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Abstract—In this paper, the recently developed Op-
timal Homotopy Asymptotic Method (OHAM) is ap-
plied to the problem of flow through a porous channel
where the flow entry profiles are taken to be Poiseuil-
leCouette combinations. Analytical as well numerical
solutions for the velocity profiles of the resulting dif-
ferential equations are obtained. Comparison with
existing results reveal that the OHAM is an effective
and easy to use technique for solving nonlinear prob-
lems.
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1 Introduction

The recent past has seen an abundance of papers consid-
ering newer asymptotic methods relying on the concept
of Poincrés Homotopy from abstract algebra. The two
primary methods Homotopy Analysis Method (HAM)
[2] and Homotopy Perturbation Method (HPM) [3] have
been successful in their own right as good methods for
solving nonlinear problems. The HPM in the recent past
has received some criticism regarding its convergence cri-
teria or lack thereof. Although recently [4] has shed some
light on the convergence of the method. The HAM is
much more stable in this regard and has been shown to
be very successful in solving nonlinear problems. The at-
tractive feature of the HPM is its ease of application, this

∗Manuscript received March 10, 2010
†Ali R. Ansari is an Associate Professor of Mathematics and

Head of Department of Mathematics & Natural Sciences at the
Gulf University for Science & Technology, P.O. Box 7207, Hawally
32093, Kuwait, Email: ansari.a@gust.edu.kw.

‡Helmi Temimi is an Assistant Professor of Mathematics within
the department of Mathematics & Natural Sciences in the Gulf
University for Science & Technology, P.O. Box 7207, Hawally
32093, Kuwait, (corresponding author) Phone: +965-9912-3969,
Fax: +965-2530-7030, Email: temimi.h@gust.edu.kw.

§Mariam Kinawi is Graduate student at Kuwait University and
a Teaching Assistant in the department of Mathematics & Natural
Sciences at the Gulf University for Science & Technology P.O. Box
7207, Hawally 32093, Kuwait, Email: Kinawi.M@gust.edu.kw.
¶Abdul Majeed Siddiqui is a Professor of Mathematics in the De-

partment of Mathematics at Pennsylvania State University, York
Campus, Pennsylvania State University, York, PA 17403, USA,
Email: ams5@psu.edu.

is usually typical of algorithms used for computational so-
lutions, where many times accuracy is compromised for
speed, leading to some instabilities. All in all the HPM
is still a usable method and can be employed to produce
some useful results. However, since the solution produced
by all these methods are power series solutions in essence,
convergence can be an issue.

The focus of the current paper is to consider a more re-
cent predecessor to this method, referred to as the Opti-
mal Homotopy Asymptotic Method or OHAM [5]. This
method is most attractive from a mathematical point
of view as it has the convergence criteria built into the
method similar to the HAM, but much more flexible. In
this paper we will use this method to solve a well es-
tablished problem in porous media. The authors have
solved the same problem earlier using the HPM [6] and
the results obtained were found to be acceptable when
compared to other documented solutions. Here, our in-
tention is to employ the OHAM and compare the results
with the results of [1] and a bench mark numerical so-
lution. We note that all three approaches lead to very
similar results. Our aim is to show the usability of the
OHAM as a powerful efficient method for solving nonlin-
ear problems; we also, weakly by example, show that the
HPM is a useful method and should not be discarded.

We now turn to the problem under consideration. As
mentioned earlier the problem chosen is from the realm
of the study of flow through porous media. This area
itself has received considerable attention due to its many
faceted practical applications. In irrigation processes,
the movement of fertilizers, pollutants and nutrients into
plants are all examples of flow through porous media.
The study of the interaction of oil, gas and water through
the porous earth layers has become more important be-
cause of the increasing demands for energy. It has also
found applications in the biological sciences, particularly
in biomechanics. One such application is in the human
lungs, which are idealized as layers of flocs and other
types of porous materials (cf. [7]).

The flow of a fluid through a porous medium is essentially
a two-phase flow that consists of the flow of a matrix
particle phase and a fluid phase. However, the particle
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phase is usually considered as a solid matrix which is
rigid and hence assumed to be stationary. Therefore,
effectively, the flow through the porous matrix boils down
to the flow of a single phase fluid. The importance of such
flows is clear from some of the applications mentioned at
the onset. Solutions of the problems are of fundamental
importance.

In this paper we consider one such model of fully-
developed flow through a porous medium, between paral-
lel plates, where the governing equation is the well known
Darcy-Forchheimer-Brinkman equation. The entry pro-
files are taken to be Poiseuille, Couette and Poiseuille-
Couette type. It is well known that the said equation is
nonlinear and usually solved by numerical methods [1].
Here we intend to solve this problem using OHAM. This
technique is relatively new and few references to date are
available demonstrating its ability in successfully solving
nonlinear differential equations in different fields of ap-
plied mathematics.

Therefore, in essence our paper takes an established
worthwhile problem [1], and presents an analytical so-
lution to the problem that in the past has been solved
numerically. We offer verification of the solution by re-
ducing it to the simpler Darcy-Lapwood-Brinkman model
and showing that the solution reduces correctly as well.
We also compare the solutions for the three scenarios of
entry flows to an accurate numerical solution. We also
offer an error analysis compared to the benchmark nu-
merical solution showing the convergence of OHAM. The
problem we set up consists of very general boundary con-
ditions.

2 Problem Formulation

We start with the basic fact that the flow of a viscous
fluid is governed by the continuity and the Navier Stokes
equations which, when the fluid is incompressible and the
flow is steady, take the form

∇ · v = 0, (1)
ρ(v · ∇)v = −∇p + µ∇2v, (2)

In (1) and (2), v is the velocity vector, µ is the viscos-
ity, ρ is the density and p is the pressure. In accordance
with the averaging approach of [7] we express the con-
servation of mass principle as a macroscopic continuity
equation, which is similar to (1). The macroscopic mo-
mentum equations, depending on the type of the porous
medium and the flow under consideration, can be ex-
pressed through the following general equation, [7]:

ρ {χ[ζ − 1] + 1} (v ·∇)v = −∇p+µeff {χ[ϑ− 1] + 1}∇2v

−χ

{
µ

k
v +

ρCd√
k

v|v|
}

(3)

where v is the velocity vector, p is the fluid pressure,
ρ is the fluid density, µ is the fluid viscosity, µeff is the

viscosity of the fluid in the porous medium, ϑ = µeff/µ,
k is the permeability, Cd is the drag coefficient, ζ and χ
are both binary parameters that take the values 0 and
1. Note that when χ = 0, (3) reduces to the Navier
Stokes equation (2); when χ = 1, the flow is in the porous
medium, of course the various types of porous media can
be specified by the choice of the parameter ζ, [7].

In the analysis of this paper we consider the flow to be in
two dimensions, hence (3) takes the following component
form

ρ {χ[ζ − 1] + 1} (uux + vuy)− px + µeff{χ[ϑ− 1]

+1}∇2u− χ

{
µ

k
u + ρCdu

√
u2 + v2

k

}
, (4)

ρ {χ[ζ − 1] + 1} (uvx + vvy)− py + µeff{χ[ϑ− 1]

+1}∇2v − χ

{
µ

k
v + ρCdv

√
u2 + v2

k

}
. (5)

We will consider the flow to be plane, parallel and fully-
developed through a straight channel, this means that

u = u(y); p = p(x);

ux = uxx = v = vx = vxx = py = 0. (6)

The relations (6), automatically satisfy the continuity
equation (1) and the y-momentum equation (5), and re-
duce the x-momentum equation (4) to

−px + µeff {χ[ϑ− 1] + 1}uyy − χ

{
µ

k
u +

ρCdu|u|√
k

}
= 0.

(7)
We introduce a characteristic length L and a free-
stream characteristic velocity U∞, these enable us to non-
dimensionalise (7) employing the definitions

x∗ = x/L, y∗ = y/L u∗ = u/U∞, k∗ = k/L2. (8)

Substituting (8) in (7), eliminating the asterisks and rear-
ranging, (7) takes the following dimensionless form when
µ = µeff:

{χ[ϑ− 1] + 1}uyy = RC + χ

{
u

k
+

RCd√
k

u2

}
(9)

where C =
pX

(ρU∞)2
and the Reynolds number R =

ρU∞L

µ
.

At this point we get more specific since we are inter-
ested in the Darcy-Forchheimer-Brinkman equation, tak-
ing χ = ϑ = 1, ζ = 0, and introducing κ = 1/

√
k we have

uyy = RC + κ2u + RCdκu2. (10)
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We assume the following boundary conditions

u(0) = a, u(1) = b (11)

where a and b simply take values either 0 or 1. These
boundary conditions give us a lot of flexibility, allowing
us to represent the different entry profiles that are of
interest to us. The cases we will explore are:

1. For Poiseuille flow we have a = b = 0 and C 6= 0.

2. For Couette flow we have a = 0 and b = 1, with C = 0.

3. For Poiseuille-Couette flow we again set a = 0 and
b = 1, with C 6= 0

In the succeeding section we will solve the more general
problem keeping the boundary conditions as (11).

3 Formulation of the Optimal Homotopy
Asymptotic Method (OHAM)

In this section we look at the basic idea of the OHAM. We
start by classifying the equation to be solved into various
components, i.e.,

L (u (x))+N (u (x))+g (x) = 0, B

(
u,

du

dx

)
= 0 (12)

where x denotes the independent variable, u(x) is an
unknown function, g(x) is a known function, L is a
linear operator, N is a non-linear operator and B is a
boundary operator. Next we introduce p ∈ [0, 1] as an
embedding parameter, such that we get the following
family of equations:

(1− p)[L (φ(x, p)) + g(x)] = H(p)[L (φ(x, p)) + g(x),

+N (φ(x, p))]B
(

φ(x, p),
dφ(x, p)

dx

)
= 0,

(13)
where φ(x, p) is an unknown function and H(p) is a non-
zero auxiliary function for p 6= 0 given as

H(p) = pC1 + p2C2 + p3C3 + . . . (14)

where H(p) = 0 if p = 0, and where C1, C2, C3, . . . are
constants which we will compute later. From equation
(13), when p = 0 and p = 1, we have

φ(x, 0) = u0(x), φ(x, 1) = u(x) (15)

respectively, which means that as p increases from 0 to 1,
the solution φ(x, p) varies from u0(x) to u(x). If we put
p = 0 in equation (13), then

L (u0(x)) + g(x) = 0, B

(
u0(x),

du0(x)
dx

)
= 0. (16)

Combining (14) and (13) gives us the solution

φ(x, p, Ci) = u0(x) +
∑

k≥1

uk(x,Ci)pk, i = 1, 2, 3, . . .

(17)

which is the Taylor series of φ(x, p) with respect to p, and
where uk(x,Ci) can be defined as

uk(x,Ci) =
1
k!

∂kφ(x, p, Ci)
∂pk

∣∣∣∣
p=0

, k ≥ 1, i = 1, 2, 3, . . . , k.

(18)

To generate the Zeroth-Order Problem, we simply put
p = 0 into equation (13), which leads to equation(16).
Similarly, to generate the First-Order Problem, we need
to differentiate equation (13) with respect to p and let
p = 0. Thus the resultant equation will be1:

L (u1(x)) = C1N0 (u0(x)) , B

(
u1(x),

du1(x)
dx

)
= 0.

(19)

Following this procedure we generate the mth-Order
Problem, by differentiating the (m− 1)th-Order Problem
with respect to p, dividing it by m! and letting p = 0,
thus giving us

L (uk(x)− uk−1(x)) = CkN0 (u0(x))

+
k−1∑

j=1

Cj [L (uk−j(x)) + Nk−j (u0(x), . . . , uk−j(x))] ,

k = 2, 3, . . . , B

(
uk(x),

duk(x)
dx

)
= 0

(20)
where,

Nm (u0(x), u1(x), . . . , uk−j(x)) =
1

(m− 1)!

∂m−1N(φ(x, p))
∂pm−1

∣∣∣∣
p=0

. (21)

It should be emphasized that uk for k ≥ 0 are governed
by the linear equations (16),(19),(20) and (21) with the
linear boundary conditions that are derived from the orig-
inal problem, and can be easily solved.

The convergence of series (17) depends on the values of
Ci. If convergence occurs when p = 1, then we have

u(x,Ci) = u0(x) +
∑

k≥1

uk(x,Ci). (22)

Now, the solution of equation(12) should be as follows:

u(m) (x,Ci) = u0(x) +
m∑

k=1

uk (x,Ci) , i = 1, 2, . . . ,m,

(23)
where Cm is a function of x. Substituting equation(23)
in equation (12) results in the expression for the residual,

1Another way to calculate the First-Order Problem and the next
mth-Order Problems is to substitute equation (17) into equation
(13) and equating the coefficients of like powers of p
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for i = 1, 2, . . . , m

R (x,Ci) = L
(
u(m) (x,Ci)

)
+ N

(
u(m) (x,Ci)

)
+ g (x) .

(24)

If R (x, Ci) = 0, then u(m) (x,Ci) will be the exact solu-
tion. Yet, since such a case will not exist for most non-
linear problems, then we can minimize the functional

J(C1, C2, . . . , Cm) =
∫ b

a

R2(x, C1, C2, . . . , Cm)dx (25)

where a and b are values that depend on the given prob-
lem. To get the values of C1, C2,C3,. . . , we solve the
following equations:

∂J

∂C1
=

∂J

∂C2
= · · · = ∂J

∂Cm
= 0. (26)

By knowing the values of Ci, we can get an approximate
solution for the given problem.

4 Solution of the Problem Using OHAM

Here, we will use the basic ideas mentioned in the pre-
vious section in order to solve the problem specified
in equation (10). To get started, we have to re-write
equation(10) in the form of equation (12), along with the
boundary conditions mentioned in (10). This means that
we will have

L (u (y)) = u
′′ − κ2u,

N (u (y)) = −RCdκu2,

and
g (y) = −RC. (27)

According to equation (13), and by applying OHAM, we
will have the following:

(1− p)[φ
′′
(y, p)− κ2φ(y, p)−RC] = H(p)[φ

′′
(y, p)

−κ2φ(y, p)−RC −RCdκφ2(y, p)] (28)

along with the following boundary conditions:

φ(0, p) = a, φ(1, p) = b. (29)

4.1 The Zeroth-Order Problem

To get the Zeroth-Order Problem, we need to substitute
p = 0 into equation (28). Thus, we get the simpler ODE
given as

u
′′
0 − κ2u0 = RC (30)

with boundary conditions

u0(0) = a, u0(1) = b, (31)

which gives the solution

u0(y) = α0e
κy + β0e

−κy − RC

κ2
(32)

where

α0 = a +
RC

κ2
− β0 (33)

and

β0 =
1

2 sinh(κ)

[
aeκ − b +

RC

κ2
(eκ − 1)

]
. (34)

4.2 The First-Order Problem

In order to get the First-Order Problem, we need first to
differentiate (28) w.r.t the embedded parameter p. After
putting p = 0, we get

u
′′
1 − κ2u1 = −λκRCdu

2
0, (35)

subject to the boundary conditions

u1(0) = 0, u1(1) = 0. (36)

Where λ, denoted by C1 in equation (19), is the variable
used to minimize the residual R in (24). The 1st order
solution using (32) is given as

u1(y) = A1e
κy + B1e

−κy + C1e
2κy + D1e

−2κy

+E1yeκy + F1ye−κy + G1, (37)

where

A1 =
1

2 sinh(κ)
[C1(e−κ − e2κ) + D1(e−κ − e−2κ)

−E1e
κ − F1e

−κ + G1(e−κ − 1)],

B1 =
1

2 sinh(κ)
[C1(e2κ − eκ) + D1(e−2κ − eκ)

+E1e
κ + F1e

κ + G1(1− eκ)],

C1 = −RCdλα2
0

3κ2
, D1 = −RCdλβ2

0

3κ2
,

E1 =
R2CCdλα0

κ3
, F1 = −R2CCdλβ0

κ3

and

G1 =
RCdλ

κ2

(
2α0β0 +

R2C2

κ2

)

Next, in order to find λ, we let

R(y) = L(ũ) + g(y) + N(ũ) (38)

where ũ = u0+u1 is the first-order solution and u0 and u1

are given by (32) and (37). Finally, we need to minimize

J =
∫ 1

0

R2dy with respect to λ, i.e.,

∂J

∂λ
=

∫ 1

0

2R
∂R

∂λ
dy = 0.
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5 The finite element benchmark solution

As a benchmark, we will refer to the numerical solution
given by the finite element method (FEM). We apply the
FEM to the Darcy-Forchheimer-Brinkman equation

uyy − κ2u− κRCdu
2 = RC (39)

subject to the following boundary conditions

u1(0) = a, u1(1) = b (40)

We solve (39) using a uniform mesh with ∆y = 0.01
and degree of approximation p = 4. Therefore, based
on the well-known finite element analysis results with an
L2−rate of convergence, we proceed with

||u− UFEM ||L2(0,1) = O(∆yp+1) (41)

where u is the solution of (39), UFEM the respective FEM
solution and

||f ||L2(0,1) =
(∫ 1

0

f2dy

) 1
2

.

Then, (41) leads to the following order of accuracy

||u− UFEM ||L2(0,1) = O(10−8) (42)

In the next section we provide the resulting analytical
solutions of the Darcy-Forchheimer-Brinkman equation
using (OHAM) for different types of entry profiles com-
pared to the benchmark solution given by the FEM.

6 Results and Discussion

For practical purposes, we introduce three different entry
flow profiles. As mentioned earlier we consider Poiseuille,
Couette and Poiseuille-Couette flows. In the next few
subsections, we provide the numerical and the approxi-
mate analytical solution with error discussion in the L2-
norm.

6.1 The Darcy-Lapwood-Brinkman Equa-
tion

Mathematically, the particular form of the Darcy-
Forchheimer-Brinkman equation (10), is a more general
equation in the sense that it includes the microscopic in-
ertial terms, and the Darcy-Lapwood-Brinkman equation
is a particular case of the Darcy-Forchheimer-Brinkman
equation (10). This particular case occurs when the drag
coefficient, Cd = 0, reducing (10) to

uyy = RC + κ2u, (43)

which is the Darcy-Lapwood-Brinkman equation for
the problem under consideration. Consequently, the
solution of the Darcy-Lapwood-Brinkman problem is
the zeroth-order solution for the Darcy-Forchheimer-
Brinkman problem which was given by (32) hence

u(y) = α0e
κy + β0e

−κy − RC

κ2
(44)

where recall that α0 and β0 are given as in (33) and (34).

6.2 Poiseuille Entry Profile

In the first instance, we consider the Darcy-Forchheimer-
Brinkman equation, we assume an entry profile of
Poiseuille type by setting a = b = 0 and C 6= 0, then
the solution will be given by

ũ(y) = u0 + u1 (45)

where

u0(y) =
RC

κ2

[
α0e

κy + β0e
−κy − 1

]
(46)

u1(y) = A1e
κy + B1e

−κy + C1e
2κy + D1e

−2κy

+E1yeκy + F1ye−κy + G1 (47)

where

α0 = 1− β0, β0 =
1

2 sinh(κ)
(eκ − 1)

and

A1 =
1

2 sinh(κ)
[C1(e−κ − e2κ) + D1(e−κ − e−2κ)

−E1e
κ − F1e

−κ + G1(e−κ − 1)]

B1 =
1

2 sinh(κ)
[C1(e2κ − eκ) + D1(e−2κ − eκ)

+E1e
κ + F1e

κ + G1(1− eκ)]

C1 = −RCdλα2
0

3κ2
, D1 = −RCdλβ2

0

3κ2
,

E1 =
R2CCdλα0

κ3
, F1 = −R2CCdλβ0

κ3

and

G1 =
RCdλ

κ2

(
2α0β0 +

R2C2

κ2

)
. (48)

For C = −5, R = 1, κ = 1 and Cd = 0.55, and using error
minimization previously established in the description of
(OHAM), we obtain

λ = −0.95206989754.

Hence the OHAM solution is given as

ũ(y) = 5.42216508792366ey + 5.16871342119284e−y

+0.31562083827832e2y + 2.33214008003005e−2y

−3.52070168295991yey + 9.57025940821510ye−y

−18.23863942742488 (49)

Similarly, for the Darcy-Lapwood-Brinkman equation
(43) for an entry profile of Poiseuille type we substitute
a = b = 0 and C 6= 0 in (45) and (48) we get

u(y) = α0e
κy + β0e

−κy − RC

κ2
(50)
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with α0 = 1 − β0, β0 = 1
2 sinh(κ) (eκ − 1) which can be

re-written as

u(y) = −RCk + RCk[ey/
√

k +
ey/

√
k − e−y/

√
k

e1/
√

k − e−1/
√

k

−e(1+y)/
√

k − e(1−y)/
√

k

e1/
√

k − e−1/
√

k
] (51)

This is in fact the exact solution of the Darcy-Lapwood-
Brinkman equation [1] for a Poiseuille entry profile.
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Figure 1: This graph represents a Poiseuille type
entry profile. Variation of velocity u versus y for
both the Darcy-Lapwood-Brinkman (DLB) and Darcy-
Forchheimer-Brinkman (DFB) models. In addition, the
benchmark FEM solution is also shown. For computing
these graphs we have set C = −5, R = 1 and k = 1. In
addition, for the DFB model Cd = 0.55 and for the DLB
model Cd = 0.

In Fig. 1, we see the velocity profiles for the Darcy-
Lapwood-Brinkman and Darcy-Forchheimer-Brinkman
models for a Poiseuille entry profile. We clearly see
that the inclusion of the microscopic inertia through
the Darcy-Forchheimer-Brinkman model causes a slow-
ing down of the flow, this is the same result obtained by
[1]. These graphs also offer a verification for the solutions
obtained here compared to the FEM solution as a bench-
mark.
In addition, Table 1 illustrates the L2-norm of the error
between the zeroth-order and first-order solutions and
the FEM-benchmark solution. We can see that the er-
ror is decreasing with respect to the order of the OHAM
solution and therefore the optimal homotopy perturba-
tion method provides a good approximation of the exact
solution.

6.3 Poiseuille–Couette Entry Profile

Once again starting with the Darcy-Forchheimer-
Brinkman equation, assuming an entry profile of
Poiseuille–Couette type we set a = 0, b = 1 and C 6= 0
giving us the solution

ũ(y) = u0 + u1 (52)

where

u0(y) = α0e
κy + β0e

−κy − RC

κ2
, (53)

u1(y) = A1e
κy + B1e

−κy + C1e
2κy + D1e

−2κy

+E1yeκy + F1ye−κy + G1, (54)

where

α0 =
RC

κ2
− β0, β0 =

1
2 sinh(κ)

[
RC

κ2
(eκ − 1)− 1

]

and the constants A1, B1, C1, D1, E1, F1 and G1 are de-
fined by (48). For C = −5, R = 1, κ = 1 and Cd = 0.55,
then using error minimization previously established in
the description of (OHAM) method, we obtain

λ = −0.924126564469

Hence the (OHAM) solution becomes

ũ(y) = 4.45372603492625ey + 4.10178821886339e−y+

0.14316548105164e2y + 2.82132608622532e−2y−
2.33612922296385yey + 10.37061103848490ye−y−

16.52000582106661 (55)

As one would expect the analytical solution obtained in
the previous section of the Darcy-Forchheimer-Brinkman
(10) should reduce to the solution of the Darcy–
Lapwood–Brinkman equation (43). If we substitute Cd =
0 into (48) and (52) we get

u(y) =
1

2 sinh(κ)

[
RC

κ2

(
1− e−κ

)
+ 1

]
eκy+

1
2 sinh(κ)

[
RC

κ2
(eκ − 1)− 1

]
e−κy − RC

κ2
(56)

Table 1: The L2-norm of the error between the FEM-
solution and OHAM-solutions for Poiseuille type entry
profile.

∆y 0.01
Approximation degree p 4
||UFEM − u0||L2(0,1) 0.02649
||UFEM − ũ||L2(0,1) 2.55515e-004
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Figure 2: This graph represents a Poiseuille–Couette
type entry profile. Variation of velocity u versus y for
both the Darcy-Lapwood-Brinkman (DLB) and Darcy-
Forchheimer-Brinkman (DFB) models. In addition, the
benchmark FEM solution is also shown. For computing
these graphs we have set C = −5, R = 1 and k = 1. In
addition, for the DFB model Cd = 0.55 and for the DLB
model Cd = 0.

which matches the result of [1] as expected. It is also
worth noting that Darcy–Lapwood–Brinkman equation
is a linear differential equation and simple to solve and
the solution indeed is correct. In Fig. 2, we present the
graphs of the solutions for the two models. Once again
we notice the slower profile of the Darcy-Forchheimer-
Brinkman model, due to the presence of the microscopic
inertia. The graph matches closely with the results of [1].
Table 2 illustrates the L2-norm of the error between
the zeroth-order and first-order solutions and the FEM-
benchmark solution. We can see that the error is de-
creasing with respect to the order of the OHAM solu-
tion and therefore the optimal homotopy perturbation
method provides a good approximation of the exact so-
lution.

Table 2: The L2-norm of the error between the FEM-
solution and OHAM-solutions for Poiseuille–Couette
type entry profile.

∆y 0.01
Approximation degree p 4
||UFEM − u0||L2(0,1) 0.02649
||UFEM − ũ||L2(0,1) 2.55515e-004

6.4 Couette Entry Profile

We begin again with the Darcy-Forchheimer-Brinkman
equation and simply substitute C = 0 in (27) giving us

uyy − κ2u− κRCdu
2 = 0 (57)

subject to the following boundary conditions

u1(0) = 0, u1(1) = 1 (58)

This leads to the following OHAM solution

ũ(y) = u0 + u1 (59)

where

u0(y) = α0e
κy + β0e

−κy

u1(y) = A1e
κy + B1e

−κy + C1e
2κy + D1e

−2κy + G1 (60)

where
α0 =

1
2 sinh(κ)

, β0 =
−1

2 sinh(κ)

and

A1 =
1

2 sinh(κ)
[C1(e−κ − e2κ) + D1(e−κ − e−2κ)

+G1(e−κ − 1)]

B1 =
1

2 sinh(κ)
[C1(e2κ − eκ) + D1(e−2κ − eκ)

+G1(1− eκ)]

C1 = −RCdλα2
0

3κ2
, D1 = −RCdλβ2

0

3κ2

G1 =
2α0β0RCdλ

κ2
. (61)

Furthermore, as done earlier with C = 0, R = 1, κ = 1
and Cd = 0.55 we get

λ = −0.97377373728.

Then, we obtain

ũ(y) = 0.27997542579534ey − 0.53850190998946e−y+

0.03231581052427e2y + 0.03231581052427e−2y

+0.19389486314559 (62)

We once again substitute Cd = 0 into (70) giving us the
DLB solution

u(y) =
sinh(y)
sinh(1)

(63)

which is the expected solution if we solve the Darcy–
Lapwood–Brinkman equation (43) with C = 0. This
further verifies the solutions presented in the preceding
sections.
In Fig. 3 we present once again the graphs of the so-
lutions for the two models for a Couette entry profile.
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Figure 3: This graph represents a Couette type en-
try profile. Variation of velocity u versus y for
both the Darcy-Lapwood-Brinkman (DLB) and Darcy-
Forchheimer-Brinkman (DFB) models. In addition, the
benchmark FEM solution is also shown. For computing
these graphs we have set C = 0, R = 1 and k = 1. In
addition, for the DFB model Cd = 0.55 and for the DLB
model Cd = 0

Once again we notice the slower profile of the Darcy-
Forchheimer-Brinkman model, due to the presence of the
microscopic inertia. The graph matches closely with the
results of [1].
Table 3 illustrates the L2-norm of the error between
the zeroth-order and first-order solutions and the FEM-
benchmark solution. we can see that the error is de-
creasing with respect to the order of OHAM solution and
therefore the optimal homotopy perturbation metho pro-
vides a good approximation of the exact solution.

Table 3: The L2-norm of the error between the FEM-
solution and OHAM-solutions for Couette type entry pro-
file.

∆y 0.01
Approximation degree p 4
||UFEM − u0||L2(0,1) 0.00806
||UFEM − ũ||L2(0,1) 8.30773e-005

6.5 Further Error Analysis

In this section, we present the efficiency of the OHAM by
showing the absolute error Error for the different cases
of flows, this error is defined by

Error (ũ) =
∣∣∣∣
∫ 1

0

[L (ũ (y)) + N (ũ (y)) + g (y)]dy

∣∣∣∣ (64)

where ũ is the approximate OHAM solution.

6.5.1 Poiseuille Entry Profile

We developed in (46) and (49) respectively the ze-
roth and the first order OHAM solutions of the Darcy-
Forchheimer-Brinkman equation as

u0(y) = 5− 3.65529e−y − 1.34471ey (65)

ũ(y) = 5.42216ey + 5.16871e−y + 0.31562e2y+

2.33214e−2y− 3.5207yey +9.57025ye−y− 18.23863 (66)

We show now the absolute errors in Table 4 to see the
performance of the OHAM.

6.5.2 Poiseuille–Couette Entry Profile

We developed in (60) and (54) respectively the zeroth and
the first order OHAM solution of the Darcy-Forchheimer-
Brinkman equation as

u0(y) = 5− 4.08075e−y − 0.919248ey (67)

ũ(y) = 4.45372ey + 4.10178e−y + 0.14316e2y+

2.82132e−2y− 2.33612yey +10.370611ye−y− 16.52 (68)

We show now the absolute errors in Table 5 to see the
performance of the OHAM method.

6.5.3 Couette Entry Profile

We developed in (59) the zeroth and the first or-
der OHAM solution of the Darcy-Forchheimer-Brinkman
equation as

u0(y) = −0.425459e−y + 0.425459ey (69)

ũ(y) = 0.27997ey − 0.5385e−y + 0.032315e2y +
0.03231e−2y + 0.19389 (70)

We show now the absolute errors in Table 6 to see the
performance of the OHAM method.

Table 4: The Absolute errors for Poiseuille type entry
profile.

Error (u0) Error (ũ)

0.0944954 0.000136731
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Table 5: The Absolute errors for Poiseuille–Couette type
entry profile.

Error (u0) Error (ũ)

0.44592 0.000660028

Table 6: The Absolute errors for Couette type entry pro-
file.

Error (u0) Error (ũ)

0.161968 0.00156923

6.5.4 Comments

Thus in these subsections for each of the cases investi-
gated in this paper we have demonstrated that using the
OHAM as we go from the zeroth order to higher order
solutions it leads to a significant decrease in the errors as
one would expect in an efficient method that is converg-
ing to a solution. This further consolidates our results
regarding the accuracy and convergence of the OHAM.

7 Conclusions

The main objective of this paper was to present an
approximate analytical solution of the particular form
of the Darcy-Forchheimer-Brinkman model, representing
the developed flow through a porous channel between
parallel plates. The problem has been well documented
[1], in fact we follow the analysis of this work and use
it as a bench mark for the analytical solution presented
here. We have further reenforced this with a highly accu-
rate numerical solution. We have considered three types
of entry profiles driving the flow namely, Poiseuille, Cou-
ette and Poiseuille–Couette type. In addition, we have
considered the problem with generalised boundary con-
ditions and presented the solution with respect to these
boundary conditions. The solution simply requires the in-
put of the appropriate parameters to produce solutions to
different problems. We have demonstrated this through
the subsections above in the section on Results and Anal-
ysis. Although we do not really present the solution to
a new problem, we have used this problem as a demon-
stration of the OHAM as an effective method for solving
nonlinear problems.

Physically, as expected this solution shows for instance
not only the overall effect of the microptic inertia, but
additionally shows the term(s) (since more terms in the
solution can be taken) that contribute to the dynamics
of the problem. The paper also demonstrates the ad-
vantages of an analytical solution. As verification, we

have shown the solution of the Darcy-Lapwood-Brinkman
model for the same problem; the model can be obtained
from the Darcy-Forchheimer-Brinkman model by sim-
ply setting the drag coefficient to zero. As such the
solution obtained by doing the same with our solution
we expect the correct solution of the Darcy-Lapwood-
Brinkman model, which is an easier linear solvable differ-
ential equation; and this in fact was shown and verifies
in a manner our solution. In addition, we have offered
further verification of the solution by comparing to the
solution of [1], and all scenarios show a match. And fi-
nally, we have compared the solution to an accurate nu-
merical solution and not only have we shown the solution
matches and is indeed accurate, but we have also demon-
strated the convergence of the OHAM.

Finally, it is worth noting that the solution presented in
this paper compares well with the HPM solution of [6]
thus showing as stated at the onset that the HPM can be
accurate for certain problems.
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