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Abstract—Search Optimization methods are needed to solve
optimization problems where the objective function and/or
constraints functions might be non differentiable, non convex
or might not be possible to determine its analytical expressions
either due to its complexity or its cost (monetary, computational,
time,...). Many optimization problems in engineering and other
fields have these characteristics, because functions values can
result from experimental or simulation processes, can be
modelled by functions with complex expressions or by noise
functions and it is impossible or very difficult to calculate
their derivatives. Direct Search Optimization methods only
use function values and do not need any derivatives or
approximations of them. In this work we present a Java
API that including several methods and algorithms, that do
not use derivatives, to solve constrained and unconstrained
optimization problems. Traditional API access, by installing it
on the developer and/or user computer, and remote API access
to it, using Web Services, are also presented. Remote access to
the API has the advantage of always allow the access to the
latest version of the API. For users that simply want to have a
tool to solve Nonlinear Optimization Problems and do not want
to integrate these methods in applications, also two applications
were developed. One is a standalone Java application and the
other a Web-based application, both using the developed API.

Index Terms—Nonlinear Programming, Derivative-free, Java,
API, Remote access, Web Services.

I. INTRODUCTION

Let us consider a general unconstrained optimization
problem of the form:

min
x∈Rn

f (x) (1)

where:
• f : Rn → R is the objective function.

and a general constrained optimization problem of the form:

min
x∈Rn

f(x)

s.t. ci(x) = 0, i ∈ E
ci(x) ≤ 0, i ∈ I

(2)

where:
• f : Rn → R is the objective function;
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• ci(x) = 0, i ∈ E , with E = {1, 2, ..., t}, define the
problem equality constraints;

• ci(x) ≤ 0, i ∈ I, with I = {t+ 1, t+ 2, ...,m},
represent the inequality constraints;

• Ω = {x ∈ Rn : ci = 0, i ∈ E ∧ ci(x) ≤ 0, i ∈ I} is
the set of all feasible points, i.e., the feasible region.

These general problems model many real-life situations.
In problems where the values of the objective function or
constraints functions are the result of a slow and complex
deterministic simulation; when the objective function values
are data gathered from experiments; when problems have
complex analytical expressions or do not have an analytical
expression at all; when the objective function has noise; etc.
We can have non smooth, non linear, non continuous, non
convex and with many local minima functions. In this case it
is not possible to use derivative based methods, so derivative-
free optimization methods must be used.

Methods that use models to approximate involved func-
tions or their derivatives need more evaluations of functions
values and might not be a good approximation. An optimal
solution of the model can not be a good approximate solution
for the real problem.

In these cases we can use Direct Search methods, which
only need information about the functions values, without the
use of derivatives or approximations to them. They advance
towards to the optimal based on the comparison of the
functions values at several points. These methods can also
be used when the derivatives have discontinuities, in points
round the optimal, when are difficult to determine or when
its calculation demands a high computational effort.

In this paper an API (Application Programming Interface),
that provides some Direct Search methods to solve non-linear
problems, is presented. Besides the API, also some example
applications to solve the above presented problems, that use
the API, are presented.

One of the objectives is to implement a platform indepen-
dent API, to support the applications presented in this paper
and to be used by programmers who wish to include it on
their software projects. It is then possible to integrate the
developed methods in other applications such as engineering
software packages. Besides the traditional use of an API,
that is installed locally on the development and production
computers, it can also be accessed remotely, i.e., the API can
be used without the need to install it on the target computer.

For this platform independence to be achieved, it has been
implemented using Java technology and remote access to the
API, over the Internet, is made using Web Services. A major
advantage of using Web Services is that they allow client

IAENG International Journal of Applied Mathematics, 40:4, IJAM_40_4_05

(Advance online publication: 23 November 2010)

 
______________________________________________________________________________________ 



Figure 1. API Block Diagram

applications to be developed in any programming language,
despite the fact that Java Technology was used to implement
the API.

The main objectives of this paper, which is based on
[1], is to present the general structure and functionalities of
the developed implemented API, highlighting the implement
Optimization Algorithms for nonlinear constrained and un-
constrained optimization problems of the forms (2) and (1)
without the use of derivatives or approximations to them.

II. API STRUCTURE

In Fig. 1 are presented all the options available to the user
of the developed API.

The developed API, and consequently all applications
based on it, allows the user to choose either to use a problem
stored in the database or to define a problem to be solved.

If the first option is chosen, then the user can choose
among one of the 25 unconstrained problems or one of the
18 constrained problems already available.

If the second option is selected, the user must then choose
between constrained and unconstrained problems, define the
objective function and the constraints (if any) and define
the initial point. Supplied data is then interpreted by an
expression parser and a new problem is generated.

After the problem is generated and depending on the type
of problem (constrained or unconstrained problem) the user
can choose one of the available methods to solve it.

A. Problems with Constraints

If a problem with constraints is chosen, i.e., a problem of
the form (2) the user can then choose between: Penalty and
Barrier Methods; Filters Method.

These are the methods that are already implemented, but
in future other methods will be implemented , such as the
Augmented Lagrangian methods.

The objective, when solving a problem with constraints,
is to optimize f in Ω, but sometimes f and the constraints
are defined outside of Ω. In such cases it is possible to
use methods that ”works” outside the feasible region, but
it is required, or at least desirable, to find an feasible
approximation to the problem solution. However, according
to Conn et. al. in [2] and Audet et. al. in [3], f and some
constraint functions can not be defined outside of Ω. Suppose
f or some constraint is just defined in X ∈ Ω, in this
case, the constraints that define X have to be satisfied at all
steps in the iterative process for which the objective function
(and/or the constraint) is (are) evaluated. Such constraints
are not relaxable. Other constraints only need to be satisfied
approximately or asymptotically, these are relaxable.

Thus, one can distinguish Relaxable Constraints and Un-
relaxable Constraints.

Definition 1: Constraints functions can be:
• Relaxable Constraints (soft or open) – Constraints that

can just be satisfied approximately or asymptotically,
being possible to define f and constraints values out-
side the region defined by them, considering a certain
tolerance.

• Unrelaxable Constraints (hard or closed) – Constraints
that have to be satisfied at all steps in the iterative
process, because one or more of the functions involved
of the problem are not defined outside of the region
defined by them.

1) Penalty and Barrier Methods: Penalty and Barrier
Methods have been created to solve problem P defined in (2),
by solving a specially chosen sequence of problems without
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constraints. The original problem is transformed into a
sequence of unconstrained problems of the form (1)(External
Process) which are solved using methods typically used
to solve unconstrained problems (Internal Process). Fig. 2
shows the process diagram block.

In these methods a succession of new objective functions,
Φ, for the unconstrained optimization problems, is obtained,
which contains information about the initial objective func-
tion, f , and the problem constraints, thus the optimality and
feasibility are treated together. A succession of unconstrained
problems that depend on a positive parameter, rk, which
solutions x∗(rk) converge to the initial problem solution x∗,
is built.

Penalty and Barrier Methods, as presented in Fig. 2, are
built by two processes:
• External Process - where a succession of unconstrained

problems is created;
• Internal Process - where the unconstrained problems

are solved.
The new sequence of problems (of the type (1)) to be

solved at each iteration k, that replaces problem P , P (rk)

is defined by:

Φ(xk, rk) : min
xk∈Rn

f(xk) + rkp(x) (3)

where p is a function that penalizes (penalty) or refuses
(barrier) points that violates the constraints.

There are several approaches that use this methodology,
and it is used in several areas. We can see it being used in
Optimizations fields like in context of Linear Optimization,
[4]; Particle Swarm Optimization, [5]; Nonlinear Program-
ming, [6], [7] and [8] among many others and also in many
real applications, for example in [9] and [10].

Of the existing Penalty/Barrier functions we implemented
the following: External Barrier Function; Progressive Bar-
rier Function; Classical Penalty Function; Static/Dynamic
Penalty Function; `1 Penalty Function.

Barrier methods are adequate for solving problems where
a feasible approximation to the solution is needed, however
the initial point must also be feasible.

The main idea of these methods is reject, in the iterative
process, infeasible points and to dissuade the points of any
approximation to the feasible region border.

The External Barrier Function, widely used with Direct
Search Methods with feasible points, for example by Audet
et. al., [11], [12], [13], [14], [15], [3] is defined by:

Φ(x) =

{
f (x) se x ∈ Ω

+∞ se x /∈ Ω
(4)

This function works well with the Direct Search Methods
to deal with constraints, because these methods use the
objective function value only for comparison in the studied
points. So if point falls outside or it approaches the feasible
region border Φ = +∞, it is then rejected.

On the other hand, for methods that build models to
approximate the objective function this barrier function
might not be the most appropriated, since it is a little
inflexible because it can eliminate points that can be a
good approximation, not to the model but to the objective
function.

The need for a feasible initial point caused the develop-
ment of a new version of this method, [15], which can also be
chosen by the user in the application. In this second version
a relaxable constraints violation measurement function is
used b : X ⊂ Rn → R+, where a maximum is imposed
to the violation value, and points that have a value above
this limit are rejected. Authors call Progressive Barrier
to this approach, and MADS-PB (Mesh Adaptive Direct
Search - Progressive Barrier) to the method. One advantage
of this method is its ability of starting the process with
points that violates the relaxable constraints and accepts both
testing points and interactions with feasible violation to this
constraints.

In this method the authors consider the subset X ∈ Ω

defined by the relaxable constraints of the problem. If a point
is not in X it is rejected, if it is in X then the relaxable
constraints (rj(x) ≤ 0, with j = 1, ..., p and where p is
the number of relaxable constraints) are treated using the
function bX : Rn → R:

bX(xk) =


m∑
i=1

(max (ci (xk) , 0))
2

if x ∈ X

+∞ if x /∈ X
(5)

Note that, considering xk the iteration to be tested by bX ,
then bX(xk) = 0 if and only if xk verifies all relaxable
constraints of the problem, i.e., if xk ∈ Ω, and if xk violates
any of the relaxable constraints then 0 < bX(xk) < +∞ .

Therefore, in each iteration the unconstrained optimiza-
tion problem to be solved as the new objective function
ΦX(xk) = f (xk) + bX .

This approach is called progressive barrier since it is
attributed a maximum value for the violation at each iteration
hkmax

, that is progressively updated (iteration by iteration)
using a relation of non dominance, used in the Filters
Method, between the tested points and with hkmax

→ 0 when
k → +∞.

Penalty Methods do not require a feasible initial point to
begin the iterative process, however the final approximation
to the solution of the problem might be infeasible. Penalty
functions penalize the constraints violation, allowing that
infeasible points may occur in the iterative process, although
penalized, instead of creating a barrier in the border of the
feasible region.

In these methods, the feasible region is expanded to Rn,
but a wide penalization, in points that are outside of the
original feasible region, is applied to the new objective
function of the unconstrained problem.

Classic Penalty Functions include the following type of
functions:

ΦX(xk) = f (xk) + rkp (xk) =

= f (xk) + rk

m∑
i=1

[max {0, ci (xk)}]q, (6)

with q ≥ 1, and:

• if q = 1 in (6), the function p(x) is called linear penalty
function and the problem to be solved at each iteration,
that replaces problem P , is an unconstrained problem
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Figure 2. Penalty and Barrier Methods Implementation Diagram Block

P (rk):

P (rk) : min
x∈Rn

f (x) + rk

m∑
i=1

[max {0, ci (x)}] (7)

where r = {rk}+∞k=1 is a succession such that rk → +∞.
• if q = 2 in (6), the function p(x) is called a quadratic

penalty function and the problem to be solved at each
iteration, that replaces problem P , is an unconstrained
problem P (rk):

P (rk) : min
x∈Rn

f (x) + rk

m∑
i=1

[max {0, ci (x)}]2 (8)

where as above rk → +∞.

Static Penalty Methods were proposed by Homaifar et
al.[16]. In these methods a family of violation levels for
each constraint type is used. Each violation level imposes
a different penalty. The disadvantage of this method is the
number of parameters to be selected early in the iterative
process, which rapidly increases with the growth number of
constraints and violation levels. A penalty vector is selected
for the whole process.

With the penalty vectors α ∈ Rt e β ∈ Rm−t it can
be built, for problem (2), a Penalty Problem (unconstrained
problem) for each iteration k, with ρ ≥ 1:

min
x∈Rn

Φk(x, α, β) (9)

with

Φk(xk, α, β) = f(xk) +
t∑
i=1

αi |ci(xk)|ρ+

+
m∑

i=t+1

βi[max(0, ci(xk)]ρ.
(10)

This Penalty Method can be Exact or Inexact. If ρ = 1 in
(10), it is an Exact Penalty Method, if ρ > 1 it is an Inexact
Penalty Method, [17].

The Homaifar’s Static Penalty Method, [16] (1994), has
solved a problem similar to (9) with (10), setting the
penalty vectors α and β. This procedure requires the initial
selection of a great number of initial parameters (one for

each constraint) and, besides that, it is and Inexact Penalty
Method (ρ > 1).

As an alternative to the search for the penalty parameters
by trial-and-error, there are the Dynamic Penalty Methods
[18], that gradually increment the penalties in (9) with Φk
defined in (10). They find the global minima x̃ of (9), for
each penalty combination and they stop when x̃ is a feasible
solution to P , (2).

Many variants of these methods exist. One of them, which
is widely known, is the Non-stationary Method that solves a
sequence of problems of the same type as (9) with Φk defined
at (10) and ρ > 1, updating the penalty parameters at each
iteration k, according to the following conditions (C > 0 is
a constant parameter):

αi(k + 1) = αi(k) + C. |ci(x)| , i = 1, ..., t (11)

βi(k+1) = βi(k)+C.[max(0, ci(x))], i = t+1, ...,m (12)

`1 Penalty Method was initially proposed by
Pietrzykowski [19], and it has been studied and used
by many authors, for example Gould et. al. in [20] and
Byrd et. al. in [6], furthermore, it has been the base for
many penalty methods.

This is a local minimization Exact Penalty Method and it
solves at each iteration k the problem:

min
xk∈Rn

`
(k)
1 (xk, µ) (13)

with

`
(k)
1 (xk, µ) = f(xk) + µ

t∑
i=1

|ci(xk)|+

+ µ
m∑

i=t+1

max[ci(xk), 0],

(14)

and µ→ +∞.
2) Filter Method: To solve a constrained Nonlinear Op-

timization Problem (NLP), it must be taken in account that
the objective is to minimize the objective function and the
constraints violation, that must be zero or tend to zero. This
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involves two concepts: optimality (which has the propose of
minimize the objective function f ) and the feasibility (which
is intended to minimize the constraints violations).

In the Penalty/Barrier methods, the optimality and fea-
sibility are treated together, however in the Filters Method
the concept of bi-objective optimization dominance is used,
considering optimality and feasibility separately. In each
iteration two phases exist: the first is the feasibility phase
and the second is the optimality phase.

The Filters Method was introduced by Fletcher and Leyffer
em [21] to globalize SQP (Sequential Quadratic Program-
ming) methods and with the motivation to avoid the difficulty
in the penalty parameters and/or the Lagrange multipliers
estimation. It has been one of the most used techniques in
several areas of constrained linear and non-linear optimiza-
tion.

A review to the Filters Method was presented by Fletcher
et. al. in [22]. In this work they expose the main Filter
Methods techniques implemented so far in literature and the
main convergence results and also indicate areas where, until
then, those methods were used.

This methodology has been applied in several areas of
optimization, for example, among others:

1) In Direct Search by Audet and Dennis [23], where
Filter Methods are used with Pattern Search Methods,
and in Correia et. al. [24], where a new Direct Search
Method for Constrained Nonlinear Optimization, that
combines the features of a Simplex Method with
the Filter Methods techniques. This method, similarly
to Audet and Dennis method [23], does not need
to calculate or approximate any derivatives, penalty
parameters or Lagrange multipliers;

2) In context of non continuous and non differentiable
optimization by Fletcher et. al. [25], by Gonzaga et.
al. [26] and by Karas et. al. [27];

3) Gould et al. in [28] presents a multidimensional filter
and in [29] extends this technique.

4) In SQP by Antunes and Monteiro [30] and by Nie et.
al. [31];

5) In Interior Points Methods by Ulbrich et. al. [32];
6) In a context of Mixed Variable Constrained Optimiza-

tion Problems by Abramson et. al. [33];
7) More recently, one can mention the works of Friedlan-

der et al. [34], Luo et al. [35], [36], [37] and Silva et.
al. [38].

Filter Methods consider the NLP (2) as a bi-objective
program, and it has as main goal the minimization of both
the objective function (optimality) and a continuous function
h that aggregates the problem m constraint functions values
(feasibility).

Priority must be given to h since it is not reasonable to
have as a problem solution a infeasible point, i.e., that does
not comply with the constraints.

Therefore, the function h must be such that:

h(x) ≥ 0 with h(x) = 0 if and only if x is feasible.

We can then define h as:

h(x) = ‖C+(x)‖ , (15)

where ‖.‖ is the norm of a vector and C+(x) is the vector
of the t + m values of the constraints in x, i.e, ci(x) for
i = 1, 2, ..., t+m:

C+ (x) =

{
ci (x) if ci (x) > 0

0 if ci (x) ≤ 0

Considering the norm 1, for example, it is obtained:

h (x) = ‖C+ (x)‖1 =
t+m∑
i=1

max (0, ci (x)),

Considering the norm 2, for example, it is obtained:

h (x) = ‖C+ (x)‖2 =

√√√√t+m∑
i=1

max (0, ci (x))
2
.

In the API implemented are available, besides these usual
measures, more five alternative measures such as presented
in [39].

The Filters Method define a forbidden region, memorizing
pairs (f(xk), h(xk)), with good performance in the previous
iterations, avoiding dominated points (as defined by the
current Pareto rule) by the points of this set, in the next
iterations.

Definition 2: A point x ∈ Rn dominates y ∈ Rn, and is
written as x ≺ y, if f(x) ≤ f(y) and h(x) ≤ h(y).

Definition 3: A filter, F , is a finite set of points where no
pair of points, x and y of the set F , as a relation x ≺ y, i.e.,
the filter is made by points such none dominates the other.

A point is accepted by the filter if and only if it is not
dominated by other point belonging to the filter and its
inclusion eliminates from it all the points that it dominates.
We can say that a filter is a dynamic set. A filter works then
as a criterion for the iteration acceptance.

Consider the Fig. 3, based on the figure presented by
Ribeiro et. al. in [40], that illustrates a filter with four points
(represented by a, b, c and d). The Filter points a, b, c
and d define the forbidden region, shaded area. If the point
under test is the point represented by y, since it is in the
forbidden region it will not be accepted into the filter. But
the point represented by z is out of the forbidden region,
and therefore it will be accepted and included into the filter.
The same applies to the point represented by w, it is not in
the forbidden region and therefore it will be accepted and
included in the filter, however, in this case, there would still
rise to the elimination of points represented by c and d of
the filter, since they are in the forbidden region defined by
w, i.e., c and d are dominated by w.

Karas [27], to define a temporary pair for the filter, uses the
equality (f(xk), h(xk)) = (f(xk)− αh(xk), (1− α)h(xk))

introducing thereby the envelope concept. This modification
avoids the acceptance of pairs too close to previous iterations.

The concept of envelope is introduced to avoid the ac-
cumulation of non-stationary points in the filer, demanding
a significant decrease in f or h for each filter input. With
this concept it is added a surrounding region to the feasible
region, creating a little higher forbidden region and points in
this new region are rejected.

Auddet and Dennis, in [11], used for the first time the
Filters Method together with the Direct search Methods,
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Figure 3. A Filter with four points (based on Ribeiro et. al. [40]).

namely with Pattern Search Method, showing some conver-
gence results. This filter has three main differences to the
other filters, according to Fletcher et. al. in [22]:

1) Only needs a simple decrease, similarly to the Pattern
Search Methods;

2) The poll center is feasible or is the infeasible iteration
with the lower constraint violation;

3) The filter includes a pair (0, fF ) that corresponds to
the best feasible iteration, i.e., the feasible iteration
with the lowest function value found so far in the
iterative process.

Let us consider fF the value of the objective function in
the best feasible point found until then. Audet filter accepts
the point xk if and only if: h(xk) = 0 ∧ f(xk) < fF or
h(xk) < hl ∨ f(xk) < fl,∀(xl, fl) ∈ Fk.

Moreover, it is established a maximum limit to h values
of the points accepted in the filter, hmax. Only points xk
such that h(xk) < hmax can be included in the filter. This
condition avoids the filter to accept points, that even though
have an acceptable value for f , are very distant to the feasible
region.

These changes were also considered by Correia et. al. in
[24] where the Filter Method combined with the Nelder-
Mead was implemented and it was compared with Filter
Method combined with the Hooke and Jeeves, a Pattern
Search Method, this second similarly to what Audet and
Dennis did in [23].

Fig 4 presents the diagram block of the Filter Meth-
ods implemented in the API. The implemented algorithm
initialise the process constructing the initial Filter which
contains the initial point. Then a initial set of search is
constructed. In this implementation this set is defined by:
S0 = {x0 = v0} ∪ {vi : vi = x0 + ei, i = 1, ..., n} where
ei, i = 1, ..., n are the vectors of the usual canonical
base in Rn (in the next iterations this set must be Sk =

{xk} ∪ {vi : vi = xk + ei, i = 1, ..., n}, where xk is the
current iteration). Then the set search is initialised, beginning
with the first point position in the set i = 0.

If the point that is being analysed is a feasible point, its
inclusion in the filter is tested:

• If the point is not accepted in the filter:

– An unconstrained optimization method is used to
optimize f ;

– A new point is obtained;
– Turning to the construction of the set search, from

this point.

• If the point is accepted in the filter:

– The filter is updated and this point is considered
the new approximation to the solution, i.e., the new
iteration;

– If the stop criterion is verified, this approximation
is the final approximation to the solution, else go
back to the construction of the set search, from this
point.

If the point that is being analysed is an infeasible point,
its inclusion in the filter is tested:

• If the point is not accepted in the filter:

– An unconstrained optimization method is used to
optimize h;

– A new point is obtained;
– Go back to the construction of the set search, from

this point.

• If the point is accepted in the filter:

– The filter is updated and this point is considered
the new approximation to the solution, i.e., the new
iteration;

– If the stop criterion is verified, this approximation
is the final approximation to the solution, else go
back to the construction of the set search, from this
point.

In the end of the process, besides the final solution
approximation there are also available the filter points, that
are the non dominated points found in the iterative process,
so any one of them can be a good approximation solution.

The numerical tests presented in our recent works, Correia
et. al. [41], [42], [43], showed that this method is quite
effective, in comparison with divers algorithms.

B. Unconstrained Problems
Both for the Penalty/Barrier and the Filters methods it

is needed, in the internal process, to solve unconstrained
problems with general form like the defined in (1).

Our API and application offers to the user or programmer
the following five algorithms to solve such problems:

• A coordinated search algorithm;
• Hooke e Jeeves algorithm;
• A version of Audet et. al. algorithms;
• The Nelder-Mead algorithm;
• A Convergent Simplex algorithm.

These are well known methods found in the specialized
literature.

The first three are Pattern Search Methods (described, for
example, by Conn et. al. in [2], Chapter 7 - Directional
Direct-Search Methods). These methods determine possible
optimal points using fixed directions during the iterative
process: starting from a iteration xk, the next iteration will
be found by searching in a pattern or a grid of points, in the
directions d, at a distance δk (called step length ).
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Figure 4. Block diagram of the implemented Filters Method

Last two methods are Simplex Methods (described, for
example, by Conn et. al. in [2], Chapter 8 - Simplicial direct-
search methods). These methods are characterized by starting
from an initial simplex and modifying the search directions
at the end of each iteration, using movements of refection,
expansion and contraction to the inside and the outside,
together with the shrunk step towards the best vertex.

III. OPTIONS, VARIABLES AND PARAMETERS

To solve a problem, regardless of the chosen options, there
are parameters that should be defined, while others are set
internally, without user intervention.

A. Parameters chosen by the user
For the methods and algorithms to work, besides the

problem expression and the initial point, also additional
parameters are needed. Some of them are specific to some
methods while others are generic. This last set of parameters,
which can be changed by the user, are presented in this
subsection.

To simplify, in this subsection only the general parameters
will be referred, without entering into too much details for
those details, although necessary, are too specific to some
algorithms.

Generally, it is asked to the user, that he choose or
define the following values or parameters, generic to the
application:

Input data for the Penalty/Barrier Methods are:

1) Problem to be solved;
2) Initial Point;
3) The penalty/barrier function to be used (1 to 6) -

phi to use;
4) Initial parameters for the penalty/barrier function;
5) Maximum number of external process iterations-kmax;
6) Tolerance for the distance between two iterations - T1;
7) Tolerance between two values of the objective function

in two consecutive iterations - T2;
8) Minimum step length - T3;
9) Method to be used in the internal process - MET i;

10) Possible change to change the process parameters of
the chosen internal process - SouN i;

11) Maximum value of the constraints violation - hmax;
12) Updating factor for the penalty/barrier parameters - γ;

Values defined by default in the API are: : kmax = 40,
α = 1, T1 = 0.00001, T2 = 0.00001, T3 = 0.001 e γ = 2.

In the filters methods input data are, the points above, 1),
2), 5), 6), 7), 9), 10) and the

• The maximum initial value for the constraints violation
- hmax;

Parameters defined by default in the API are: kmax = 40 e
T1 = T2 = 10−5.

To use the unconstrained methods, previously described in
the internal process, it is also needed to define the following
parameters:

• Maximum number of internal iterations - kmax;
• Initial step length - α:
• Tolerance for the distance between two iterations;
• Tolerance between two values of the objective function

in two consecutive iterations;
• Minimum step length;

B. Returning results
The unconstrained methods implemented here, have the

following return values:

• Number of objective function evaluations;
• Last values calculated at the Stop Criteria;
• The found solution;
• Value of the objective function at the found solution;

The Filters Methods return the following parameters:

1) Number of internal process iterations; - k;
2) Number of objective function evaluations;
3) Last iteration;
4) Value of the objective function at the last iteration;
5) Best feasible solution (if any);
6) Value of the objective function at the best feasible

solution;
7) Iteration at which the best feasible solution was found;
8) Best infeasible solution (if any);
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9) Value of the objective function at the best infeasible
solution;

10) Iteration at which the best infeasible solution was
found;

11) Value of the constraints violation at the best infeasible
solution;

12) Set of non dominated solutions.

Penalty/barrier methods algorithms return the same of the
above results, 3), 4), 5), 6), 7), 8), 9), 11) and

• Number of external process iterations;
• Number of Penalty/Barrier function evaluations;
• Value of Penalty/Barrier function at the last iteration;
• Penalty/Barrier function value at the best infeasible

solution;
• Iteration were was found the best infeasible solution;
• Constraint violation value at the best infeasible solution;

IV. API IMPLEMENTATION

To obtain platform independence two key technologies
must be chosen: the programming technology and the Re-
mote Method Invocation technology. The first will define
on which platforms the API can be installed, the second
will define which technologies will be able to do the remote
access.

For the implementation of the API Java Technology was
selected, It has official support by Oracle for the most used
Operating Systems. However, in this type of applications, not
only the portability must be taken in account. Performance
is also a key issue.

Several authors have benchmarked Java against other
programming languages used in this kind of applications,
such as C and FORTRAN [44], and they concluded that it has
a good relative performance. In finite element analysis[45]
it even has a performance comparable to C. Considering the
above presented information, no performance constraints are
expected in our API.

The choice of the correct technology for remote access is
also very important mater to be considered. The objective
is to provide support for remote access for the most used
computing platforms and programming languages. The use
of Web Services is then a natural choice.

The API can then be accessed in two different ways,
one using the standard procedure of installing the .jar
file containing all the developed classes in the developer
computer, or remotely accessing the API trough the Local
Area Network (LAN) or over the Internet. This last method
allows developers and end clients to access always to the
latest API version.

A. Using the locally installed API
To use the API from Java applications, using it installed

in the local system, the user/programmer needs to save it
in the local disc, and include the developed API class or
.jar file in the classpath. A Class exists for each algorithm
and method above mentioned. Fig. 5 shows a sample of Java
code where the Pattern Search algorithm is used to minimize
an expression.

String expr = ‘‘(x0-2)ˆ2 + (x1+2)ˆ2’’;
String initPoint = ‘‘x0=0.0 x1=0.0’’;
PatternSearch pattern =

new PatternSearch(expr,initPoit);
pattern.run();
double[] result = pattern.getLastResult();

Figure 5. Java code to access the locally installed API - in this example
the application executed the Pattern Search algorithm.

The problem expression and the initial point, in this
example, are sent to the algorithm using the class constructor.
To solve the problem method run() is called and results can
be obtained by invoking the getLastResult() method.
This last methods returns a double array which has the
problem dimension.

At any moment setInitialPoint() and
setExpression() methods can be invoked to change
the initial point or the problem expression, respectively.
Besides these methods, the implemented API also includes
methods to set and obtain the parameters and results above
mentioned in section III.

An example application developed in Java, that uses the
developed API is presented in Fig. 6. This application was
developed to demonstrate all the features of the API, and it
is to be used as a tool for those that do not want to develop
application and only want to use the developed methods.

Figure 6. Example of an application that uses the API installed locally.

B. Remote Access using Web Services
Access to the API as presented in the previous section can

only be made if the API is installed on the computer where
methods are needed. Besides that, it can only be accessed
using Java, since this is the programming technology used
in its implementation.

To enable remote access to the implemented methods they
were made available using Web Services. By using this
technology it is possible to access to them, not only using
Java, but also other programming languages used in scientific
applications [46] such as FORTRAN, C, C++ and the .NET
Framework (C# for example).

Although RMI (Remote Method Invocations) has better
performance in Java applications than Web Services[47],
they are used in because of its wide compatibility. Also, the
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time spent in communications is much smaller than the time
needed to run the optimization methods.

This is mainly due to the fact that Java-RMI uses a binary
message format and Web Services use XML(Extensible
Markup Language), thus it has a higher protocol overhead.

To access the API, the programmer does not need to
install any file on the development computer. It is only
needed to have installed the correct development tools. Using
the tools provided by the used programming technology,
the user must import the WSDL (Web Service Definition
Language) file from the URL (Unified Resource Locator)
http://server.address:port/NLOSolver?wsdl,
using the correct IP address of the server where the API is
installed and correct port number as well. After generating
all the locally needed files, the API can then be used.

Sample code showing how to access the remote API using
Java is presented in Fig. 7 and Fig. 8 shows sample C# code
to access the remote API.

NLOSolverService service =
new NLOSolverService();

NLOSolver nlos =
service.getNLPSolverPort();

String sessionID =
nlos.connect(login,password);

String expr = "(x0-2)ˆ2 + (x1+2)ˆ2";
String initPoint = "x0=1 x1=0";
nlos.runPatternSearch

(sessionID, expr, initPoint);
List<Double> result =

nlos.getPatternSearchLastResult
(sessionID);

Figure 7. Java code to access to the remote API using Web Services - in
this example the application executed the Pattern Search algorithm.

NLPOolverClient nlps =
new NLOSolverClient();

String sessionID =
los.connect(login, password);

String expr = "(x0-2)ˆ2 + (x1+2)ˆ2";
String initPoint = "x0=1 x1=0";
nlos.runPatternSearch

(sessionID, expr, initPoint);
double[] result =

nlos.getPatternSearchLastResult
(sessionID);

Figure 8. C# code to access the remote API using Web Services - in this
example the application executed the Pattern Search algorithm.

Methods available in the remote API include:
connect, to create a new session (needed to
deal with multipble access); runMethod, to run
a specific method or algorithm, for example:
runAudet, runNelder, runPatternSearch;
getMethodLastResult to fetch the result of a
method last run, for example getAudetLastResult,
getPatternSearchLastResult; disconnect to
end the session and free all the resources allocated on the
server side.

In the example presented in Fig. 7 and Fig. 8 the method
connect is used sending two parameters (String) used for

authentication: login and password. Using these credential
allows to do access control of the API.

An example application developed in C# is presented in
Fig. 9. It minimized the expression entered by the user
accessing to the API using Web Services. In this particular
application the Pattern Search method is used.

Figure 9. Example of an application in C# that acesses to the remote
API using Web Services to minimize the function using the Pattern Search
Method.

C. Web Application

Besides the Java application above presented, it was
also developed a Web-based application, based on the API,
accessible using a web browser, to allows users to solve
constrained and unconstrained problems, either by choosing
one of the problems previously stored in database or by spec-
ifying the problem expression and constraints (in constrained
problems).

This application, which runs on a server and not on the
client side, was developed using Java Server Pages (JSP)
and it interacts directly with the API. The purpose of this
application is to allow users, that do not want to integrated
the methods on their applications and simply want to solve
a problem. Fig 10 shows the user interface with some of
the options available when the user chooses to solve a
constrained problem.

Figure 10. Web-based Application
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V. CONCLUSION AND FUTURE WORK

In this paper an API to solve constrained and uncon-
strained Nonlinear Optimization Problems was presented. It
has been implemented using Java, which makes it compatible
with the most used Operating Systems. For those who do
not want to install it, or need to access to the API using
other programming technology than Java, the developed API
supports remote access using Web Services.

Example applications have been presented. Those ap-
plications were implemented in Java (accessing the API
both locally and remotely) and in C# (accessing the API
remotely). However the access to the implemented methods
is not restrict to these two programming languages. Any
programming language cam be used, as long as it has support
for Web Services.

As future work, authors intend to transform the API into
a Framework, making it a more powerful for use both in
optimization and engineering research.
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