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Abstract—A linear model of free surface flow is derived
from two boundary value problems, each of which presents
a flow in a different medium. The upper medium is fluid, and
the lower one is porous medium. Since the flow is disturbed
by an un-flat surface of the porous medium, the disturbance
is then performed to the fluid surface as surface waves.
The model is generalization of the impermeable bottom and
also generalization of the steady flow. We solve the model
numerically by a finite difference method of forwarded time
averaged centered space. As a result, we perform the wave
generation of the flow disturbed by bumps on porous layer.
The effect of the uniform upstream and the porous layer is
observed to the generated surface wave.

Index Terms—Permeable bed, Darcy’s law, potential function,
shifted phase.

I. INTRODUCTION

A2-D fluid flow is considered over permeable bed. We
assume that the fluid is ideal and the flow is irrotational,

so that the flow can be presented as a potential function. Far
upstream the flow is uniform with velocity U0 and depth h0.
Since the surface of the bed is not flat, the flow is disturbed
and it generates surface wave. The similar problem can be
seen in Wiryanto [1] for a flow over an impermeable bed.
He derived the model by series expansion and performed
two solitary like waves, each of which travels in different
direction as the transient waves for subcritical flow. In case
the flow is supercritical, the waves tend to steady and confirm
the result of steady free-surface flow by Vanden-Broeck [2].

Meanwhile, Mizumura [3] reported the work for steady
flow over a wavy permeable bed. Series expansion was used
to extract the first and second orders of the problem. A
separation of variables was then applied to solve the problem.
This method was also used by Wiryanto and Anwarus [4]
for monochromatic-wave propagation over a permeable bed,
and Wiryanto [5] for wave propagation passing a bump. As a
result, there is a phase shift of the fluid surface, relative to the
wavy bed form. We confirm the result through an unsteady
model in this paper. For other works related to the phase
shift can be seen such as Iwasa and Kennedy [6] who used
the shear-flow theory. Ho and Gelhar in [7] and [8] studied
the effects of the permeable wavy boundary in turbulent pipe
flow using air. Mizumura [9] gave the detailed difference of
the water surface profile in supercritical and subcritical flows
using the potential flow theory.

In this paper we derive the model of unsteady flow over
a permeable bed. The surface of the bed is not flat to
disturb the flow, and it generates surface waves. We use
the potential flow theory for the fluid medium and a linear
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Darcy equation for the porous medium. For each medium,
the potential function satisfies a boundary value problem of
Laplace’s equation, and they are approximated by assuming
that the fluid is shallow, and the generated waves have long
wavelength but small amplitude. Based on that assumption,
the problem can be expressed as a couple of equations in
variables of surface elevation and depth-average velocity.
Many studies of flow in porous media use Darcy’s law such
as Liu and Wen [10]. They modeled the wave propagation in
porous media into a diffusive equation. Similarly, Wiryanto
and Djohan [11] developed the model in [10] for a system
of two porous layers. The model can be considered as
the simplification of surface wave propagation in mangrove
forests, see Massel et. al. [12].

Our model is then solved numerically by a finite difference
method to observe the effect of the parameters, i.e. Froude
number F and Reynolds number R representing the uniform
flow and the characteristic of the porous medium, and to
observe the effect of surface bed profile to the generated
waves. For some cases, we show that the model is able to
explain the results in [1] and [3], as the limiting case either
when the bed tends to impermeable or when the bed surface
is made wavy.

II. PROBLEM FORMULATION

The problem formulated here is illustrated in Figure 1.
Far upstream a fluid flows uniformly with depth h0 and
velocity U0. The fluid lies above and occupies the pores of
a permeable bed having permeability K. As the system of
coordinates, we choose Cartesian with the horizontal x̄-axis
along the undisturbed level of the free surface, so that we
can define the fluid elevation as ȳ = η̄(x̄, t̄). The surface of
the permeable bed is ȳ = −(h0 + h̄(x̄), and the solid bottom
of the bed is flat with ȳ = −d̄. Moreover, we use φ̄ and φ̄′ as
the potential function in the fluid medium and in the porous
medium.

Mathematically, the problem is to determine φ̄, and also
φ̄′, satisfying

φ̄x̄x̄ + φ̄ȳȳ = 0 (1)

in the upper medium −(h0 + h̄(x̄)) < ȳ < η̄(x̄, t̄). The
kinematic and dynamic conditions on ȳ = η̄ are

η̄t̄ + φ̄x̄η̄x̄ − φ̄ȳ = 0 (2)

φ̄t̄ +
1
2

(
φ̄2

x̄ + φ̄2
ȳ

)
+ gη̄ =

1
2
U2

0 . (3)

The right hand side of (3) is constant, obtained by comparing
to the condition at the upstream, and g is gravitational
acceleration.

Meanwhile, the conditions on the interface between the
upper and lower media are expressed from the physical
interpretation the continuity of the pressure and the mass
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Fig. 1. Sketch of the flow over permeable bed

balancing of the fluid moving from one to other medium.
The first condition is obtained by eliminating the pressure p
from Bernoulli equation

φ̄t̄ +
1
2

(
φ̄2

x̄ + φ̄2
ȳ

)
+ gȳ +

p

ρ
=

1
2
U2

0 (4)

for the upper medium and the pressure p′ from Darcy’s law
in the lower medium following Mizumura [3], i.e.

φ̄′ = −K(ρgȳ + p′)/ν (5)

where ν is viscosity and ρ is fluid density. Therefore, we
have

φ̄t̄ +
1
2

(
φ̄2

x̄ + φ̄2
ȳ

)− ν

Kρ
φ̄′ =

1
2
U2

0 (6)

along the interface.
The second condition on the interface is obtained by

equaling the total derivative of ȳ = −(h0 + h̄(x̄) from both
media, i.e.

φ̄x̄h̄x̄ + φ̄ȳ = φ̄′x̄h̄x̄ + φ̄′ȳ. (7)

Consequently, the continuity equation is satisfied for both
media, so that Laplace’s equation of φ̄ and φ̄′ can be used
such as given in (1) and also

φ̄′x̄x̄ + φ̄′ȳȳ = 0. (8)

Equation (8) is followed by the condition at the bottom of
the porous medium ȳ = −d̄, i.e.

φ̄′ȳ = 0. (9)

In order to observe long waves on shallow water, we
introduce the scaled variables, with respect to wavelength λ,
fluid depth h0 and amplitude a, written by notations without
bar as follows

x̄ = λx, ȳ = h0y, t̄ = λ√
gh0

t, η̄ = aη,

φ̄ = λU0a
h0

φ, φ̄′ = λU0a
h0

φ′.

}
(10)

Moreover, we express the potential function φ̄ as

φ̄ = U0x̄ + Φ̄ ⇔ φ =
h0

a
x + Φ (11)

representing the uniform stream and its perturbation. There-
fore, the governing equations (1) and (8) become

µ2Φxx + Φyy = 0, (12)

µ2φ′xx + φ′yy = 0. (13)

The boundary conditions (2) and (3) along the surface y =
εη(x, t) become

µ2ηt + Fµ2ηx + Fεµ2Φxηx − FΦy = 0, (14)

FΦt +
1
2
F 2

(
2Φx + εΦ2

x +
ε

µ2
Φ2

y

)
+ η = 0. (15)

The conditions (6) and (7) along the interface y = −(1 +
εh(x)) become

Φt + FΦx +
1
2
FεΦ2

x +
1
2

ε

µ2
Φ2

y −
F

R
φ′ = 0 (16)

µ2hx + µ2εΦxhx + Φy = µ2εφ′xhx + φ′y; (17)

and the condition on the bottom y = −d is

φ′y = 0. (18)

ε and µ are two small parameters defined by

ε =
a

h0
, µ =

h0

λ
,

and we denote non-dimensional quantities

d =
d̄

h0
, h(x) = h̄(x̄),

the Froude number F = U0/
√

gh0 and Reynolds number
R = U0ρK/(νλ).

The potential functions Φ and φ′ are then determined from
the governing equations (12) with condition (14); and (13)
with condition (18). When we substitute

Φ = Φ0 + εΦ1 + ε2Φ2 + · · ·
φ′ = φ′(0) + εφ′(1) + ε2φ′(2) + · · ·

}
(19)

to those equations and using ε = µ2, the system of equations
can be analyzed order by order, giving

Φ = Φ0(x, t) + ε(−1
2Φ0xxy2

+
(

1
F ηt + ηx

)
y + Φ10(x, t)) + · · ·

φ′ = φ′(0)(x, t) + ε(−1
2φ
′(0)
xx (y + d)2

+φ′(10)(x, t)) + · · ·





(20)

where Φ0, Φ10, φ′(0) and φ′(10) are unknown function of x
and t. The potential functions (20) are then substituted into
(15), (16) and (17); the leading order is

FΦ0t + F 2Φ0x + η = 0
hx + Φ0xx + 1

F ηt + ηx = φ
′(0)
xx (1− d)

Φ0t + FΦ0x − F
Rφ′(0) = 0.



 (21)

We can reduce the result (21) into two equations by eliminat-
ing φ′(0). This is then followed by defining the depth-average
velocity

u =
1

1 + εη + εh

∫ εη

−1−εh

Φxdy (22)

and using (20) to (22), so that we have u ≈ Φ0x. Therefore,
(21) becomes

Fut + F 2ux + ηx = 0
ηt + F (ηx + ux + hx) = (1− d)R(uxt + Fuxx)

}
(23)

as the model. The effect of the permeable bed can be seen
as the right hand side of the second equation of (23). The
ability of the bed to absorb the fluid is presented by R and
d, but they cannot be observed separately since they appear
as one coefficient. The model without porous medium can
be obtained by setting R = 0, and this model agrees to the
linear equations in Wiryanto [4].
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III. NUMERICAL PROCEDURE

From the derivation in the previous section, the problem is
to determine η and u in the model (23). We solve the model
numerically by a finite difference method of forwarded-time
average centered-space, described in this section. We first
discritize the space x and time t domains by defining x =
j4x for j = 0, 1, 3, · · · , J and t = n4t for n = 0, 1, 2, · · ·;
so that we approximate η and u by denoting

η(x, t) ≈ ηn
j , u(x, t) ≈ un

j . (24)

Before discritizing (23), we replace uxt + Fuxx in the
second equation using the first equation, so that the second
equation of (23) becomes

ηt + F (ηx + ux + hx) =
(d− 1)R

F
ηxx. (25)

Now the difference equations are

F
un+1

j − un
j

4t
+ F 2

un+1
j+1 − un+1

j−1 + un
j+1 − un

j−1

44x

+
ηn+1

j+1 − ηn+1
j−1 + ηn

j+1 − ηn
j−1

44x
= 0

(26)

and

ηn+1
j − ηn

j

4t
+ F

(
ηn+1

j+1 − ηn+1
j−1 + ηn

j+1 − ηn
j−1

44x

+
un+1

j+1 − un+1
j−1 + un

j+1 − un
j−1

44x
+ hx

)
=

A

[
ηn+1

j+1 − 2ηn+1
j + ηn+1

j−1 + ηn
j+1 − 2ηn

j + ηn
j−1

24x2

]
(27)

where A = (d− 1)R/F . Note that hx is approximated by

hx ≈ hj+1 − hj−1

24x

from a given surface profile of the bed.
Since both (26) and (27) contain u and η at the time

step n + 1, we need a predictor of ηn+1
j to calculate un+1

j

in (26), and then η is corrected by (27) using un+1
j from

previous calculation. The predictor of η is evaluated from
(25) discritized into

ηn+1
j − ηn

j

4t
+F

(
ηn

j+1 − ηn
j−1

24x
+

un
j+1 − un

j−1

24x

)

+Fhx = A

[
ηn

j+1 − 2ηn
j + ηn

j−1

4x2

] (28)

In solving the model corresponding to (26) and (27),
we apply Gauss-Seidel iteration for the system of linear
equations constructed from each equation. The system is
a closed form by involving left and right values of η and
u outside of the domain. In this case we use ηn

−1 = 0,
un
−1 = 0 presenting the left boundary that is relatively far

from disturbance and still uniform. Since ηn
J+1 and un

J+1

are required in calculation in the next time step, we can
extrapolate them linearly. Physically, this is condition for
wave absorbtion. Therefore, the calculation has to be stopped
when the wave approaches the left boundary. As the initial
condition, we translate from the physical situation, at the
beginning the fluid surface and the velocity are undisturbed
from uniform flow, so that we use η0

j = 0, u0
j = 0.

IV. NUMERICAL RESULTS

The numerical scheme described above is used to calculate
the elevation η and velocity u for various values of param-
eters F , R, d; and h(x) the surface of the permeable bed.
Since the parameters d and R appear as one coefficient of
ηxx in (25), the effect of both parameters is then observed
as R(d − 1). Most calculations here use 4x = 0.1 and
4t = 0.02. Our calculations are stopped when the generated
waves relatively close to the left boundary. Most of them is
calculated up to t = 48 or n = 2400. At that time, the fluid
surface is relatively steady. When we plot the amplitude with
respect to the time t, it gives an asymptotical curve.

0 10 20 30 40 50 60 70 80 90 100

0

0.01

0.02

0.03

0.04

0.05

(a)

10 20 30 40 50 60 70 80 90 100

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(b)

Fig. 2. Waves generated by flow over a permeable bed for (a) F = 0.2,
R(d− 1) = 0.3; and (b) F = 0.6, R(d− 1) = 0.3.

First, we consider for the surface of the permeable bed in
form of a sinusoidal bump

h(x) = −0.1 sin(π(x− 45)/10)

located at x ∈ [45, 55]. Note that the interface between the
upper and lower (porous) media is y = −(1 + εh(x)). The
negative sign in h indicates that the bump is above y =
−1. The incoming flow is disturbed by the bump, and it
generates surface waves. In Figure 2, we plot the elevation η
for different values of t in the same plane, but shifted upward
for larger t. Mainly, the flow generates waves, going to the
left, right and remain above the bump. The wave generation
shown in Fig. 2 (a) calculated using F = 0.2, R(d−1) = 0.3
as typical wave propagation for small Froude number. Plot
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Fig. 3. Waves generated by flow over a permeable bed for (a) F = 1.0
and (b) F = 1.6; R(d− 1) = 0.3.

in Fig. 2 (a) can be compared to waves for larger Froude
number shown in Fig. 2 (b), corresponding to F = 0.6 and
the same value R(d−1). We obtain that the waves have larger
amplitude for larger F . This is followed by smaller speed for
the left going wave. We can see from the characteristic line,
i.e. a line connecting the maximum point on the surface at
any time. The tangential of the line is more vertical for larger
F . On the other hand, the speed of the right going wave
increases by increasing F . When we continue by increasing
F , we have no left going wave. The flow with F = 1 is the
critical situation where the left going wave has zero wave
speed, i.e. the wave remains above the bump, as shown in
Figure 3 (a). As the comparison we show the wave generation
for supercritical flow with two waves traveling to the right
in Figure 3 (b). The surface above the bump has the same
profile to the interface. For subcritical flow F < 1, we have
different concave between surface and interface.

Now, we observe the left going wave resulted by flow of
F = 0.2. We measure the amplitude of the wave and the
maximum of the particle velocity u for each time step. We
obtain that the wave grows up and then decreases the ampli-
tude with dissipating the wave energy. The particle velocity
u corresponding to the wave is negative, but much smaller
than the uniform velocity, and it tends to zero as t → ∞.
Therefore, the left going wave will disappear for long run.
Similar result is also obtained for right going wave, with
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Fig. 4. Plot of η(x, 30) for R(d− 1) = 0.3 and 1.0, using (a) F = 0.2
and (b) F = 1.0.

negative surface elevation. Meanwhile, the surface profile
above the bump has amplitude asymptotically to a certain
value, so that this profile is as the steady solution. For other
values F we obtain similar result, the left and right going
waves will disappear, and the steady solution is concave up
or down depending on the flow, subcritical or supercritical.

The effect of the porous layer is then observed by con-
sidering the amplitude and the deformation of the waves for
different values R(d−1). Our model can explain the dissipa-
tion of the wave energy generated by flow as described above.
The quantity related to the porous layer appears in diffusion
term of ηxx, damping the waves. Therefore, the numerical
solution performs waves having amplitude asymptotical to
smaller value for larger R(d − 1), and the damping of the
waves is stronger as the diffusion term contributes stronger.
We show in Figure 4 (a) plot of η(x, 30) corresponding to
R(d− 1) = 0.3 and 1 (bold line), for F = 0.2. In Figure 4
(b) we show the result for F = 1.0. When the lower layer
is solid, i.e. R = 0, the waves are generated by the flow and
travel solitary like waves as obtained in Wiryanto [1], and
the steady solution confirms to the result in Vanden Broeck
[2] for supercritical flow.

Now we consider for the surface of the permeable bed by
setting

h(x) = −0.2 sin(π(x− 15)/10)
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Fig. 5. (a) Wave generation by flow over permeable wavy bed, (b) the
steady waves plotted together with the interface profile of the wavy bed
(dash lines).

at x ∈ [15, 75]. Here we add the number of the bump to
make comparison between the bed surface and the profile of
the steady waves, also we choose supercritical flow (F >
1) to produce right-going waves, so that we can calculate
for longer time. The propagation of the waves is shown in
Figure 5 (a), calculated using F = 1.5, R(d − 1) = 2.0. If
the calculation is continued for longer t, the elevation η is
plotted together with the bed surface −h, given in dash line
(–), in the same plane, shown in Figure 5 (b). We obtain
that the surface elevation is shifted, namely α, from the bed
surface. For larger R(d−1) we obtain higher value of α. As
the comparison, we show in Figure 6 (a) corresponding to
F = 1.5, R(d − 1) = 5, and Fig. 6 (b) for R(d − 1) = 10.
This agrees to Mizumura [3] who obtained the shifted phase
analytically, directly from steady formulation. We can also
compare the amplitude of the steady waves, that is smaller
for larger R(d− 1) as explain previously.

V. CONCLUSIONS

A linear unsteady model has been derived for surface
waves generated by flow passing a permeable wavy bed.
The numerical scheme was formulated by a finite difference
method based on forwarded time average centered space,
and the solution was used to observe the deformation and
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Fig. 6. The steady waves (solid curve) plotted together with the interface
profile (dash lines) of the wavy bed for (a) R(d−1) = 5, and (b)R(d−1) =
10.

propagation of the fluid surface waves. Our numerical ob-
servation show that the wave generation is effected by the
Froude number and the characteristic of the porous medium.
The waves are absorbed partly by existing the permeable bed
on the bottom of the channel. The steady waves are indicated
to be obtained for long run, and the wave profile is shifted
from the permeable surface, agrees to the results obtained by
other researchers. Therefore, the model is able to explain the
physical phenomena generalized from impermeable bottom
and the case of steady flow.
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