u

tj−1

e−G(t)dt

!
du

+

"
QUe

G(tj−1) −

Z tj

tj−1

eG(u)μ(u)du

#

×

Z tj

tj−1

eG(u)du

¾
+ (θ − c)R(tn−1, tn)

−nK. (11)

4.2 Optimal Replenishment Time

The analysis with respect to existence of tj = t
∗
j becomes

considerably complicated under a general form of g(t).
For this reason, we focus on the following two cases with
λ > 0:

Case 1: g(t) = λ,

Case 2: g(t) = λμ(t).

4.2.1 Case 1

This subsection makes an analysis of t∗j that maximizes
Pn, for a given (tj−1, tj+1), in the case of g(t) = λ. In
this case, Pn in Eq. (11) can be rewritten as

Pn = ṽ
nX
j=1

n
QU − e

−λ(tj−tj−1) [QU − m̃(tj−1, tj)]
o

+h/λ

Z H

0

μ(u)du− nK

+(θ − c)e−λ(tn−tn−1) [QU − m̃(tn−1, tn)] , (12)
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where

ṽ = (p− c− h/λ), (13)

m̃(tj−1, tj) =

Z tj

tj−1

eλ(u−tj−1)μ(u)du. (14)

Let us here ϕ(tUj ) be given by

ϕ(tUj ) ≡
1

λ
ln

λQU + μ(tUj )

μ(tUj )
+ tUj . (15)

We here summarize the result of analysis in relation to
the optimal replenishment point t∗j .

The proofs are shown in Appendix B.

(1) {j < n− 1} or {j = n− 1 and θ = c}:

(a) tj+1 < ϕ(tUj ):

There exists a unique finite t∗j (tj−1 < t∗j <

min(tUj , tj+1)) that maximizes Pn.

(b) tj+1 ≥ ϕ(tUj ):

Pn is non-decreasing in tj , and therefore t
∗
j = t

U
j .

(2) {j = n− 1 and θ > c and L01(tn) < 0}:

In this subcase, we show the existence of the opti-
mal replenishment time, t∗n−1, at the beginning of
the last cycle when θ > c. A sufficient condition for
L01(tn−1) < 0 can be given by ṽ ≥ (θ − c) (> 0).

(a) {L1(tn) < 0 and L(tUn−1) < 0}:

There exists a unique finite t∗n−1 (tj−1 < t
∗
n−1 <

min(tUn−1, tn)).

(b) {L1(tn) ≥ 0} or {L1(tn) < 0 and L(tUn−1) ≥ 0}:

Pn is non-decreasing in tn−1, and therefore
t∗n−1 = min(t

U
n−1, tn).

If there exists t∗j < t
U
j for all j = 1, 2, · · · , n−1 and θ = c,

the total profit is given by

Pn = ṽ

½
1

λ

n−1X
j=1

£
λQU + μ(t∗j )

¤ h
1− e−λ(t

∗
j+1−t∗j )

i
m(t∗n−1,H)

¾
+ h/λ

Z H

0

μ(u)du− nK. (16)

4.2.2 Case 2

In this subsection, we examine the existence of t∗j in the
case of g(t) = λμ(t). In this case, Pn in Eq. (11) can be

rewritten as

Pn =
h

λ
H − nK + n(p− c)

µ
QU +

1

λ

¶
−

µ
QU +

1

λ

¶ nX
j=1

½
(p− c)e−[G(tj)−G(tj−1)]

+heG(tj−1)
Z tj

tj−1

e−G(u)du

¾
+ (θ − c)

×

½µ
QU +

1

λ

¶
e−[G(tn)−G(tn−1)] −

1

λ

¾
. (17)

In the following, the mathematical results are briefly sum-
marized in the case of L02(tj) < 0.

The proofs are presented in Appendix C.

(1) {j < n− 1} or {j = n− 1 and θ = c}:

(a) {tj+1 ≤ t
U
j } or {L(t

U
j ) < 0}.

There exists a unique finite t∗j (tj−1 < t∗j <

min(tUj , tj+1)).

(b) {tj+1 > tUj } and {L(t
U
j ) ≥ 0}.

We have ∂
∂tj
Pn ≥ 0 and therefore t∗j = t

U
j .

(2) {j < n− 1} or {j = n− 1 and θ > c}:

The classification necessary here is identical to that
of Subcase(2) in 4.2.1.

5 Numerical Examples

This section presents numerical examples to illustrate the
proposed model for the following two cases:

Case 1: g(t) = λ,

Case 2: g(t) = λμ(t).

We here suppose the demand rate which is independent
of the quantity displayed to be a linear function of time
t, which is given by

μ(t) = β − αt (α > 0, β > 0, μ(t) > 0). (18)

Figure 2 reveals the transition of inventory level along
with behavior of (q∗j , t

∗
j ) in the case of g(t) = λ for

K = 5000, 7500, 1000. In contrast, Figure 3 depicts the
behavior of these values in the case of g(t) = λμ(t) for
K = 7500, 10000, 12500.

5.1 Case 1

Figure 2 illustrates the behavior of I(t), q∗j along with t
∗
j

in the case of g(t) = λ with (H,QU ,λ, p, c, h, θ,α,β) =
(100, 350, 0.01, 600, 300, 1, 300, 0.1, 13). It is observed in
Fig. 2 that the number of replenishment cycles decreases
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Figure 2: Sensitivity analysis (Case 1)

Figure 3: Sensitivity analysis (Case 2)

with increasingK. This is because when the ordering cost
per lot becomes large, the total ordering cost should be
slashed by means of increasing the time interval between
replenishment cycles in order to decrease the number of
its cycles.

It is also seen in Fig. 2 that q∗j is non-decreasing in time
t. This signifies that the cumulative quantity displayed
in the jth replenishment cycle increases with increasing
j. Heaping up the products to a large quantity reflects
the situation where the demand velocity is large at the
retail store. When the demand rate which is independent
of the quantity displayed becomes small, the retailer can
therefore maintain her/his profit as large as possible by
increasing the quantity displayed.

5.2 Case 2

Figure 3 shows the behavior of I(t), q∗j as well as t
∗
j in

the case of g(t) = λμ(t) with (H,QU ,λ, p, c, h, θ,α,β) =
(100, 350, 0.0026, 600, 300, 1, 300, 0.05, 10).

It is observed in Fig. 3 that n∗ decreases with increas-
ing K, that is, the time intervals between replenishment
cycles tend to increase with K. This tendency is quite
similar to that in section 5.1.

We can also notice in Fig. 3 that q∗j decreasing with in-
creasing time t, which is significantly different from that
in section 5.1. This is simply due to the effect of a large
quantity on the demand of the product decreases with

increasing time t, which can easily be confirmed by the
form of g(t).

6 Conclusions

In this study, we have proposed an inventory model with
a seasonal demand pattern over a finite time horizon (pe-
riod of a season) to determine the optimal replenishment
policy, which maximizes the retailer’s total profit. We
particularly focus on the case where the retailer is facing
her/his customers’ demand by dealing in a special display
goods. Since the analysis in relation to an optimal re-
plenishment policy is very complicated under the general
form of g(t), which expresses the stock-dependent con-
sumption rate parameter, we focus on the following two
cases for λ > 0: Case 1: g(t) = λ, Case 2: g(t) = λμ(t).
For each case in the above, we have clarified the existence
of the optimal replenishment policy which maximizes the
retailer’s total profit. In the real circumstances, retailers
frequently place a mirror at their display area, or they dis-
play products on a false bottom to increase their quantity
displayed in appearance. Taking account of such factors
is an interesting extension.

Appendix A

In this appendix, we discuss the existence of both the op-
timal order-up-to level and the re-order point (Qj , qj) =
(Q∗j , q

∗
j ), under a general form of g(t), in case n, tj−1 and

tj are fixed to a suitable value.
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At retail stores, retailers have a maximum value for the
inventory level arrowed for some reasons, which is de-
noted by QU . It can easily be shown from Eq. (4) that
Qj−1 is a function of qj (0 ≤ qj < Qj−1 ≤ QU ), and
furthermore, Qj−1 ≤ QU agrees with

qj ≤ e−[G(tj)−G(tj−1)]

×

"
QU −

Z tj

tj−1

eG(u)−G(tj−1)μ(u)du

#
.(A.1)

Let R(tj−1, tj) express the right-hand-side of Inequal-
ity (A.1), which signifies the maximum value for the re-
order point qj .

By differentiating Pn in Eq. (8) with respect to qj , we
have

∂

∂qj
Pn = (p− c)

h
eG(tj)−G(tj−1) − 1

i
−heG(tj)

Z tj

tj−1

e−G(u)du

> [(p− c)g(tj)− h]e
G(tj)

×

Z tj

tj−1

e−G(u)du (> 0). (A.2)

Since v(tj−1) = [(p− c)g(tj−1)− h] > 0 from assumption
(8), we have ∂

∂qj
Pn > 0, and consequently (Q∗j−1, q

∗
j ) =

(QU , R(tj−1, tj)).

Appendix B

In this appendix, we show the existence of t∗j that maxi-
mizes Pn, for a given (tj−1, tj+1), in the case of g(t) = λ.

By differentiating Pn in Eq. (12) with respect to tj , we
have

∂

∂tj
Pn = ṽ

½
λe−λ(tj−tj−1) [QU − m̃(tj−1, tj)]

−λQUe
−λ(tj+1−tj)

+μ(tj)
h
1− e−λ(tj+1−tj)

i¾
+φ(j)(θ − c)ζ1(tn−1), (B.1)

where

φ(j) ≡

½
0, j < n− 1,
1, j = n− 1,

(B.2)

ζ1(tn−1) = [λQU + μ(tn−1)] e
−λ(tn−tn−1). (B.3)

Since ṽ = λ(p − c) − h > 0 and (θ − c) > 0, ∂
∂tj
Pn ≥ 0

agrees with

L1(tj) ≥ 0, (B.4)

where

L1(tj) = λe−λ(tj−tj−1) [QU − m̃(tj−1, tj)]

−λQUe
−λ(tj+1−tj)

+μ(tj)
h
1− e−λ(tj+1−tj)

i
+φ(j)

θ − c

ṽ
ζ1(tn−1). (B.5)

In addition, from Eq. (B.5), we have

L01(tj) = −λ

½
λe−λ(tj−tj−1) [QU − m̃(tj−1, tj)]

+μ(tj) + e
−λ(tj+1−tj) [λQU + μ(tj)]

¾
+μ0(tj)

h
1− e−λ(tj+1−tj)

i
+φ(j)

θ − c

ṽ

½
λ[λQU + μ(tn−1)]

+μ0(tn−1)

¾
e−λ(tn−tn−1), (B.6)

L1(tj−1) = [λQU + μ(tj−1)]

×
h
1− e−λ(tj+1−tj−1)

i
+φ(j)

θ − c

ṽ
ζ1(tn−2) (> 0), (B.7)

L1(tj+1) = −λ

½
e−λ(tj+1−tj−1)m̃(tj−1, tj+1)

+QU

h
1− e−λ(tj+1−tj−1)

i¾
+φ(j)

θ − c

ṽ
ζ1(tn), (B.8)

L1(t
U
j ) = μ(tUj )

h
1− e−λ(tj+1−t

U
j )
i

−λQUe
−λ(tj+1−tUj ).

+φ(j)
θ − c

ṽ
ζ1(t

U
n ). (B.9)

In the case of {j < n − 2} or {j = n − 1 and θ = c},
Eqs. (B.6) and (B.8) respectively yield

L01(tj) = −λ

½
λe−λ(tj−tj−1) [QU − m̃(tj−1, tj)]

+μ(tj) + e
−λ(tj+1−tj) [λQU + μ(tj)]

¾
+μ0(tj)

h
1− e−λ(tj+1−tj)

i
(< 0), (B.10)

L1(tj+1) = −λ

½
e−λ(tj+1−tj−1)m̃(tj−1, tj+1)

+QU

h
1− e−λ(tj+1−tj−1)

i¾
(< 0), (B.11)
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and furthermore, L1(t
U
j ) < 0 is equivalent to

tj+1 <
1

λ
ln

λQU + μ(tUj )

μ(tUj )
+ tUj . (B.12)

Let us denote, by ϕ(tUj ), the right-hand-side of Inequal-
ity (B.12).

On the basis of the above results, for a given (tj−1, tj+1),
we show below that an optimal replenishment time t∗j
exists:

(1) {j < n− 1} or {j = n− 1 and θ = c}:

In this subcase, we can confirm from Eqs. (B.7),
(B.10) and (B.11) that L01(t1) < 0 and L1(tj−1) >
0 > L1(tj+1).

(a) tj+1 < ϕ(tUj ):

The sign of ∂
∂tj
Pn changes from positive to neg-

ative only once, and thus there exists a unique
finite t∗j (tj−1 < t∗j < min(tUj , tj+1)) that maxi-
mizes Pn.

(b) tj+1 ≥ ϕ(tUj ):

Pn is non-decreasing in tj , and consequently t
∗
j =

tUj .

(2) {j = n− 1 and θ > c and L01(tn) < 0}:

In this subcase, we show the existence of the optimal
replenishment time, t∗n−1, at the beginning of the last
cycle when θ > c. It is easily shown from Eq. (B.6)
that a sufficient condition for L01(tn−1) < 0 can be
given by ṽ ≥ (θ − c) (> 0).

(a) {L1(tn) < 0 and L(t
U
n−1) < 0}:

The sign of ∂
∂tn−1

Pn varies from positive to neg-

ative only once, and consequently there exists a
unique finite t∗n−1 (tn−2 < t

∗
n−1 < min(t

U
n−1, tn)).

(b) {L1(tn) ≥ 0} or {L1(tn) < 0 and L(tUn−1) ≥ 0}:

We have ∂
∂tn−1

Pn ≤ 0 and therefore t∗n−1 =

min(tUn−1, tn).

Appendix C

In this appendix, we examine the existence of t∗j in the
case of g(t) = λμ(t).

Let us here L2(tj) be given by

L2(tj) ≡ (p− c)g(tj)

×

½
e−[G(tj)−G(tj−1)] − e−[G(tj+1)−G(tj)]

¾
+h

½
1− e−[G(tj)−G(tj−1)]

−g(tj)

Z tj+1

tj

e−[G(u)−G(tj)]du

¾
+(θ − c)φ(j)ζ2(tn−1), (C.1)

where

ζ2(tn−1) ≡ g(tn−1)e
−[G(tn)−G(tn−1)]. (C.2)

By differentiating Pn in Eq. (17) with respect to tj , we
have

∂

∂tj
Pn =

µ
QU +

1

λ

¶
L2(tj). (C.3)

Since we have
¡
QU +

1
λ

¢
> 0, ∂

∂tj
Pn ≥ 0 agrees with

L2(tj) ≥ 0. Furthermore, we have

L2(tj−1) = (p− c)g(tj−1)
n
1− e−[G(tj+1)−G(tj−1)]

o
−hg(tj−1)e

G(tj−1)
Z tj+1

tj−1

e−G(u)du

+(θ − c)φ(j)ζ2(tn−2)

> g(tj−1)e
G(tj−1)v(tj+1)

Z tj+1

tj−1

e−G(u)du

+(θ − c)φ(j)ζ2(tn−2) (> 0), (C.4)

L2(tj+1) = −v(tj+1)
n
1− e−[G(tj+1)−G(tj−1)]

o
+(θ − c)φ(j)ζ2(tn). (C.5)

For {j < n − 2} or {j = n − 2 and θ = c}, Eq. (C.5)
yields

L2(tj+1) = −v(tj+1)
n
1− e−[G(tj+1)−G(tj−1)]

o
(< 0). (C.6)

Based on above results, we can show the conditions where
an optimal replenishment time t∗j exists in the case of
L02(tj) < 0:

(1) {j < n− 1} or {j = n− 1 and θ = c}:

(a) {tj+1 ≤ tUj } or {L(t
U
j ) < 0}.

The sign of ∂
∂tj
Pn varies from positive to negative

only once, and hence there exists a unique finite
t∗j (tj−1 < t

∗
j < min(t

U
j , tj+1)).

(b) {tj+1 > t
U
j } and {L(t

U
j ) ≥ 0}.

We have ∂
∂tj
Pn ≥ 0 and therefore t∗j = t

U
j .

(2) {j < n− 1} or {j = n− 1 and θ > c}:

The classification necessary here is identical to that
of Subcase(2) in Appendix B.
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