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Abstract—It has been shown that a nonsingular symmetric
tridiagonal linear system of the form Tx = b can be solved
in a backward-stable manner using diagonal pivoting meth-
ods, where the LBLT decomposition of T is computed, i.e.,
T = LBLT , where L is unit lower triangular and B is block
diagonal with 1×1 and 2×2 blocks. In this paper, we generalize
these methods for solving unsymmetric tridiagonal matrices. We
present three algorithms that compute the LBMT factorization,
where L and M are unit lower triangular and B is block diago-
nal with 1×1 and 2×2 blocks. These algorithms are normwise
backward stable and reduce to the LBLT factorization when
applied to symmetric matrices. We demonstrate the robustness
of the algorithms for the unsymmetric case using a wide
range of well-conditioned and ill-conditioned linear systems.
Numerical results suggest that these algorithms are comparable
to Gaussian elimination with partial pivoting (GEPP). However,
unlike GEPP, these algorithms do not require row interchanges,
and thus, may be used in applications where row interchanges
are not possible. In addition, substantial computational savings
can be achieved by carefully managing the nonzero elements of
the factors L, B, and M .

Index Terms—linear algebra, tridiagonal systems, diagonal
pivoting, Gaussian elimination.

I. INTRODUCTION

ANONSINGULAR tridiagonal linear system of the form

Tx = b, (1)

where T ∈ IRn×n and x and b ∈ IRn, is often solved using
matrix factorizations. If T is symmetric and positive definite,
then the Cholesky decomposition or the LDLT factorization,
where L is a lower triangular matrix and D is a diagonal
matrix, can be used to solve (1). If T is symmetric but
indefinite, then diagonal pivoting methods can be used to
form the LBLT factorization, where B is block diagonal
with either 1 × 1 or 2 × 2 blocks, with row and/or column
permutations (e.g., [1], [2], [3], [4]) or without (e.g., [2], [5],
[6], [7]). Finally, if T is unsymmetric, then (1) can be solved
using Gaussian elimination with full pivoting or with partial
pivoting (GEPP).

Based on previous works by the authors [8], [9], this
paper generalizes diagonal pivoting methods for forming
a backward-stable LBMT decomposition of a nonsingular
tridiagonal matrix T without interchanges, where B is a
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block diagonal matrix with either 1× 1 or 2× 2 blocks and
L and M are unit-lower tridiagonal matrices. In this paper,
we present three algorithms, two of which do not require the
full matrix to be known a priori to form the factorization.
We demonstrate that the resulting L,B, and M factors
from the algorithm can be used to solve the linear system
Tx = b with accuracy comparable to Gaussian eliminiation
with partial pivoting (GEPP). However, unlike GEPP, the
algorithms we present do not use row interchanges, making
them particularly useful in look-ahead Lanczos methods [10]
and composite-step bi-conjugate gradient methods [11] for
solving unsymmetric linear systems.

II. DIAGONAL PIVOTING

Let T ∈ IRn×n denote the unsymmetric nonsingular
tridiagonal matrix

T =



α1 γ2 0 · · · 0

β2 α2 γ3
. . .

...

0 β3 α3
. . . 0

...
. . . . . . . . . γn

0 · · · 0 βn αn


. (2)

We partition T in the following manner:

T =

d n−d

d

n−d

[
B1 TT

12

T21 T22

]
(3)

The computation of the LBMT factorization, where L and
M are unit lower triangular and B is block diagonal with
1 × 1 and 2 × 2 blocks, involves choosing the dimension
(d = 1 or 2) of the pivot B1 at each stage:

T =
[

Id 0
T21B

−1
1 In−d

] [
B1 0
0 Sd

] [
Id B−1

1 TT
12

0 In−d

]
, (4)

where Sd = T22 − T21B
−1
1 TT

12 ∈ IR(n−d)×(n−d). It can be
shown that an invertible B1 exists for some d and that the
Schur complement Sd is tridiagonal so that the factorization
can be defined recursively. Specifically, for d = 1,

S1 = T22 −
β2γ2

α1
e
(n−1)
1 e

(n−1)T
1 , (5)

where e(n−1)
1 is the first column of the (n − 1) × (n − 1)

identity matrix. For d = 2,

S2 = T22 −
(
α1β3γ3

∆

)
e
(n−2)
1 e

(n−2)T
1 .

where
∆ = α1α2 − β2γ2

is the determinant of the 2 × 2 pivot B1 and e
(n−2)
1 is the

first column of the (n−2)× (n−2) identity matrix. In both
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cases Sd and T22 differ only in the (1, 1) entry. Thus, the
LBMT factorization can be recursively defined to obtain the
matrices L, B, and M , all the pivoting methods in this paper
can be completely described by looking at the first stage of
the factorization.

III. SYMMETRIC TRIDIAGONAL PIVOTING

Diagonal pivoting methods have its origins in the seminal
works of Bunch [5], Bunch and Parlett [1], and Bunch and
Kaufman [2] and have since been extended and expanded
(see e.g., [3], [12], [13]). The factorization methods in these
works generally solve dense symmetric indefinite systems
using row and column interchanges. However, for symmetric
tridiagonal matrices, diagonal pivoting methods have been
developed that do not require row or column interchanges.
In this section, we review these diagonal pivoting methods.
Specifically, we let γj = βj for j = 2, 3, · · · , n in (2),
and consider the following nonsingular symmetric tridiagonal
matrix:

T =



α1 β2 0 · · · 0

β2 α2 β3
. . .

...

0 β3 α3
. . . 0

...
. . . . . . . . . βn

0 · · · 0 βn αn


. (6)

The tridiagonal T can be partitioned similar to as before
(see (3)). However, in the symmetric case, B1 and T22 are
symmetric and T12 = T21.

A. Bunch pivoting strategy

The diagonal pivoting method of Bunch [5] uses a 1 × 1
pivot (i.e., d = 1) if the diagonal pivot is sufficiently large
relative to the sub-diagonal entry. More precisely, if

σ = max
i,j
|Ti,j |, (7)

a 1× 1 pivot is used in the first step if

σ|α1| ≥ κβ2
2 .

The choice of κ, which is a root of the equation κ2+κ−1 =
0, balances the element growth in the Schur complement for
both pivot sizes by equating the maximal element growth.
Here

κ =
√

5− 1
2

≈ 0.62. (8)

The Bunch pivoting strategy can be summarized as follows:

Algorithm B. This algorithm describes the first step in
the pivoting strategy for symmetric tridiagonal matrices
proposed in [5].

κ = (
√

5− 1)/2 ≈ 0.62
σ = maxi,j |Ti,j |
if σ|α1| ≥ κβ2

2

dB = 1
else
dB = 2

end

A recursive application of Algorithm B yields a factoriza-
tion T = LBLT , where L is unit lower triangular and B
is block diagonal. (In fact, one can show that L and M are
such that Li,j = 0 for i− j > 2.)

B. Bunch-Kaufman pivoting strategy

The pivoting strategy of Bunch requires that the largest
element of T be known a priori. In some instances, we would
like to be able to form the factorization as T is formed. The
pivoting strategy of Bunch and Kaufman [2] circumvents this
requirement by defining σ1, which is the largest element in
magnitude “nearby” rather than the global maximum of T in
(7). More precisely, a 1×1 pivot is used in the first iteration
if

σ1|α1| ≥ κβ2
2 ,

where
σ1 = max{|α2|, |β2|, |β3|}.

Note that this strategy is different from their well-known
symmetric factorization using partial pivoting (see Sec. 4.2
of [2]). The Bunch-Kaufman pivoting strategy can be
summarized as follows:

Algorithm BK. This algorithm is the tridiagonal pivoting
strategy proposed in [2].

κ = (
√

5− 1)/2 ≈ 0.62
σ1 = max{|α2|, |β2|, |β3|}
if |α1|σ1 ≥ κβ2

2 ,
dBK = 1

else
dBK = 2

end

C. Bunch-Marcia pivoting strategy

Recently, Bunch and Marcia [6], [7] proposed diago-
nal pivoting methods for symmetric indefinite tridiagonal
matrices based on keeping the elements of the tridiagonal
matrix L small, which is often an important property in
many applications such as optimization. Here, we explicitly
describe this pivoting strategy.

Let L1 = T21B
−1
1 in (4). If a 1×1 pivot is used, then the

(1, 1) element of L1 is

(L1)1,1 =
β2

α1
. (9)

If a 2 × 2 pivot is used, then the (1, 1) and (1, 2) elements
of L1 are

(L1)1,1 = −β2β3

∆
, and (L1)1,2 =

α1β3

∆
. (10)

With the elements of L1 for a 2 × 2 pivot scaled by
the constant κ (described above from the Bunch pivoting
strategy [5]), Algorithm BM chooses a 1 × 1 pivot if the
(L1)1,1 in (9) is smaller than the largest entry in (10) in
magnitude, i.e.,

|β2|
|α1|

≤ maxκ
{
|β2β3|
|∆|

,
|α1β3|
|∆|

}
, (11)

and a 2 × 2 pivot is chosen otherwise. In other words,
Algorithm BM chooses pivot sizes based on whichever leads
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to smaller entries (in magintude) in the computed factor L.
In [7], an additional criterion is imposed that if

|α1α2| ≥ κβ2
2 (12)

a 1× 1 pivot is chosen. This additional criterion guarantees
that if T is positive definite, the LBLT factorization reduces
to the LDLT factorization. The choice of pivot size in the
first iteration is described as follows:

Algorithm BM. This algorithm is the simplified tridiagonal
pivoting strategy for symmetric tridiagonal matrices proposed
in [7].

κ = (
√

5− 1)/2 ≈ 0.62
∆ = α1α2 − β2

2

if |α1α2| ≥ κβ2
2 or |∆| ≤ κ|α1β3| or |β2∆| ≤ κ|α2

1β3|
dBM = 1

else
dBM = 2

end

Intuitively, Algorithm BM chooses a 1 × 1 pivot if
α1 is sufficiently large relative to the determinant of the
2 × 2 pivot, i.e., a 1 × 1 pivot is chosen if a 2 × 2 pivot is
relatively closer to being singular than α1 is to zero.

IV. UNSYMMETRIC CASE GENERALIZATION

In this section, we generalize the diagonal pivoting meth-
ods for symmetric tridiagonal matrices described in Sec. III
to unsymmetric systems. We now describe these methods,
characterize relationships between the methods, and show
the three methods are normwise backward stable.

A. Unsymmetric Bunch pivoting

The Bunch pivoting strategy can be extended to unsym-
metric tridiagonal matrices by choosing a 1× 1 pivot if

|α1|σ = κ|β2γ2|,

where σ is as before in (7), and a 2 × 2 pivot otherwise.
(We prove the backward stability of this pivoting strategy in
Sec. IV-F.)

Algorithm UB. This algorithm describes the first step
of the unsymmetric Bunch pivoting strategy.

κ = (
√

5− 1)/2 ≈ 0.62
σ = maxi,j |Ti,j |
if σ|α1| ≥ κ|β2γ2|
dUB = 1

else
dUB = 2

end

B. Unsymmetric Bunch-Kaufman pivoting

In [8], we generalized the pivoting strategy of Bunch
and Kaufman for symmetric tridiagonal matrices (Algorithm
BK). This pivoting strategy chooses a 1 × 1 pivot if the
(1, 1) diagonal entry is sufficiently large relative to the off-
diagonals, i.e.,

|α1|σ1 ≥ κ|β2γ2|,

where
σ1 = max{|α2|, |γ2|, |β2|, |γ3|, |β3|},

and κ is as in Sec. 2.1. This algorithm can be viewed as
a generalization of the Bunch-Kaufman algorithm to the
unsymmetric case.

Algorithm UBK. This alternative algorithm determines
the size of the pivot for the first stage of the LBMT

factorization applied to a tridiagonal matrix T ∈ IRn×n.

κ = (
√

5− 1)/2 ≈ 0.62
σ1 = max{|α2|, |γ2|, |β2|, |γ3|, |β3|}
if |α1|σ1 ≥ κ|β2γ2|,
dII = 1

else
dII = 2

end

C. Unsymmetric Bunch-Marcia pivoting

The Bunch-Marcia pivoting strategy can be generalized to
unsymmetric tridiagonal matrices by the following. Let

L1 = T21B
−1
1 and MT

1 = B−1
1 TT

12

in (4). If a 1 × 1 pivot is used, then the (1, 1) elements of
L1 and M1 are

(L1)1,1 =
β2

α1
and (M1)1,1 =

γ2

α1
. (13)

If a 2 × 2 pivot is used, then the (1, 1) and (1, 2) elements
of L1 and M1 are

(L1)1,1 = −β2β3

∆
, (M1)1,1 = −γ2γ3

∆
,

(L1)1,2 =
α1β3

∆
, (M1)1,2 =

α1γ3

∆
.

(14)

With the elements of L1 and M1 for a 2× 2 pivot scaled
by the constant κ as before in (8), the unsymmetric Bunch-
Marcia pivoting strategy (Algorithm UBM) chooses a 1× 1
pivot if the both of the entries in (13) is smaller than the
largest entry in (14) in magnitude, i.e.,

max
{
|β2|
|α1|

,
|γ2|
|α1|

}
≤ maxκ

{
|β2β3|
|∆|

,
|α1β3|
|∆|

,
|γ2γ3|
|∆|

,
|α1γ3|
|∆|

}
,

(15)
and a 2 × 2 pivot is chosen otherwise. In other words,
Algorithm UBM chooses pivot sizes based on whichever
leads to smaller entries (in magintude) in the computed
factors L and M . In addition, we impose the criterion that
if

|α1α2| ≥ κ|β2γ2|, (16)

a 1× 1 pivot is chosen. This additional criterion guarantees
that if T is positive definite, the LBMT factorization reduces
to the LDMT factorization. The choice of pivot size in the
first iteration is described as follows:

Algorithm UBM. This algorithm determines the size
of the pivot for the first stage of the LBMT factorization
applied to a tridiagonal matrix T ∈ IRn×n.
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κ = (
√

5− 1)/2 ≈ 0.62
∆ = α1α2 − β2γ2

if |α1α2| ≥ κ|β2γ2| or |∆|max {|β2|, |γ2|} ≤
κ|α1|max {|β2β3|, |α1β3|, |γ2γ3|, |α1γ3|}

dUBM = 1
else
dUBM = 2

end

D. Relationships of the pivoting strategies

In this section, we summarize the relationship between the
three pivoting strategies for unsymmetric matrices. In [8], it
was shown that if the unsymmetric Bunch-Marcia pivoting
strategy chooses a 1 × 1 pivot, i.e., dUBM = 1, then the
unsymmetric Bunch-Kaufman pivoting strategy also chooses
a 1×1 pivot, i.e., dUBK = 1. Conversely, if dUBK = 2, then
dUBM = 2 as well. Finally, if dUBM = 2 and dUBK = 1,
then the subsequent unsymmetric Bunch-Kaufman pivot size
will also be 1× 1. This implies that the difference between
Algorithm UBK and Algorithm UBM is that sometimes
the unsymmetric Bunch-Marcia pivoting strategy chooses a
2× 2 pivot while the unsymmetric Bunch-Kaufman pivoting
strategy chooses two 1× 1 pivots. In this section, we relate
the pivot sizes these two methods to the unsymmetric Bunch
pivoting strategy.

Lemma 1. If dUBK = 1, then dUB = 1. If dUB = 2,
then dUBK = 2. And, if dUBK = 2 and dUB = 1, then the
subsequent unsymmetric Bunch pivot is 1×1. In other words,
the two pivoting strategies differ only when the unsymmetric
Bunch-Kaufman strategy chooses a 2 × 2 pivot while the
unsymmetric Bunch pivoting strategy chooses two 1 × 1
pivots.

Proof. Suppose dUBK = 1. Since σ1 ≤ σ, then

|α1|σ ≥ |α1|σ1 ≥ κ|β2γ2|,

which implies that dUB = 1. Similarly, if dUB = 2, then
dUBK = 2. Now, if dUBK = 2, then the unsymmetric Bunch-
Marcia pivot size is dUBM = 2 (as described above), which
implies that ∆ > κ|α1||β3| in (15). Thus

|(S1)1,1|σ =
∣∣∣∣∆α1

∣∣∣∣σ > κ|β3|γ3|,

where (S1)1,1 ≡ α2 − β2γ2/α1 = ∆/α1 is the (1, 1)
entry of the Schur complement S1 defined in (5). Thus,
the subsequent unsymmetric Bunch pivot size is 1, which
proves the lemma. �

The following table relates the pivot sizes for the
three algorithms:

TABLE I: At any given iteration step, this table summarizes
all the possible pivot size choices for the three algorithms
discussed in this section (Algorithms UB, UBK, and UBM).

UB UBK UBM
One 1× 1 One 1× 1 One 1× 1
Two 1× 1 Two 1× 1

One 2× 2Two 1× 1 One 2× 2One 2× 2

Finally, if T is positive definite, then

|α1α2| ≥ |β2γ2| ≥ κ|β2γ2|,

which implies that Algorithm UBM will always choose a
1× 1 pivot. Similarly, Algorithms UB and UBK will always
choose a 1× 1 pivot because

|α1|σ ≥ |α1|σ1 ≥ |α1α2|.

This leads to the following result:

Proposition 1. If T is a positive definite tridiagonal
matrix, then the LBMT factorization using Algorithms UB,
UBK, or UBM reduces to the LDMT factorization, where L
and M are unit lower triangular and D is diagonal.

E. Connections to the symmetric case

When applied to a symmetric tridiagional matrix, the three
algorithms for unsymmetric tridiagonal matrices described in
Sec. IV reduce to the symmetric methods described in Sec.
III.

The following two lemmas show that Algorithm UB and
UBK are unsymmetric generalizations of Algorithm B and
BK, respectively. In other words, on symmetric matrices
Algorithms UB and UBK reduce to Algorithms B and BK,
respectively.

Lemma 2. Let T be a nonsingular symmetric matrix as
in (6). Algorithm B chooses a 1 × 1 pivot if and only if
Algorithm UB chooses a 1× 1 pivot. Moreover, Algorithm B
chooses a 2 × 2 pivot if and only if Algorithm UB chooses a
2× 2 pivot.

Proof. When β2 = γ2, Algorithms B and UB are identical. �

Lemma 3. Let T be a nonsingular symmetric matrix as
in (6). Algorithm BK chooses a 1 × 1 pivot if and only if the
Algorithm UBK chooses a 1 × 1 pivot. Moreover, Algorithm
BK chooses a 2 × 2 pivot if and only if Algorithm UBK
chooses a 2× 2 pivot.

Proof. Substituting β2 = γ2 and β3 = γ3 into Algorithm
UBK gives the result. �

The following lemma shows that Algorithm UBM
is a generalization of Algorithm BM in the sense that on
symmetric matrices, both algorithms choose the same pivots.

Lemma 4. Let T be a nonsingular symmetric matrix as
in (6). Algorithm BM chooses a 1 × 1 pivot if and only
if Algorithm UBM chooses a 1 × 1 pivot. Algorithm BM
chooses a 2 × 2 pivot if and only if Algorithm UBM chooses
a 2× 2 pivot.

Proof. If Algorithm BM chooses a 1 × 1 pivot then either
|α1α2| ≥ κβ2

2 or |∆||β2| ≤ κ|α1|max {|β2β3|, |α1β3|}. The
latter condition is equivalent to either |∆β2| ≤ κ|α1||β2β3|
or |∆β2| ≤ κ|α2

1β3|. Thus, if Algorithm BM chooses a
1× 1 pivot then

|α1α2| ≥ κβ2
2 or |∆| ≤ κ|α1β3| or |β2∆| ≤ κ|α2

1β3|,
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satisfying the conditions for which Algorithm UBM
will also choose a 1 × 1 pivot. Reversing this argument
shows that if Algorithm UBM chooses a 1 × 1 pivot then
Algorithm BM will do the same. The second statement of
the lemma follows since it is the contrapositive of the first. �

The following proposition summarizes the lemmas
in this section:

Proposition 2. If T is a symmetric tridiagonal matrix,
then Algorithms UB, UBK, and UBM reduce to Algorithms
B, BK, and BM, respectively. If T is also positive definite,
then the LBMT factorization reduces to the LDLT.

F. Backward stability result

In [8], we showed that Algorithms UBK and UBM imply
a backward stability result that demonstrates that (a) the
difference between computed factorization L̂B̂M̂T and the
original tridiagonal matrix T is small (i.e., it is of order
machine precision), and (b) the computed solution x̂ is the
exact solution to a nearby problem. Using the relationship
between the pivots of Algorithms UB and UBM and using
arguments similar to that in [8], we can easily show the
same results for Algorithm UB. More formally, we state the
following theorem:

Theorem 1. Assume the LBMT factorization of the
unsymmetric tridiagonal matrix T ∈ IRn×n obtained using
the pivoting strategy of Algorithm UB, UBK, or UBM yields
the computed factorization T ≈ L̂B̂M̂T , and let x̂ be the
computed solution to Tx = b obtained using the factorization.
Assume that all linear systems Ey = f involving 2× 2 pivots
E are solved using the explicit inverse. Then

T − L̂B̂M̂T = ∆T1, and (T +∆T2)x̂ = b,

where

‖∆Ti‖max ≤ cu‖T‖max +O(u2), i = 1, 2,

where c is a constant and u is the machine precision.

Proof. See [8].

Pictorially, the backward stability result of Theorem
1 is represented in Fig. 1.

V. NUMERICAL EXPERIMENTS

Numerical tests were run using MATLAB implementations
of Algorithm UB, UBK, UBM, GEPP, and the MATLAB
backslash command (“\”). (Specifically, Algorithms UB,
UBK, and UBM were embedded in a code that used one
forward substitution to solve with L, one back substitution
to solve with MT , and a solve with the block-diagonal factor
B). We compared the performance of each code on 16 types
of nonsingular tridiagonal linear systems of the form Tx = b.
The test set of system matrices contains a wide range of
difficulty. Many ill-conditioned matrices were chosen as part
of the test set in order to compare algorithm robustness.
(Ill-conditioned matrices are often challenging for matrix-
factorization algorithms.) The test set of system matrices
was taken from recent literature (specifically, [14] and [15])

b

x
x̂

T

T + ∆T2

Fig. 1: Theorem 1 implies not only that the product of the
computed factors L̂B̂M̂T is very close to the original matrix
T , but that the computed solution x̂ is the exact solution to
a nearby problem, i.e., the components of the perturbation
matrix ∆T2 are very small.

on estimating condition numbers of ill-conditioned matrices–
a task that can become increasingly difficult the more ill-
conditioned the matrix is.

Table II contains a description of each tridiagonal matrix
type in the test set. The first ten matrix types listed are based
on test cases in [15]. Types 11-14 correspond to test cases
found in [14] not found in [15], i.e., we eliminated redundant
types. Finally, we include two additional tridiagonal matrices
(Types 15-16) that can be generated using the MATLAB
command gallery. For our test, T was chosen to be a
100 × 100 matrix. The elements of b were chosen from a
uniform distribution on [−1, 1].

One system matrix was generated from each matrix type,
and together with a vector b, the same linear system of the
form Tx = b was solved by each algorithm. Table III shows
the relative errors associated with each method. Columns 2-6
of the table contain the relative error

Erel =
‖T x̂− b‖2
‖b‖2

,

where x̂ is the computed solution by each solver. The final
column gives the condition number of the system matrix T .
Each row in the table corresponds to one linear system from
one type; that is, row i contains the relative errors associated
with each solver on a linear system whose system matrix
was from type i in Table II. Although we only present one
set of results in this paper, these results are representative of
the many runs we performed.

Table III suggests that all five algorithms are comparable
on a wide variety of linear systems. When the system matrix
is well-conditioned (e.g., Types 1, 4, 5, 6, 8, 10, 14, 16),
the algorithms have relative errors that are close to machine
precision and that are comparable to one another. On the
other hand, more significant differences occur when the
system matrix is very ill-conditioned (Types 2, 3, 7, 11, 12
and 15). For example, on Type 13, Algorithms UB, UBK,
and UBM perform particularly poorly, and the solutions are
offered by GEPP and the MATLAB backslash command are
also very poor, with an error near 10−1. In fact, due to the ill-
conditioning of the system matrix, all methods failed to solve
the linear system; however, all methods obtain relative errors
within an order of magnitude of each other. Meanwhile,
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TABLE II: Tridiagonal matrix types used in the numerical experiments.

Matrix
type Description

1 Randomly generated matrix from a uniform distribution on [−1, 1].

2 gallery(‘randsvd’,n,1e15,2,1,1) – Randomly generated matrix with condition number 1e15 and one small
singular value.

3 gallery(‘randsvd’,n,1e15,3,1,1) – Randomly generated matrix with condition number 1e15 and geometrically
distributed singular values.

4 Toeplitz matrix T with Tii = 108 for i = 1 . . . n, and the elements Tij for i 6= j are randomly generated from a uniform
distribution on [−1, 1].

5 Toeplitz matrix T with Tii = 10−8 for i = 1 . . . n, and the elements Tij for i 6= j are randomly generated from a uniform
distribution on [−1, 1].

6 gallery(‘lesp’,n) – Matrix with sensitive eigenvalues that are smoothly distributed in the approximate interval
[−2n− 3.5,−4.5].

7 gallery(‘dorr’,n,1e-4) – Ill-conditioned, diagonally dominant matrix.

8 Randomly generated matrix from a uniform distribution on [−1, 1]; the 50th subdiagonal element is then multiplied by 10−50.

9 Matrix whose elements are all generated from a uniform normal distribution on [−1, 1]; the lower diagonal are then
multiplied by 10−50.

10 Main diagonal elements generated randomly from a uniform distribution on [−1, 1]; off-diagonal elements each chosen with
50% probability as either zero or generated randomly from a uniform distribution on [−1, 1].

11 gallery(‘randsvd’,n,1e15,1,1,1) – Randomly generated matrix with condition number 1e15 and one large
singular value.

12 gallery(‘randsvd’,n,1e15,4,1,1) – Randomly generated matrix with condition number 1e15 and arithmetically
distributed singular values.

13 Toeplitz matrix T with Tii = 64 for i = 1 . . . n, and the elements Tij for i 6= j are randomly generated from a uniform
distribution on [−1, 1].

14 Toeplitz matrix T with Tii = 0 for i = 1 . . . n, and the elements of Tij for i 6= j are randomly generated from a uniform
distribution on [−1, 1].

15 gallery(‘clement’,n,0) – Main diagonal elements are zero; eigenvalues include plus and minus the numbers
n− 1, n− 3, n− 5, . . . 1.

16 inv(gallery(‘kms’,n,0.5)) – Inverse of a Kac-Murdock-Szego Toeplitz (Aij = (0.5)|i−j|).

Types 9 and 13 have larger condition numbers and relative
errors that slightly larger than machine precision; on these
problems all algorithms have nearly identical relative errors
(i.e., same order of magnitude).

VI. CONCLUSIONS AND FUTURE WORK

Algorithms UB, UBK, and UBM presented in this paper
were shown to compute a backward-stable LBMT decomposi-
tion of any nonsingular tridiagonal matrix without using row
or column interchanges. In this paper, we showed that these
algorithms can be viewed as generalizations of algorithms for
symmetric tridiagonal matrices by comparing their choice of
pivot sizes on symmetric tridiagonal matrices. Moreover, we
established relationships between pivot choices made by each
unsymmetric algorithms on general unsymmetric tridiagonal
matrices. Numerical results presented in this paper on a
wide range of linear systems suggest that the performance of
these algorithms are comparable to GEPP and the MATLAB
backslash command.

In addition to computing a backward-stable LBMT de-
composition of T , these algorithms have minimal storage
requirements. Specifically, T is tridiagonal, and thus, can
stored using three vectors. Moreover, updating the Schur
complement requires updating only one nonzero component

of T . The matrices L and M are unit-lower triangular with
Li,j = Mi,j = 0 for i − j > 2; thus, their entries can be
stored in two vectors each. Finally, B is block-diagonal with
1×1 or 2×2 blocks, requiring only three vectors for storage.

Of the three strategies, Algorithms UBK and UBM do not
depend on knowing the largest entry of T a priori, making
them suitable to factorize T as it is being formed. Thus,
future work will focus on embedding Algorithms UBK and
UBM into methods such as the look-ahead Lanczos methods
[10] and composite-step bi-conjugate gradient methods [11]
for solving unsymmetric linear systems.
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