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Abstract— District heating and cooling (DHC) sys-
tems have been actively introduced as energy supply
systems in urban areas. Since there exist a number
of large-size freezers, heat exchangers and boilers in
a DHC plant to generate and supply cold water, hot
water and steam to a DHC system, the control un-
der an operation plan for these instruments on the
basis of the demand of cold water, hot water and
steam, called heat load, is important for stable and
economical management of DHC systems. In this
paper, we formulate an operation planning problem
of an actual DHC plant as a nonlinear integer pro-
gramming problem in consideration of various penal-
ties for violation of contracts. Furthermore, in order
to reflect actual decision making situations for DHC
plants more appropriately, we formulate a multiob-
jective operation planning problem to minimize not
only the running cost but the amount of primary en-
ergy consumption from the viewpoint of saving en-
ergy. Then, we propose an interactive fuzzy satis-
ficing method through tabu search for multiobjective
operation planning problems to derive a satisficing
solution for the decision maker.

Keywords: interactive fuzzy satisficing method, district
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1 Introduction

District heating and cooling (DHC) systems have been
actively introduced as an energy supply system in urban
areas for the purpose of saving energy, saving space, in-
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Figure 1: An illustration of a district heating and cooling
system.

hibiting air-pollution or preventing city disaster. In a typ-
ical DHC system, cold water, hot water and steam used
for air-conditioning at all facilities in a certain district
are made and supplied by a DHC plant, as illustrated in
Figure 1.

Since there exist a number of large-size freezers, heat ex-
changers and boilers in a DHC plant, the control under an
operation plan for these instruments on the basis of the
amount of cold water, hot water and steam, called heat
load, is important for stable and economical management
of a DHC system.

In recent years, with the improvement of heat load pre-
diction methods for DHC systems [3, 6], the needs of
the formulation of operation planning problems of DHC
plants as a mathematical programming one and the devel-
opment of solution methods to the formulated problems
has been increasing [2, 5, 7, 8, 10]. In previous researches
[5, 7], the running cost involving the electric power rate
and the gas rate based on the meter rate contract and
the arrangement cost of instruments was considered as an
objective function to be minimized in operation planning
problems in DHC plants. However, actual DHC plant op-
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eration companies have other contracts except the meter
rate contract with the electric power company and the
gas company. Therefore, we should incorporate penal-
ties for violation of contracts into the running cost to
estimate the running cost more accurately. In addition,
these companies need to minimize not only the running
cost but the energy consumption itself from the viewpoint
of the energy saving.

Under these circumstances, in this paper, after formulat-
ing an operation planning problem of a DHC plant in con-
sideration of contract violation penalties, we formulate a
multiobjective operation planning problem to simultane-
oously minimize the running cost and the amount of pri-
mary energy consumption from the viewpoint of saving
energy. Then, we propose an interactive fuzzy satisfic-
ing method through tabu search to derive a satisficing
solution for the decision maker and show its efficiency
through numerical experiments using actual data.

2 Operation Planning of DHC Plants

2.1 Structure of a DHC Plant

A DHC plant usually generates cold water, hot water
and steam by running many instruments using gas and
electricity.

Relations among instruments in a DHC plant are de-
picted in Figure 2. From Figure 2, it can be seen that hot
water, steam required for heating and cold water required
for cooling are generated by running NBW boilers of p
types, NDAR absorbing freezers of q types, NER turbo
freezers of r types, NCEX cold water heat exchangers of
s types, NIEX ice thermal storage heat exchangers of u
types, NHEX hot water heat exchangers of s types and
a thermal storage tank using gas and electricity in this
DHC plant, where pumps and cooling towers are con-
nected with the corresponding freezers.

For the DHC plant, we need to find an optimal operation
plan to minimize the cost of gas and electricity under the
condition that the demand for cold water, hot water and
steam must be satisfied by running instruments.

2.2 Problem Formulation

Given the (predicted) amount of the demand for cold
water Cload(t), that for hot water Wload(t) and that for
steam Sload(t) at time t, the operation planning problem
of the DHC plant can be summarized as follows.

(I) The problem involves p + q + r + s +
u + v + 1 integer decision variables. Deci-
sion variables (xt

1, . . . , x
t
q), (xt

q+1, . . . , x
t
q+r),

(xt
q+r+1, . . . , x

t
q+r+s), (xt

q+r+s+1, . . . , x
t
q+r+s+u) and

(xt
q+r+s+u+1, . . . , x

t
q+r+s+u+v) are corresponding to the

number of running instruments of absorbing freezers,
that of turbo freezers, that of cold water heat exchangers,

that of ice thermal storage tank heat exchangers and
that of hot water heat exchangers, while yt1, . . . , y

t
p are

that of boilers. In addition, there exists a decision
variable zt which indicates whether some condition holds
or not.

(II) The freezer output load rate P = (Ct
load−Ct

TS)/C
t,

which means the ratio of the difference between the (pre-
dicted) amount of the demand for cold water Cload(t)
and the output of the thermal storage tank which is au-
tomatically running, Ct

TS , to the total output of running

freezers Ct =
∑q+r+s+u

i=1 aix
t
i, must be less than or equal

to 1.0, i.e.,
Ct ≥ Ct

load − Ct
TS (1)

where we denote the rating output of the ith freezer by ai.
This constraint means that the total output of running
freezers and heat exchangers must exceed the necessary
amount of cold water generated in the plant, Ct

load−Ct
TS .

(III) The freezer output load rate P = (Ct
load−Ct

TS)/C
t

must be greater than or equal to 0.2, i.e.,

0.2 · Ct ≤ Ct
load − Ct

TS . (2)

This constraint means that the total output of running
freezers must not exceed five times the difference between
the (predicted) amount of the demand for cold water and
the output of the thermal storage tank.

(IV) The hot water heat exchanger output load rate
R = Wt

load/W
t, which means the ratio of the (pre-

dicted) amount of the demand for hot water Wload(t)
to the total output of running heat exchangers W t =∑q+r+s+u+v

i=q+r+s+u+1 bix
t
i, must be less than or equal to 1.0,

i.e.,
W t ≥ Wt

load (3)

where we denote the rating output of the ith heat ex-
changer by wi. This constraint means that the total out-
put of running hot water heat exchangers must exceed
the (predicted) amount of the demand for hot water.

(V) The boiler output load rate Q = (St
DAR + St

HEX +
Stload−StWHS)/S

t, which means the ratio of the necessary
amount of steam generated in the plant to the total out-
put of running boilers St =

∑p
j=1 fjy

t
j must be less than

or equal to 1.0, i.e.,

−St
DAR − St

HEX + St ≥ Stload − StWHS (4)

where we denote the rating output of the jth boiler by
fj . Furthermore, St

DAR and St
HEX mean the total amount

of steam used by absorbing freezers at time t, defined as

St
DAR =

q∑
i=1

Θ(P ) · Smax
i · xi (5)

and the total amount of steam used by heat exchangers
at time t, defined as

St
HEX = W t/0.95 (6)
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Figure 2: Structure of a district heating and cooling plant.
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where Smax
i is the maximal steam amount used by the ith

absorbing freezers. In addition, StWHS means the amount
of waste heat steam supplied from the outside of this
DHC system. Θ(P ) is the rate of use of steam in an
absorbing freezer, which is a nonlinear function of the
freezer output load rate P in general. For the sake of
simplicity, in this paper, we use the following piecewise
linear approximation.

Θ(P ) =

{
0.8775 · P + 0.0285 , P ≤ 0.6
1.1125 · P − 0.1125 , P > 0.6

(7)

(VI) The boiler output load rate Q = (St
DAR + St

HEX +
Stload − StWHS)/S

t must be greater than or equal to 0.2,
i.e.,

−St
DAR − St

HEX + 0.2 · St ≤ Stload − StWHS. (8)

This constraint means that the total output of running
boilers must not exceed five times the necessary amount
of steam.

(VII) The minimizing objective function J(t) is the en-
ergy cost which is the sum of the gas bill and the elec-
tricity bill.

J(t) = Gcost ·At
G + Ecost ·At

E (9)

where Gcost and Ecost are the unit cost of gas and that
of electricity, respectively.

The gas consumption At
G is defined as the gas amount

consumed in the rating running of a boiler gj , j =
1, 2, . . . , p and the boiler output load rate Q.

At
G =

 p∑
j=1

gjyj

 ·Q (10)

On the other hand, the electricity consumption At
E is

defined as the sum of electricity amount consumed by
turbo freezers, accompanying cooling towers and pumps.

At
E = Et

ER + Et
CT + Et

DP + Et
P

=

q+r∑
i=1

Ξ(P ) · Emax
i · xt

i +

q+r∑
i=1

cCT
i xt

i

+

q+r∑
i=1

cDP
i xt

i +

q+r+s+u+v∑
i=1

cPi x
t
i (11)

where Emax
i denotes the maximal electricity amount used

by the ith turbo freezer, cCT
i , cDP

i and cPi are the elec-
tricity amount of cooling tower and those of two kinds of
pumps.

In the above equation, Ξ(P ) denotes the rate of use of
electricity in a turbo freezer, which is a nonlinear func-
tion of the freezer output load rate P . For the sake of

simplicity, in this paper, we use the following piecewise
linear approximation.

Ξ(P ) =

{
0.6 · P + 0.2 , P ≤ 0.6
1.1 · P − 0.1 , P > 0.6

(12)

Accordingly, the operation planning problem is formu-
lated as the following nonlinear integer programming
problem.

Problem P (t)

minimize

J(xt,yt, zt) = Gcost ·At
G + Et

cost ·At
E (13)

subject to

−(1− zt) · (Ct − (Ct
load − Ct

TS)) ≤ 0 (14)

zt ·
(
0.2 · Ct

)
+ (1− zt) ·

(
0.6 · Ct

)
≤ Ct

load − Ct
TS (15)

−zt ·
(
0.6 · Ct − (Ct

load − Ct
TS)

)
≤ 0 (16)

−W t ≤ −Wt
load (17)

zt ·Θ1(P ) + (1− zt) ·Θ2(P ) + St
HEX − St

≤ −Stload + StWHS (18)

−zt ·Θ1(P )− (1− zt) ·Θ2(P )− St
HEX + 0.2 · St

≤ Stload − StWHS (19)

xt
i ∈ {0, 1, . . . , NDARi}, i = 1, . . . , q (20)

xt
i ∈ {0, 1, . . . , NERi}, i = q + 1, . . . , q + r (21)

xt
i ∈ {0, 1, . . . , NCEXi},

i = q + r + 1, . . . , q + r + s (22)

xt
i ∈ {0, 1, . . . , NIEXi

},
i = q + r + s+ 1, . . . , q + r + s+ u(23)

xt
i ∈ {0, 1, . . . , NHEXi},
i = q + r + s+ u+ 1, . . . , q + r + s+ u+ v(24)

ytj ∈ {0, 1, . . . , NBWj}, j = 1, . . . , p (25)

zt ∈ {0, 1} (26)

where

Ct =

q+r∑
i=1

aix
t
i, W t =

q+r+s+u+v∑
i=q+r++s+u+1

bix
t
i,

St =

p∑
j=1

fjy
t
j , P = (Ct

load − Ct
TS)/C

t,

Θ1(P ) =

q∑
i=1

(0.8775 · P + 0.0285) · Smax
i · xt

i,

Θ2(P ) =

q∑
i=1

(1.1125 · P − 0.1125) · Smax
i · xt

i,

Ξ1(P ) =

q+r∑
i=q+1

(0.6 · P + 0.2) · Emax
i · xt

i,

IAENG International Journal of Applied Mathematics, 40:3, IJAM_40_3_11

(Advance online publication: 19 August 2010)

 
______________________________________________________________________________________ 



Ξ2(P ) =

q+r∑
i=q+1

(1.1 · P − 0.1) · Emax
i · xt

i,

At
G =

 p∑
j=1

gjy
t
j

 ·Q,

Q = (1/St)
{
zt ·Θ1(P ) + (1− zt) ·Θ2(P )

+St
HEX + Stload − StWHS

}
,

At
E =

{
zt · Ξ1(P ) + (1− zt) · Ξ2(P )

+

q+r∑
i=1

cCT
i xt

i +

q+r∑
i=1

cCP
i xt

i +

q+r+s+u+v∑
i=1

cCDP
i xt

i

}
.

In the problem, zt = 1, zt = 0 mean P ≤ 0.6, P > 0.6, re-

spectively. In the following, let λt =
(
(xt)

T
, (yt)

T
, zt

)T

and let Λt be the feasible region of P (t).

Since an operation plan for one day is usually made
in the DHC plant operation company every day, we
should consider 24-hour operation plans λ(0, 24) =
((λ0)T , (λ1)T , . . . , (λ23)T ) ∈ Λ(0, 24) = Λ0 × Λ1 × · · · ×
Λ23. Thus, Sakawa et al. [5, 7] studied multi-period op-
eration planning problems to reflect the practical situa-
tion for DHC plants. In multi-period operation plans, we
must consider the switching of instruments since instru-
ments running in the previous period may be stopping in
the next period, and vice versa. Since the starting and
stopping of instruments need more electricity and man-
power than the continuous running does, the arrangement
cost of instruments should be took into account in multi-
period operation planning.

Thus, they formulated an extended operation planning
problem in consideration of the arrangement cost of in-
struments [5, 7]. To be more specific, we deal with the
following problem P (0, 24) for 24-hour operation plan-
ning.

Extended problem P (0, 24)

minimize

J0,24(λ(0, 24)) = J(λ0) +
23∑
τ=1

[
J(λτ )

+

p+q+r+s+u+v∑
j=1

ϕj

∣∣∣λτ
j − λ

(τ−1)
j

∣∣∣ ] (27)

subject to

λ(0, 24) ∈ Λ(0, 24) (28)

where ϕj is the cost of switching of the jth instrument.
In should be noted that P (0, 24) is a large-scale nonlinear
integer programming problem which involves 24 times as
many variables as P (t) does.

3 Contract Violation Penalties and Mul-
tiobjective Problem

The DHC plant operation company considered in this
paper has the following contracts except the meter rate
contract with the electric power company and the gas
company.

• Least gas consumption contract: The DHC
plant operation company has a least gas consump-
tion contract with the gas company, where the
amount of gas consumption of a year must be greater
than or equal to a fixed value B1. If the amount of
gas consumption of a year is less than B1, the DHC
plant operation company must pay the penalty M1

to the gas company.

• Greatest electric power contract: The DHC
plant operation company has a greatest electric
power contract with the electric power company,
where the electric power at any time must be less
than or equal to a fixed value B2. If the electric
power exceeds B2 at some time, the DHC plant op-
eration company must pay the penalty M2 to the
electric power company.

• Peak cut contract: The DHC plant operation
company has a peak cut contract with the electric
power company, where the electric power in the peak
period from 13:00 to 16:00 must be less than or equal
to a fixed value Bt

3. If the electric power exceeds Bt
3

in the peak period, the DHC plant operation com-
pany must pay the penalty M3 to the electric power
company.

If any contract is violated, the DHC company has to pay
the penalty.

Now, we give mathematical expressions of penalties men-
tioned above. First, we consider the penalty of the great-
est electric power contract, PE2(·), and that of the peak
cut contract, PE3(·). Either the greatest electric power
contract or that of the peak cut contract is violated when
the electric power exceeds B2 or B3. Then, the DHC com-
pany has to pay M2 or M3. Thus, we define them as:

PE2(λ
t) =

{
M2 , if At

E > B2,
0 , otherwise

PE3(λ
t) =

{
M3 , if At

E > Bt
3, t in the peak period,

0 , otherwise

Next, we consider the penalty of the least gas consump-
tion contract. Let αm, m = 1, 2, . . . , 12 be the ratio
of monthly gas consumption to yearly gas consumption
for each month.For a monthly operation plan from the
first day (day 1) to the last day (day dm) of month
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m, we define monthly thresholds B1,m, m = 1, 2, . . . , 12
as B1,m = B1 · αm. In addition, we define monthly
penalties of the least gas consumption contract, PE1,m,
m = 1, 2, . . . , 12 as M1,m = M1 · αm. Then, based on the
gas consumption from day 1 to day d of month m and
the number of remaining days of month m, dm − (d− 1),
we define the daily threshold of day d as:

B1,m(d) =
B1,m −AG(d− 1)

dm − (d− 1)

where

AG(d) =
d·24∑
τ=1

 p∑
j=1

gjy
τ
j

 ·Q.

Since the daily threshold B1,m(d) increases as the total
gas consumption from day 1 to day d of month m de-
creases, it can reflect the situation of gas consumption on
day d.

We also define the daily penalty of day d as:

M1,m(d) =
M1,m

dm − (d− 1)
.

Then, we can define the penalty of the least gas con-
sumption contract for a 24-hour operation plan λ(0, 24)
as:

PE1(λ(0, 24)) =

M1,m(d) , if
23∑
τ=0

Aτ
G < B1,m(d)

0 , otherwise

Introducing these penalties into the objective function of
P (0, 24), we extend P (0, 24) into the following problem
with penalties.

Extended problem with penalties P ′(0, 24)

minimize

J ′
0,24(λ(0, 24)) = J0,24(λ(0, 24)) + PE1(λ(0, 24))

+
23∑
τ=0

[PE2(λ
τ ) + PE3(λ

τ )] (29)

subject to λ(0, 24) ∈ Λ(0, 24) (30)

Furthermore, in order to reflect actual decision making
situations for DHC plants more appropriately, we formu-
late a multiobjective extended problem to minimize not
only the running cost but the amount of primary energy
consumption from the viewpoint of saving energy during
D days.

Multiobjective extended problem MOP ′(0, 24, D)

minimize

J ′
1(λ(0, 24), . . . ,λ(24(D − 1), 24))

=
D−1∑
d=0

{
J24d,24(λ(24d, 24)) + PE1(λ(24d, 24))

+
23∑
τ=0

[
PE2(λ

24d+τ ) + PE3(λ
24d+τ )

]}
(31)

minimize

J ′
2(λ(0, 24), . . . ,λ(24(D − 1), 24))

=

D−1∑
d=0

{
23∑
τ=0

αG ·A24d+τ
G + αEA

24d+τ
E

}
(32)

subject to

λ(24d, 24) ∈ Λ(24d, 24), d = 0, 1, . . . , D − 1 (33)

where αG and αE are the coefficient of conversion to pri-
mary energy for gas and that for electricity, respectively.

4 An Interactive Fuzzy Satisficing
Method

In order to consider the imprecise nature of the deci-
sion maker’s judgments for each objective function J ′

l (·),
l = 1, 2, if we introduce the fuzzy goals such as “J ′

l (·)
should be substantially less than or equal to pl”, the mul-
tiobjective extended problem can be transformed as:

maximize µ1(J
′
1(λ(0, 24), . . . ,λ(24(D − 1), 24)))

maximize µ2(J
′
2(λ(0, 24), . . . ,λ(24(D − 1), 24)))

subject to
λ(24d, 24) ∈ Λ(24d, 24), d = 0, 1, . . . , D − 1


(34)

where µl(J
′
l (·)) are membership functions to quantify the

fuzzy goals.

As a reasonable solution concept for the fuzzy multiobjec-
tive decision making problem, Sakawa et al. [4, 9] defined
M-Pareto optimality on the basis of membership func-
tion values and developed an interactive fuzzy satisfic-
ing method to derive a satisficing solution guaranteed to
be M-Pareto optimal by eliciting the local preference in-
formation from the decision maker through interactions.
In their method [4, 9], the decision maker interactively
updates aspiration levels of achievement for membership
values of all fuzzy goals, called reference membership lev-
els, until he is satisfied. To be more specific, for the deci-
sion maker’s reference membership levels µ̄lthe following
augmented minimax problem is repeatedly solved:

minimize

max
l=1,2

{(
µ̄l − µl(J

′
l (λ(0, 24), . . . ,λ(24(D − 1), 24)))

)
+ρ

2∑
i=1

(
µ̄i − µi(J

′
i(λ(0, 24), . . . ,λ(24(D − 1), 24)))

)}
subject to
λ(24d, 24) ∈ Λ(24d, 24), d = 0, 1, . . . , D − 1


(35)
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where ρ is a sufficiently small positive number. If the ref-
erence membership levels are not attainable, the optimal
solution to (35) is the nearest feasible solution to them in
the augmented minimax sense. Otherwise, the optimal
solution to (35) could be better than them.

In this paper, we apply and adjust the interactive fuzzy
satisficing method to the above multiobjective extended
problem (34).

Interactive fuzzy satisficing method for MOP ′(0, 24, D)

Step 1 In order to obtain the minimum J ′
l and (ap-

proximate) maximum J
′
l of J ′

l (·), l = 1, 2 in
MOP ′(0, 24, D), solve (36) and (37).

minimize J ′
l (λ(0, 24), . . . ,λ(24(D − 1), 24))

subject to
λ(24d, 24) ∈ Λ(24d, 24), d = 0, 1, . . . , D − 1


(36)

maximize J ′
l (λ(0, 24), . . . ,λ(24(D − 1), 24))

subject to
λ(24d, 24) ∈ Λ(24d, 24), d = 0, 1, . . . , D − 1


(37)

Step 2 Ask the decision maker to specify membership
functions µl(J

′
l (·)), l = 1, 2 based on minima and

maxima obtained in step 1, and set the initial refer-
ence membership levels µ̄l, l = 1, 2.

Step 3 For the current reference membership levels
(µ̄1, µ̄2), solve the corresponding augmented mini-
max problem (35). It should be noted that the opti-
mal solution to (35) is M-Pareto optimal.

Step 4 If the decision maker is satisfied with the current
solution obatined in step 3, the interaction process
is terminated. Otherwise, ask the decision maker to
update µ̄l, l = 1, 2 in consideration of the current
membership function values and objective function
values, and go to step 3.

Since problems (36), (37) and (35) are large-scale nonlin-
ear integer programming problems, it is difficult to find
an exact optimal solution to it. Thus, we use an approx-
imate solution method using tabu search. To be more
specific, we extend the tabu search based on strategic os-
cillation for multidimensional integer knapsack problems
[1] to nonlinear integer programming problems and apply
it to solve (36), (37) and (35).

5 Tabu Search Based on Strategic Oscil-
lation

In this paper, we extend tabu search based on strategic
oscillation for multidimensional 0-1 knapsack problems
[1] to nonlinear integer programming problems. The tabu

search proposed in [1] made use of the property of mul-
tidimensional 0-1 knapsack problems that the improve-
ment or disimprovement of the objective function value
corresponds with the decrease or increase of the degree of
feasibility. From the property, it is clear that the optimal
solution to multidimensional 0-1 knapsack problems ex-
ists in the area near the boundary of the feasible region
which is called the promising zone. Thus, the search di-
rection in multidimensional 0-1 knapsack problems can be
controlled by checking the change of the objective func-
tion value. In the case of nonlinear integer programming
problems, the promising zone does not always exist near
the boundary of the feasible region since the monotone
relation between the objective function value and the de-
gree of feasibility no longer holds. Since the promising
zone originally means the area which is considered to in-
clude an optimal solution, we define the promising zone
for nonlinear integer programming problems as neighbor-
hoods of local optimal solutions. Thus, in order to use
not only the change of the objective function value but
the degree of feasibility, we introduce the index of sur-
plus of constraints δ(λ(t, 24)) and that of slackness of
constraints ϵ(λ(t, 24)).

δ(λ(t, 24))
△
=

t+23∑
τ=t

∑
i∈I+

gτi (λ
τ ),

I+ = { i |gτi (λ
τ ) > 0, i ∈ {1, . . . , 8}}

ϵ(λ(t, 24))
△
=

t+23∑
τ=t

∑
i∈I−

−gτi (λ
τ ),

I− = { i |gτi (λ
τ ) ≤ 0, i ∈ {1, . . . , 8}}

where gti(·) ≤ 0, i ∈ {1, 2, . . . , 8} correspond with con-
straints in P (t).

Step 0: INITIALIZATION
Generate an initial solution λ(t, 24) at random, and ini-
tialize the tabu list TL, parameters CN , DN and AN .
If λ(t, 24) is feasible, go to step 4. Otherwise, go to step
1.
Step 1: TS PROJECT
The aim of this step is to move the current solution in
the infeasible region to the promising zone in the gentlest
ascent (disimproving) direction about the objective func-
tion with decreasing the surplus of constraints δ(λ(t, 24))

While δ(λ(t, 24)) is positive, i.e., the current solution
is infeasible, repeat finding a non-tabu decision variable
which decreases δ(λ(t, 24)) and gives the lest disimprove-
ment of the objective function value when its value would
be changed, changing the value of the decision variable
actually and adding the decision variable to TL. If there
does not exist any non-tabu decision variable that de-
creases δ(λ(t, 24)), select a decision variable randomly,
change its value even if δ(λ(t, 24)) increases and add the
decision variable to TL. If δ(λ(t, 24)) = 0 and there does
not exist any decision variable which improves the objec-
tive function value by changing its value, go to step 2.
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Step 2: TS COMPLEMENT
The aim of this step is to search the promising zone in-
tensively.

Let λ′(t, 24) := λ(t, 24) and λ′′(t, 24) := λ′(t, 24). Then,
select several tabu decision variables of λ′′(t, 24) and
change their values. If δ(λ′′(t, 24)) = 0, then carry out
step 4. Otherwise, carry out step 1. If J ′

t,24(λ
′′(t, 24)) <

J ′
t,24(λ(t, 24)) for the solution δ(λ′′(t, 24)) obtained by

step 4 or step 1, let λ(t, 24) := λ′′(t, 24). This procedure
is repeated CN times. If the previous step of this step is
step 1, then go to step 3. If the previous step of this step
is step 4, then go to step 5.
Step 3: TS DROP
The aim of this step is to move the current solution in the
promising zone to the inside of the feasible region in the
gentlest ascent direction of the objective function with
increasing the slackness of constraints ϵ(λ(t, 24))

Repeat finding a non-tabu decision variable which in-
creases ϵ(λ(t, 24)) and gives the lest disimprovement of
the objective function when its value would be changed,
changing the value of the decision variable actually and
adding the decision variable to TL. If there does not exist
any non-tabu decision variable that increases ϵ(λ(t, 24))
or the number of repetitions of the above procedure ex-
ceeds DN , go to step 4.
Step 4: TS ADD
The aim of this step is to move the current solution in the
feasible region to the promising zone in the steepest de-
scent (improving) direction about the objective function
with keeping δ(λ(t, 24)) = 0.

While δ(λ(t, 24)) = 0, i.e., the current solution is feasible,
repeat finding a non-tabu decision variable which keeps
δ(λ(t, 24)) = 0 and gives the greatest improvement of the
objective function value when its value would be changed,
changing the value of the decision variable actually and
adding the decision variable to TL. If there does not exist
such a decision variable, go to step 2.
Step 5: TS INFEASIBLE ADD
The aim of this step is to move the current solution in the
promising zone to the infeasible region in the steepest de-
scent (if exist) or the gentlest ascent direction about the
objective function with decreasing the slackness of con-
straints ϵ(λ(t, 24)) or increasing the surplus of constraints
δ(λ(t, 24)).

Repeat finding a non-tabu decision variable which de-
creasing the slackness of constraints ϵ(λ(t, 24)) or increas-
ing the surplus of constraints δ(λ(t, 24)) and gives the
greatest improvement (if exist) or the lest disimprove-
ment of the objective function value when its value would
be changed, changing the value of the decision variable
actually and adding the decision variable to TL. If there
does not exist such a decision variable or the number of
repetitions of the above procedure exceeds AN , go to step
1.

Table 1: Individual minima J ′
l,min and maxima J ′

l,max,
l = 1, 2

Objective function J ′
l,min J ′

l,max

J ′
1 465294344.9 150878375.0

J ′
2 329818346.2 120242558.1

6 Numerical Experiments

In this section, we deal with an actual DHC plant with
boilers of 3 types, absorbing freezers of 4 types, turbo
freezers of 4 types, cold water heat exchangers of 2 types,
ice thermal storage tank heat exchangers of 2 types and
heat exchangers of 3 types. Thus, a daily (24-hour) op-
eration planning problem for a certain day for this plant
involves 456 integer decision variables.

Here, we consider monthly operation planning with two
objective functions of this DHC plant. After formulating
it as a multiobjective extended problem MOP ′(0, 24, D)
which includes 456 × 31 integer decision variables, we
apply the proposed interactive fuzzy satisficing method
through the tabu search. The problem involves two ob-
jective functions: the running cost J ′

1(·) and the amount
of primary energy consumption J ′

2(·).

Numerical experiments are carried out on a personal com-
puter (CPU:Intel PentiumIV Processor 2.40GHz, Mem-
ory: 512MB, C Compiler: Microsoft Visual C++ 6.0)
and the number of trials of tabu search is 10.

First, according to step 1 in the interactive fuzzy satisfic-
ing method, we calculate the (approximate) minimum of
J ′
l,min and the (approximate) maximum J ′

l,max, l = 1, 2.
Table 1 shows these values.

Second, according to step 2, the hypothetical decision
maker specifies membership functions µl(·), l = 1, 2 based
on the individual minima and maxima of objective func-
tions J ′

l (·). In this experiment, we use linear membership
functions defined as:

µl(J
′
l ) =


1 , if J ′

l < Jl,min,
J ′
l − J ′

l,max

J ′
l,min − J ′

l,max

, if J ′
l,min ≤ J ′

l,max ≤ J ′
l ,

0 , if J ′
l > Jl,max.

Then, the decision maker sets the initial reference mem-
bership levels (µ̄1, µ̄2) = (1.00, 1.00).

Next, according to step 3, the augmented minimax prob-
lem (35) for the current reference membership levels is
solved by the tabu search. The results are shown in the
second column of Table 2.

In step 4, since the decision maker cannot be satisfied
with this result and he/she feels that J ′

1 should be im-
proved even if J ′

2 becomes worse, the reference member-
ship levels are updated from (1.00, 1.00) to (1.00, 0.95),
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Table 2: Interaction process
Interaction 1st 2nd 3rd

µ̄1 1.00 1.00 1.0
µ̄2 1.00 0.95 0.9
µ1 0.63 0.66 0.71
µ2 0.65 0.64 0.61
J ′
1 263358375.0 248088543.1 219563349.5

J ′
2 185391644.7 195669214.1 213127596.4

and return to step 3.

Again, the minimax problem (35) is solved for the current
reference membership levels, and the results are shown in
the third column of Table 2.

Furthermore, the decision maker hopes that J ′
1 becomes

better at the additional expense of J ′
2 and updates the ref-

erence membership levels from (1.00, 0.95) to (1.00, 0.90).
The results are shown in the fourth column of Table 2.

In this experiment, since the decision maker is satisfied
with this result, this solution is the satisficing solution
for the decision maker, and the interaction process stops.

7 Conclusion

In this paper, we focused on operation planning of dis-
trict heating and cooling (DHC) plants considering con-
tracts with the electric power company and the gas com-
pany except the meter rate contract. First, we formu-
lated a single period operation planning problem P (t)
and a multi-period operation planning problem P (0, 24)
as a nonlinear integer programming problem. Second, in
consideration of penalties for violation of contracts, we
formulated an extended multi-period operation planning
problem with the penalties P ′(0, 24). Next, in order to
reflect actual decision making situations for DHC plants
more appropriately, we formulate a multiobjective oper-
ation planning problem MOP ′(0, 24, D) to minimize not
only the running cost but the amount of primary energy
consumption from the viewpoint of saving energy dur-
ing D days. Then, we dicussed the application of an
interactive fuzzy satificing method through tabu search
into multiobjective operation planning problems to de-
rive a satisficing solution for the decision maker. Finally,
we show the feasibility and usefulness of the interactive
method for multiobjective operation planning problems
through a numerical experiment using actual data.
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