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Abstract—Modern high-power, pulsed lasers are

driven by strong intracavity fluctuations. Critical

in driving the intracavity dynamics is the nontrivial

phase profiles generated and their periodic modifi-

cation from either nonlinear mode-coupling, spectral

filtering or dispersion management. Understanding

the theoretical origins of the intracavity fluctuations

helps guide the design, optimization and construction

of efficient, high-power and high-energy pulsed laser

cavities. Three specific mode-locking component are

presented for enhancing laser energy: waveguide ar-

rays, spectral filtering and dispersion management.

Each component drives a strong intracavity dynamics

that is captured through various modeling and ana-

lytic techniques.

Keywords: Modelocked lasers, waveguide arrays, spec-

tral filtering

1 Introduction

High-power pulsed lasers are an increasingly important
technological innovation as their conjectured and en-
visioned applications have grown significantly over the
past decade. Indeed, this promising photonic technol-
ogy has a wide number of applications ranging from
military devices and precision medical surgery to opti-
cal interconnection networks [1]. Such technologies have
placed a premium on the engineering and optimization of
mode-locked laser cavities that produce stable and robust
high-power pulses. Thus the technological demand for
novel techniques for producing and stabilizing high-power
pulses has pushed mode-locked lasers to the forefront of
commercially viable, nonlinear photonic devices. The
performance of the various mode-locking models are con-
sidered and optimized so as to produce high-power pulses
in both the anomalous and normal dispersion regimes.
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The broader impact of mode-locked lasers has been lim-
ited due to restrictions on pulse energies, which is a conse-
quence of the underlying cavity nonlinearities. Recently
however, great effort and progress has been made experi-
mentally to achieve mode-locked fiber lasers that produce
high-energy, ultra-short pulses [5, 6]. A key parameter in
achieving this aim is the cavity group velocity-dispersion
(GVD). For anomalous GVD, ultra-short pulses can be
easily obtained where the GVD balances the self-phase
modulation (SPM) to produce soliton-like pulses that are
nearly bandwidth-limited [1, 7]. The desire for higher
energy pulses suggests consideration of cavities with seg-
ments of normal and anomalous GVD or with large and
net normal GVD. These include the self-similar laser [8]
and the chirped pulse oscillator (CPO) [9, 10]. In gen-
eral, high-energy pulses can be generated, but it is neces-
sary to compensate for the phase accumulated across the
pulse [1, 7].

Recently, three new experimental configurations, operat-
ing in the non-soliton regime, have been developed for
obtaining high pulse energies. First, robust and sta-
ble mode-locking can be achieved by using the nonlinear
mode-coupling in a waveguide array as the intensity dis-
crimination (saturable absorption) element in a laser cav-
ity. Indeed, the spatial self-focusing behavior which arises
from the nonlinear mode-coupling gives rise to ideal tem-
poral pulse shaping and mode-locking [2, 3, 4]. Second,
Chong et al. demonstrated a new class of high powered
femtosecond fiber lasers, in which pulse-shaping is based
on the spectral filtering of a highly-chirped pulse in the
cavity [5, 6]. In contrast to soliton-like processes that
dominate modern mode-locked lasers, these lasers depend
strongly on dissipative processes as well as phase modu-
lations to shape the pulse. Remarkably, no anomalous
dispersion is required in the cavity, so this kind of laser
is referred to as an all-normal dispersion (ANDi) laser.
Third, self-similar (parabolic) pulse solutions have been
recently observed experimentally [11, 12, 13] in laser cav-
ities with a mean-zero GVD. In all these new lasers, the
intracavity dynamics, generated either from the nonlinear
mode-coupling, spectral filtering or dispersion manage-
ment, plays a critical role in both stabilizing the mode-
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Figure 1: Input (A) and output (B) temporal power distribution in the WGA. At the input, energy is only launched
in the center waveguide (A0), while at the output the energy has spontaneously formed into the X-wave configuration
involving about eleven guides. Only energy in the A0 mode is preserved upon re-entry into the fiber section of the
cavity.

locked pulse and producing high-energy output [14]. The
aim of this manuscript is to highlight the modeling efforts
required for quantifying the large intracavity fluctuations
and to show how these fluctuations are key to generat-
ing novel, high-energy, mode-locked pulses. The analysis
also provides a theoretical framework for optimizing the
laser cavity performance and characterizing the global-
attracting nature of the mode-locked solutions.

2 Intracavity Dynamics

We will consider three very different types of perturba-
tions to the cavity: nonlinear mode-coupling, spectral
filtering, and dispersion management. All three com-
pensate for accumulated phase and produce high-energy
pulses whose dynamics can be elegantly captured with
asymptotic and pertubation methods.

2.1 X-wave formation in waveguide arrays

The theoretical model for the dynamic evolution of elec-
tromagnetic energy in the laser cavity with a waveguide
array is composed of two components: the optical fiber
and the nonlinear mode coupling element (NLMC) ele-
ment, or waveguide array. The pulse propagation in a
laser cavity is governed by the interaction of chromatic
dispersion, self-phase modulation, linear attenuation, and
bandwidth limited gain. The propagation is given by [1]

i
∂Q

∂Z
+

1

2

∂2Q

∂T 2
+|Q|2Q+iγQ−ig(Z)

(
1+τ

∂2

∂T 2

)
Q=0 , (1)

where

g(Z) =
2g0

1 + ‖Q‖2/e0
, (2)

Q represents the electric field envelope normalized by
the peak field power |Q0|2, and ‖Q‖2 =

∫ ∞

−∞
|Q|2dT .

Here the variable T represents the physical time in the

rest frame of the pulse normalized by T0/1.76 where
T0=200 fs is the typical full-width at half-maximum of the
pulse. The variable Z is scaled on the dispersion length
Z0 = (2πc)/(λ2

0D̄)(T0/1.76)2 corresponding to an aver-
age cavity dispersion D̄≈12 ps/km-nm. This gives the
one-soliton peak field power |Q0|2 = λ0Aeff/(4πn2Z0).
Further, n2 = 2.6 × 10−16 cm2/W is the nonlinear coef-
ficient in the fiber, Aeff = 60 μm2 is the effective cross-
sectional area, λ0 = 1.55 μm is the free-space wavelength,
c is the speed of light, and γ = ΓZ0 (Γ = 0.2 dB/km) is
the fiber loss. The bandwidth limited gain in the fiber
is incorporated through the dimensionless parameters g
and τ = (1/Ω2)(1.76/T0)

2. For a gain bandwidth which
can vary from Δλ=20−40 nm, Ω = (2πc/λ2

0)Δλ so that
τ ≈ 0.08−0.32. The parameter τ controls the spectral
gain bandwidth of the mode-locking process, limiting the
pulse width.

It should be noted that a solid-state configuration can
also be used to construct the laser cavity. As with opti-
cal fibers, the solid state components of the laser can be
engineered to control the various physical effects associ-
ated with (1). Given the robustness of the mode-locking
observed, the theoretical and computational predictions
considered here are expected to hold for the solid-state
setup. Indeed, the NLMC acts as an ideal saturable ab-
sorber and even large perturbations in the cavity parame-
ters (e.g. dispersion-management, attenuation, polariza-
tion rotation, higher-order dispersion, etc.) do not desta-
bilize the mode-locking.

The leading-order equations governing the nearest-
neighbor coupling of electromagnetic energy in the waveg-
uide array is given by [15, 16, 17, 18, 19]

i
dAn

dξ
+ C(An−1 + An+1) + β|An|2An = 0 , (3)

where An represents the normalized amplitude in the
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nth waveguide (n=−N, · · · ,−1, 0, 1, · · · , N and there are
2N + 1 waveguides). The peak field power is again nor-
malized by |Q0|2 as in Eq. (1). Here, the variable ξ
is scaled by the typical waveguide array length [17] of
Z∗

0=6 mm. This gives C = cZ∗
0 and β = (γ∗Z∗

0/γZ0). To
make connection with a physically realizable waveguide
array [18], we take the linear coupling coefficient to be
c = 0.82 mm−1 and the nonlinear self-phase modulation
parameter to be γ∗ = 3.6 m−1W−1. Note that for the
fiber parameters considered, the nonlinear fiber parame-
ter is γ=2πn2/(λ0Aeff)=0.0017 m−1W−1. These physical
values give C = 4.92 and β = 15.1. The periodic waveg-
uide spacing is fixed so that the nearest-neighbor linear
coupling dominates the interaction between waveguides.
Over the distances of propagation considered here (e.g.
Z∗

0 = 6 mm), dispersion and linear attenuation can be
ignored in the wave-guide array.

The values of the linear and nonlinear coupling parame-
ters are based upon recent experiment [17]. For alterna-
tive NLMC devices such as dual-core fibers or fiber ar-
rays, these parameters can be changed substantially. Fur-
ther, in the dual-core fiber case, only two wave-guides are
coupled together so that the n = 0 and n = 1 are the only
two modes present in the dynamic interaction. For fiber
arrays, the hexagonal structure of the wave-guides cou-
ples an individual wave-guide to six of its nearest neigh-
bors. Regardless of these model modifications, the basic
NLMC dynamics remains qualitatively the same.

To illustrate the pulse shaping properties and the spon-
taneous formation of an X-wave structure in the nor-
mal GVD regime [20], we integrate numerically the pro-
posed infinite-dimensional map by alternating Eqs. (1)
and (2) for a length Lf and Eqs. (3) for a length La.
Thus Q of Eq. (1) becomes A0 in Eq. (3) when entering
or leaving the waveguide array. Importantly, upon ex-
iting the WGA, the system is strongly perturbed since
the energy from all the neighboring channels (Ai where
i = ±1, 2, 3, ...) are expelled from the laser cavity. Never-
theless, we observe the formation of a stable mode-locked
pulse which shows the field A0 at the output. The white-
noise is quickly reshaped (over 10 round trips) into the
mode-locking pulse of interest. Thus the mode-locking
pulse acts as a global attractor to the laser cavity system.
The simulation further implies that the mode-locking be-
havior is stable in the sense of Floquet since it is a pe-
riodic solution in the cavity. The spectral shape clearly
indicates that the mode-locking pulse is highly chirped,
in analogy to what is found for 1D (no spatial dynam-
ics) solutions of the master mode-locking equations in
the normal GVD regime [1].

The overall electromagnetic field actually experiences a
strong spatio-temporal reshaping per cavity round trip

Figure 2: Time-domain profiles and its two-dimensional
Fourier transform at the output (B) in the WGA after
steady-state mode-locking has been achieved. The X-
wave structure is clearly seen in the topographical plot
(top) of the output time-domain profiles of Fig. 1. Fur-
ther, the expected wavenumber versus frequency depen-
dence in the X-wave is shown in the Fourier domain (bot-
tom).

that involves stable coupling of a significant portion of
the incoming WGA power to neighboring waveguides
with nontrivial timing. The input and output time-
domain intensities in all the waveguides, once nonlinear
mode-locking has been achieved are displayed in Fig. 1.
As shown, the interplay of accumulated GVD, discrete
diffraction, and nonlinearity drives the field into a self-
organized nonlinear X-waves, whose main signature is a
central peak accompanied by pulse splitting occurring in
the external channels. To show more clearly the X-shape
of the mode-locking wave-packet generated at the ouput
(B) of the waveguide array, Fig. 2 depicts a topographical
plot of the time-domain (top) of all the waveguides. The
distinctive X-wave structure is clearly evident. To lend
further evidence to the existence of the X-wave structure,
we plot the 2D Fourier transform of the time-domain.
The right panel of Fig. 2 demonstrates that the spectrum
is also X-shaped, as expected for X-waves [21, 22].
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To further characterize the mode-locking X-wave dynam-
ics, Fig. 3 illustrates the mode-locking to the global
attractor in the neighboring waveguides A1, A2 and
A3. Once again, generic white-noise initial data quickly
self-organize into the steady-state mode-locking pattern.
Note the characteristic pulse splitting (dip in the power)
in the neighboring waveguides. This shows, in part, the
generated X-wave structure. The final panel in Fig. 3
gives the energy (

∫ ∞

−∞
|Aj |2dT ) in each of the waveguides

and shows that a significant portion (more than 50%) of
the electromagnetic energy has coupled to the neighbor-
ing waveguides. This is in sharp contrast to mode-locking
with anomalous GVD for which less than 6% is lost to
the neighboring waveguides [4] and no stable X-waves
are formed. The significant loss of energy in the cav-
ity to the neighboring waveguides is compensated by the
gain section and shows that the laser cavity is a strongly
damped-driven system.

2.2 Spectral Filtering

The evolution of electromagnetic energy in the laser cav-
ity is subject to a number of physical components: disper-
sion elements, bandwidth-limited gain components, and
saturable absorption (intensity-discrimination) elements.
These components are responsible for generating, among
other things, intra-cavity chromatic dispersion, self-phase
modulation, attenuation, and gain saturation. Haus pro-
posed that these different elements could be averaged
together into a single Ginzburg-Landau type evolution
equation: the master mode-locking model [23]. Due to
stability considerations, the master equation is often aug-
mented by a quintic saturation term which prevents blow-
up of the solution. Thus the cubic-quintic Ginzburg-
Landau equation (CQGLE) incorporates the laser cav-
ity’s intensity discrimination in a phenomenological way.
The governing evolution is then given by

i
∂u

∂z
+

D

2

∂2u

∂t2
+(1+iβ)|u|2u+iσ|u|4u

+iδu−ig(z)

(
1+τ

∂2

∂t2

)
u=0, (4)

where the saturated gain behavior is given by [1, 7]

g(z) =
2g0

1 + ‖u‖2/e0
. (5)

Here u is the electric field envelope, z is the propagation
distance, and t is the retarded time. The energy of the
pulse is given by ‖u‖ =

∫ ∞

−∞
|u|2dt, and β and σ measures

the strength of the cubic and quintic saturable absorber
terms respectively. The parameters δ, g0 and e0 measure
the cavity attenuation, the amplifier gain strength, and
cavity saturation energy respectively.

The governing equation (4) is a partial differential equa-
tion modeling the spatial-temporal evolution of electro-
magnetic energy in the laser cavity. The variational
method can be used to capture the intra-cavity pulse
dynamics. The literature regarding variational reduc-
tions [24] in nonlinear Schrödinger type systems is vast,
especially given its applicability in optical transmission
systems. To fully capture the varying phase profiles which
have been observed in the ANDi laser cavity [5, 6], we as-
sume a solution-based mode-locking ansatz form

u(z, t)=
η(z)√

B(z) + cosh(η(z)t)
e−iΨ(z,t) (6)

with Ψ(z, t) = A(z) ln(B(z)+cosh(η(z)t))+ϕ(z). The
specific form of the phase profile Ψ is essential to cap-
ture the different spectral profiles observed in the ANDi
laser [5, 6]. The evolution of the ansatz parameters as
a function of propagation distance [24] is then found to
satisfy the ordinary differential equations

Dx = g (7)

where x = [ηz , Bz, Az, ϕz ]
T
, g = [g1, g2, g3, g4]

T
, and

D=

⎡
⎢⎢⎣

H ηH
′

0 0

(H−G) −η(G
′

+H
′

) 0 0

0 −AH
′ 1

2 (G−H) −H

AH
′

0 1
2η(G

′

+H
′

) −ηH
′

⎤
⎥⎥⎦ . (8)

The components in the vector g include the terms from
dispersion and self-phase modulation, as well as the gain
and loss perturbations. They are given by

g1 = 2η(g−δ)H−2εη3H
′

+ση5H
′′− 1

2
τgη3(A2+1)R (9a)

g2 =
D

2
η3AR − 2η(g − δ)G − 2εη3S − 2ση5Z

+
1

2
τgη3

[
3W−2Y −WA2

]
(9b)

g3 =
3Dη2

4
(1+A2)R+

3η2H
′

2
−2A(g−δ)H

+εη2AH
′− ση4AH

′′

3
+

τgη2A

2
(1+A2)Q (9c)

g4 =
D

4
η3(1+A2)R

′

+
η3H

′′

2
−2ηA(g−δ)H

′

−εη3AH
′′

+
ση5AH

′′′

3
− τgη3A

12
(1+A2)R

′

, (9d)

where all primes denote differentiation with respect to
the parameter B, and the parameters H, G, Q, R, S, W, Y
and Z are B-dependent integrals given by

H =

∫
dt

Θ
, G =

∫
ln Θdt

Θ
, Q =

∫
t sinh3 t dt

Θ4
,
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Figure 3: Evolution to the steady-state output (B) in the neighboring waveguides A1, A2, and A3. The bottom right
graph is a bar graph of the steady-state distribution of energy (

∫ ∞

−∞
|Aj |2dT ) in the waveguides. The symmetry about

the center waveguide results from the initial condition being applied only in this waveguide. Note the significant
re-distribution of energy in the waveguides.

��

Figure 4: The experimental laser cavity configuration in-
cludes an amplifier with parabolic gain band-width Ωg

and a gaussian spectral filter with band-width Ωf . A
typical pulse solution with spectral band-width Ωp is also
shown. Note that the key parameter Γ = Ωf/Ωp.

R =

∫
sinh2 t dt

Θ2
, S =

∫
ln Θ dt

Θ2
, W =

∫
sinh2 t ln Θ dt

Θ3
,

Y =

∫
cosh t ln Θ dt

Θ2
, Z =

∫
ln Θ dt

Θ3
(10)

with Θ = B + cosh t and all integrations range over t ∈
[−∞,∞].

Despite the complicated structure of the equations, the
dynamics are quite easy to characterize. The phase vari-
able ϕ can easily be eliminated from the system (7) re-
sulting in a 3×3 system that can be analyzed in the phase
plane. For different parameter regimes, the dynamics ex-
hibits a stable node, a stable spiral node and a limit cycle
in the η, B and A phase plane. The location of the fixed
point as well as its stability depend on the parameters in
the equations. The key contribution to pulse shaping in
the ANDi lasers arises from the spectral filter. Although
the fixed points of the reduced model have the correct
temporal and spectral profiles seen in the ANDi laser, it
fails to capture the round trip cavity dynamics [5, 6]. To
capture the intra-cavity pulse fluctuations we must con-
sider the operation of the spectral filter. The spectral

filter can be assumed to be a Gaussian function with full
width half maximum (FWHM) Ωf , and will typically fall
under the gain bandwidth, as shown in Fig. 4. The ratio
Γ = Ωf/Ωp, where Ωp is the FWHM of the pulse band-
width, determines how significant the filtering action is.
For example, if Γ >> 1, then the filter will have no effect
on the pulse, however if 0<Γ<1 then the filter will mod-
ify the pulse solution in some way. The typical evolution
of the electromagnetic energy with all laser cavity com-
ponents is demonstrated in Fig. 5. Our goal is provide
a qualitatively and quantitatively accurate description of
these dynamics with the variational reduction.

To observe the spectral profile evolution per round trip
in the laser cavity, the filter action cannot be averaged
into Eq. (4) and must be considered as a discrete forcing
on the governing equations. To obtain an understanding
of the mechanism of the filter, we consider its effects in
the context of the reduced model. For bandwidth ratios
0 � Γ < 1, multiplying the spectrum of (6) by a Gaus-
sian filter results in a similar pulse form with modified
parameters. Thus we are able to assume that the filter
acts only on the fixed point (η0, B0, A0) of the dynam-
ical system (7), modifying the fixed point in some way,
i.e. (η0, B0, A0) → (ηf , Bf , Af ) where the new values are
computed numerically after filtering via a least-square fit-
ting. The accurate spectral and temporal fit between the
post-filtered pulse and the pulse solution (6) with modi-
fied parameters clearly illustrates that the application of
the spectral filter on the fixed point solution effectively
changes the pulse parameters. Combining the reduced
model, which is based on averaged evolution equations,
with the essential discrete element in the laser, the spec-
tral filter, we obtain a graphical interpretation of the
intra-cavity dynamics of the ANDi laser since the filter
acts as a periodic forcing (per round trip) on the gov-
erning equations that modifies the fixed point solution
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Figure 6: (a) Illustration of the laser cavity with discrete filter and four labeled positions in the cavity. (b) The
intra-cavity mode-locked evolution in the experimentally relevant variables along with the action of the spectral
filtering (dotted line). (c) The output spectral profiles at the labeled intra-cavity positions of (a) and (b). This
prototypical pulse evolution is characteristic of the all-normal dispersion fiber laser [6]. Note that high energy, high
peak amplitude pulses can be obtained if the output coupler is placed at position 3.

parameters (η0, B0, A0). We consider a laser configura-
tion with the parameters g0 = 3, δ = 1, τ = 0.2, D =
−0.4, ε = 0.5, and σ = −0.1 corresponding to a stable
node at (η0, B0, A0) = (1,−0.5, 3.3).

By examining the evolution along flow lines we can un-
derstand the dynamics of the ANDi laser. Figure 6 shows
an example of the laser dynamics with a filter bandwidth
ratio Γ = 0.5. Figure 6(a) shows the laser configuration
with the spectral filter as the primary discrete element.
Figure 6(b) illustrates the phase line (whose initial condi-
tion is specified by the spectral filter width) in a relevant
phase plane whose phase variables are the pulse dura-
tion (η), peak amplitude (η/(1 + B)), and pulse energy
ηF (B). Figure 6(c) shows the spectral profiles at the vari-
ous positions labeled in the laser set-up and phase plane.
The fixed point is denoted by “4”, where the pulse di-
rectly after filtering is denoted by the “1” position. The
periodic application of the filter (once per round trip) ac-
tively controls the parameters of the mode-locked pulse,
changing the pulse solution parameters in (6) from the
fixed point “1” to position “4”. Further, along the flow
line the dynamic pulse evolution contains different spec-

tral profiles that have been observed experimentally in
the ANDi laser cavity [5, 6]. Note that the periodic orbit
acts as a globally attracting state of the system, produc-
ing large intracavity fluctuations per round trip of the
cavity. The optimal energy and peak power output can
be extracted from the laser cavity at position “3” as is
graphically demonstrated.

2.3 Self-Similar Mode-locking

In contrast to spectral filtering, we can also achieve the
necessary phase compensation by applying a dispersion
map to the laser cavity. This in turn will generate large
intracavity fluctuations. In this case, the parameter D
in (4) is dependent upon z. We investigate (4) when
the dispersion length Z0 is much longer than the typical
period P of the dispersion map, so that

ε = P/Z0 � 1 (11)

and the dispersion fluctuations occur on a rapid scale.
The period P is simply determined by the physical length
of the laser cavity while the dispersion length is related
to the pulse width of the mode-locked pulses. Specifi-
cally, the dispersion length is the length it takes for the
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Figure 5: Typical temporal (a) and spectral (b) solutions
from numerical simulation of the CQGLE equation with
spectral filtering for an all-normal dispersion laser. Note
that the saturable absorber (SA), output coupler (OC),
and spectral lter (SF) are applied in series resulting in
the last three pulses in the map. Gray shade corresponds
to the gain segment.

full-width, half-maximum pulse width to double in the
absence of nonlinearities. For convenience and simplic-
ity, we let

D = d(z/ε) = cos(2πz/ε). (12)

Note that although the results apply to a general d(z), it
will prove helpful to consider the particular case here of
a simple sinusoidal dispersion map.

Simulations suggest that the dispersion fluctuations must
occur on a rapid-scale in order for the parabolic states to
persist. Such a clear scale separation between the dis-
persion map period and the fundamental dispersion and
nonlinearity scale suggests the application of a multi-scale
transformation technique. The transformation procedure
considered relies on the Green’s function of the linear part
of the left hand side of (4) since it accounts explicitly for
the dispersion fluctuations. Using Fourier transforms, it
is easy to calculate that the Green’s function for the lin-
ear Schrödinger equation [25]

iGz +
1

2
d(z/ε)Gtt = 0, (13)

with G(t, t′, 0) = δ(t − t′) is given by

G(t, t′, z) =
exp(iπ/4)√

4πμ(z)
exp

(−i(t − t′)2

4μ(z)

)
. (14)

Here 2μ(z) =
∫ z

0
d(s)ds ∼ O(ε) is the accumulated dis-

persion for a rapidly-varying, mean-zero map.

The transformation is performed by introducing the new
function A(t, z) defined by

A(t, z) =

∫
G†(t, t′, z)u(t′, z)dt′. (15)

The evolution equation for A can be found by using the
adjoint relation u(t, z) =

∫
G(ξ, t, z)A(ξ, z)dξ. Plugging

this into the governing equation (4), making use of (13),
then multiplying by the adjoint G†(ξ, t, z) and integrat-
ing with respect to ξ gives an exact transformation. At
this point no approximations have been made – the trans-
formation from u to A is simply a linear change of vari-
ables. Since μ ∼ ε � 1, the integrals can be approxi-
mated using stationary-phase asymptotics [25]. Expand-
ing the integrals about the stationary phase points gives
an approximate evolution for A in terms as a series ex-
pansion in μ ∼ ε � 1. Further, we assume that δ, τ , μ,
β, and σ are small parameters thus allowing us to neglect
higher order terms with μδ, μβ, etc., products.

The effective equation can be put into a more transparent
form with the amplitude-phase decomposition A(t, z) =√

ρ(t, z) exp(iΘ(t, z)) so that

ρz=μ(z)(ρ2)tt+2ρ(δ−βρ−σρ2)+τ
(
ρtt− ρ2

t

2ρ
−2ρΘ2

t

)
(16a)

Θz=−ρ−2μ(z)ρΘtt + τ
(
Θtt +

1

ρ
ρtΘt

)
. (16b)

A key observation is that for μ > 0 the phase equation
(16b) is ill-posed whereas for μ < 0 the amplitude equa-
tion (16a) is ill-posed. This problem is an artifact of
the averaging process and can be treated via regulariza-
tion or by including higher order correction terms [25].
In contrast to other averaging techniques used on dis-
persion managed systems, we emphasize that the aver-
aging technique used here retains the critical dependence
of the parameter μ on z. This plays a key role in the
stabilization of the parabolic state. Indeed, if the μ(z)
parameter is averaged out to be a constant, the theory
fails to correctly capture the breathing nature of the so-
lutions. Specifically, the profile undergoes typical self-
similar broadening until the expansion formally breaks
down at z ∼ 1/

√
ε [25].

In the limit where the dissipative perturbations on the
right hand side of (4) are small in comparison with the
dispersion map, i.e. (δ, β, σ, τ) � ε < 1, the leading or-
der amplitude equation is governed by the porous media
equation

ρz = μ(z)(ρ2)tt. (17)
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Figure 7: Attracting dynamics of the solution (a) and its phase-plane (inset) obtained from numerical simulation
of the amplitude equation (19) from a Gaussian initial condition with δ = 0, β = σ = 0.1, and ε = 0.5. The
output is shown at the beginning of each dispersion map. (b) Comparison of the parabolic solution from solving
(19) numerically (solid black) with the solution from the full governing Ginzburg-Landau equation (4) (solid grey),
a quadratic Barenblatt profile (dashed) and hyperbolic secant pulse (dots). The tail structure is also exhibited in
experiments [11].

The porous media equation has the Barenblatt similarity
solution

|u|2≈ρ(t, z)∼ 1

12(γ+z∗)1/3

[
a2
∗−

(
(t−t∗)

(γ+z∗)1/3

)2
]

+

(18)

where γ = γ(z) = 2
∫ z

0
μ(s)ds and f+ = max(f, 0) so

that the subscript + indicates that the function is either
zero or positive in (18). The solution is characterized
by the three parameters (a∗, t∗, z∗) which represent the
mass, center position, and pulse-width of the solution re-
spectively. Note that u ≈ A when ε � 1 [25]. Here, to
first order in μ ∼ ε, the evolution equation for the am-
plitude decouples from the equation for the phase. We
emphasize that the breathing dynamics results from the
periodic fluctuations in the integral of the cumulative dis-
persion γ(z). Indeed, the averaging technique used here
retains the oscillatory nature of the dispersion map in the
form of a z-dependent oscillatory coefficient in Eqs. (18).
This oscillatory variation suppresses the structure from
undergoing its usual self-similar broadening and allows
for stable self-similar breathers.

Although the Barenblatt solution (18) captures the fun-
damental self-similar structure, it is not the attracting
state of the underlying system. This is expected since
we have neglected the dissipative terms needed to cre-
ate an attractor. Further, the Barenblatt soluton has
unphysical discontinuous derivatives at its edges. So al-
though insightful, it is a mathematical idealization that
is physically unrealizable. In many applications, spectral
filtering is much weaker than other dissipative terms, i.e.
τ � (δ, β, σ, μ). In this case, the amplitude equation

ρz = μ(z)(ρ2)tt+2ρ(δ−βρ−σρ2) , (19)

is still decoupled from the phase equation. Although ex-

act solutions to (19) are not attainable, this equation
sheds light on why parabolic states persist in this sys-
tem. Specifically, for small values of the parameters δ,
β and σ, equation (19) is perturbatively close to (17).
Likewise, the solutions of the two equations should also
be perturbatively close so that the leading order behav-
ior of (19) inherits the self-similar Barenblatt structure
of (18). Note that this implies that (19) is not strictly
self-similar as certain symmetries associated with (17) are
broken. Regardless, the inclusion of dissipative terms al-
lows for an attracting parabolic breathers to exist for a
wide range of parameter space. Further, numerical simu-
lations suggest the parabolic states are robust to a variety
of perturbations including white-noise fluctuations.

Figure 7 shows the numerical simulation of (19) from ini-
tial amplitude ρ(t, 0) =

√
2exp

[−t2
]
. The output point

in the Poincaré map is taken to be at the beginning of
each map period. Figure 7(a) shows that the initial Gaus-
sian structure quickly settles to a steady state solution in
the Poincaré map. In contrast to the Barenblatt solu-
tion, the output pulse profile here has finite derivatives
at its edges. The inset of Fig. 7(a) plots the correspond-
ing (ρ, ρt) phase plane and shows that there is indeed an
attracting homoclinic orbit (solid line) which represents
the steady state solution. To show that this attracting
state has a parabolic profile, the output pulse (once set-
tled to the parabolic breather), along with a Barenblatt
quadratic (dashed) and hyperbolic secant (dotted) fit is
plotted in Fig. 7(b). In addition, the numerical solution
for the Ginzburg-Landau equation (4) with parameters
τ = δ = 0, −β = σ = 0.1, and ε = 0.5 is included
(solid grey). This shows that the solutions to (4) and
(19) are perturbatively close as expected. Further, there
is the remarkable agreement between the solution profile
of (19) and experiments [11]. Unlike the Barenblatt so-
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lution, the parabolic solution to (19) correctly captures
the tail structure observed in experiments [11]. Further,
the solution is a global attractor of the system.

3 Conclusions

In conclusion, we have shown that the consideration of
the large intracavity dynamics generated from either non-
linear mode-coupling (waveguide arrays), spectral filter-
ing or mean-zero, dispersion management leads to non-
trivial, periodic mode-locked states that act as global at-
tractors to the laser. For nonlinear mode-coupling, the
spontaneous formation of X-wave structures is demon-
strated. In the all-normal dispersion fiber laser with fil-
tering, we characterized these behaviors with a reduced
model which is based on an averaged CQGLE equa-
tion. A key contribution to pulse shaping in these lasers
arises from the spectral filter, which converts large fre-
quency chirp to self-amplitude modulation. The vari-
ational method used here provides a geometrical inter-
pretation that completely describes the intra-cavity dy-
namics. The resulting intra-cavity temporal and spec-
tral profiles are in good agreement with experimental re-
sults. Thus the laser can be engineered to take advan-
tage of the intra-cavity pulse dynamics by placing the
output coupler at positions where the pulse has the de-
sired output profile. When considering a rapidly-varying,
mean-zero dispersion, the intracavity evolution dynamics
results in a perturbed version of the nonlinear (porous
media) diffusion equation with mean-zero diffusion coef-
ficient. The dissipative contributions in the GL equation
make the parabolic structure an attracting state of the
system. Thus the two driving mechanisms of parabolic
propagation are the mean-zero dispersion map which gen-
erates self-similarity and dissipation which makes the self-
similar structure an attractor. The combination of the
two phenomena result in the formation of the parabolic
breathers that have been observed experimentally [11].

Acknowledgements

J. N. Kutz acknowledges support from the National Sci-
ence Foundation (DMS-0092682) and the Air Force Office
of Scientific Research (FA9550-09-0174).

References

[1] Haus, H. A., “Mode-Locking of Lasers,” IEEE J. Sel.

Top. Quant. Elec., V6, pp. 1173–1185, 2000

[2] Kutz, J. N. “Mode-Locking of Fiber Lasers via Non-
linear Mode-Coupling,” In: Dissipative Solitons, N.
N. Akhmediev and A. Ankiewicz, (Ed.) pp. 241-265,
Springer-Verlag, 2005

[3] Proctor, J., Kutz, J. N., “Theory and Simulation
of Passive Mode-Locking with Waveguide Arrays,”
Opt. Lett., V13, pp. 2013-2015, 2005

[4] Proctor, J., Kutz, J. N., “Nonlinear mode-coupling
for passive mode-locking: application of wave-guide
arrays, dual-core fibers, and/or fiber arrays,” Opt.

Express, V13, pp. 8933-8950, 2005

[5] Chong, A., Buckley, J., Renninger, W., Wise,
F., “All-normal-dispersion femtosecond fiber laser,”
Opt. Express, V14, 10095, 2006

[6] Chong, A., Renninger, W., Wise, F., “Properties of
normal-dispersion femtosecond fiber lasers,” J. Opt.

Soc. Am. B, V25, pp. 140–148, 2008

[7] Kutz, J.N., “Mode-locked Soliton Lasers,” SIAM

Rev., V48, pp. 629–678, 2006

[8] Ilday, F. O., Wise, F. W., Sosnowski, T., “High-
energy femtosecond stretched-pulse fiber laser with
a nonlinear optical loop mirror,” Opt. Lett., V27,
pp. 1531–1533, 2002

[9] Fernandez, A., Fuji, T., Poppe, A., Furbach, A.,
Krausz, F., Apolonski, A., “Chirped-pulse oscil-
lators: a route to high-power femtosecond pulses
without external amplification,” Opt. Lett., V29,
pp. 1366–1368, 2004

[10] Kalashnikov, V. L., Podivilov, E., Chernykh, A.,
Apolonski, A., “Chirped-pulse oscillators: theory
and experiment,” Appl. Phys. B, V83, pp. 503–510,
2006
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