
 

 

 

 

Abstract— The constructive topology of the cascade 

correlation algorithm makes it a popular choice for many 

researchers wishing to utilize neural networks. However, for 

multimodal problems, the mean squared error of the 

approximation increases significantly as the number of modes 

increases. The components of this error will comprise both bias 

and variance and we provide formulae for estimating these 

values from mean squared errors alone.  

We achieve a near threefold reduction in the overall error by 

using early stopping and ensembling. Also described is a new 

subdivision technique that we call patchworking. Patchworking, 

when used in combination with early stopping and ensembling, 

can achieve an order of magnitude improvement in the error. 

Also presented is an approach for validating the quality of a 

neural network’s training, without the explicit use of a testing 

dataset.  

 
Index Terms—Bias, Cascade Correlation, early stopping, 

ensembling, multimodal functions, patchworking, subdivision 

method, variance.  

 

I. INTRODUCTION 

  Neural networks are commonly used for regression 

modelling. However, a perennial problem in the specification 

is determining the topology of the network. Constructive 

topology neural networks have gained in popularity because 

hand crafting this structure is very time consuming. Cascade 

correlation [1] is a well known member of the constructive 

neural networks, with hundreds of associated publications 

each year. Rather than requiring decisions from the user such 

as: how many hidden layers, how many neurons in each layer, 

and which activation functions should be used, cascade 

correlation automatically makes these choices during its 

supervised learning process.  

The first version of cascade correlation was intended to 

work best as a classifier, but subsequently, its author made 

some minor changes that improved its performance in 

regression roles [2]. The new algorithm was named “Cascade 

II” but is referred to in this paper as “CasCor”. 
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The aim of this paper is to present mechanisms that 

improve the fit of the CasCor neural network, focusing on 

multimodal surfaces. Test functions for global optimization 

were being used by the current authors to create training 

surfaces, and curiosity grew as to why certain functions 

caused exceptional mapping problems for CasCor neural 

networks. Whilst undertaking work to resolve these problems, 

the most successful method discovered was subdividing the 

input domain (see [3]). 

Ensemble averaging and early stopping are two techniques 

commonly used to reduce neural network generalization 

errors [4]. We found clear benefits from employing these 

techniques for the functions under consideration. Ensembling 

and early stopping address the variance problem of neural 

networks. We introduce a subdivision method called 

“Patchworking” that addresses the bias problem of CasCor 

networks, by raising their information capacity. This capacity 

is a measure of a neural network‟s ability to represent the 

features within the training set. By using patchworking for 

domain subdivision the information content in the training 

sets, and hence the error, is much reduced. The total 

information capacity of the patchwork has grown – thus we 

obtain improved generalization on multimodal test functions. 

The layout of this paper is as follows: Section II describes 

the three techniques we use to improve the fit for multimodal 

functions. Section III gives details of the early stop, training 

set size, ensembling, and patchworking experiments. Section 

IV contains the results, and closing remarks are made in 

Section V. 

II. IMPROVING THE FIT OF THE CASCOR NEURAL NETWORK 

Three techniques are presented in this paper, all of which 

are designed to improve the fit of the CasCor neural network 

to given datasets thereby improving generalization. These 

three methods are: 

1) Early stopping 

2) Ensemble averaging 

3) Patchworking 

Our previous work [3] indicated other areas for future 

work such as: how the sizes of training datasets influence the 

result of training, and, what are the effects of the size of the 

validation set when we use early stopping? The current work 

answers these questions. 

A. Early stopping 

One of the disadvantages of CasCor neural networks is 

their propensity to overfit on the training data, thus losing 

generalization of the underlying function [4]. Inspecting the 
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monotone decrease of the training mean squared error (MSE) 

gives no indication of this. Typically, the error during 

training is seen to reduce, almost uninterrupted, until one of 

the stopping criteria is met and the network is pronounced as 

“trained”. If, however, a call-back function is set, the training 

progress can briefly be interrupted to test the (still evolving) 

neural network against the validation dataset.  

The validation dataset is wholly independent from the 

training set and it allows us to determine an early stopping 

point. The MSE graph on this validation data typically takes 

the approximate form of a hockey stick outline – initially the 

validation MSE falls as the network fits to the underlying 

function, but at some point too many neurons are added, there 

is a loss of generality, and the MSE starts to increase. Early 

stopping halts the training at or around this minimum point 

thus minimizing negative impacts from overfitting. In reality, 

the profile of the validation error is not smooth and some 

form of heuristic needs to be used to halt the training at an 

appropriate moment; the heuristic is described in Section 

III.D. 

B. Ensembling 

Tetko and Villa [4] described ensemble averaging, or a 

“committee of machines”, as acting to reduce the variance 

that is common in neural networks. Multiple neural networks 

are trained on the same dataset, but in use, the arithmetic 

mean is taken across the output responses of the ensemble 

members. The testing error of these ensembles is much lower 

than the average test errors of their constituent parts and, 

when compared to the basic CasCor neural network, often 

represents a reduction in the MSE by a factor of two to three - 

the only penalty being an increase in required training time. 

C. Patchworking - a subdivision method 

A third technique for improving the fit is “patchworking”, 

a method of subdivision that addresses the bias problem of 

CasCor neural networks by raising their capacity. This 

technique is particularly suited to highly multimodal 

response surfaces and its benefits are shown in Section IV.E.  

Determined empirically, we define “highly multimodal” as 

six or more distinct extrema over a multi-dimensional 

surface; the fit deteriorates significantly when the extrema 

exceed nine. Functions such as these are used in this paper to 

demonstrate CasCor‟s difficulty in fitting the underlying 

function (Table I). These poor fits appear as high MSEs on 

testing sets and are also clearly visible in surface plots. 

Neither early stopping, nor ensembling, are sufficient to 

overcome these poor fits as the source of this problem is the 

inability of a single CasCor neural network to represent the 

complex features in the dataset. 

The ensembled and early-stopped plot of the Schwefel 

function, Fig. 2, correctly maps the global minimum and 

global maximum, but is clearly a poor approximation of 

Schwefel‟s form (Fig. 1). The Langermann function, Fig. 3 

likewise challenges the mapping ability of the CasCor neural 

network even with ensembling and early stopping (Fig. 4). 

Some of the greatest strengths attributed to the CasCor 

type of neural network are as a result of it growing its own 

topology during training. An intrinsic feature is that at any 

point during training, no more than one new neuron will be 

having its weights optimized. It is widely believed that this 

distinguishing behaviour results in rapid training times; 

however, this is challenged by [5], in which Squires et al. 

conclude that freezing of formerly trained weights can be 

detrimental to effective learning. 

The universal function approximation abilities of the 

CasCor neural network, mathematically proven in [6], are 

only applicable if we assume that correct choices have been 

made when each and every neuron was inserted. By taking a 

system view of the training process, we argue that correct 

choices are frequently not made when mapping multimodal 

functions. 

 
Figure 1 Schwefel function, range x(i) [0,500] 

 
Figure 2 CasCor mapping of Schwefel with ensembling and early 

stopping 

 

Informally, the training process plays the role of an agent 

in the system. This agent aims to train and fix in the network 

one neuron at a time that, in isolation, reduces the MSE on the 

training set by the largest possible amount.  Several time 

steps later in the training, more neurons have been added and 

we see, with the benefit of hindsight, that incorrect choices 

have been made in the early stages of training. What were 

once apparently optimal additions to the network are 

ultimately conspiring to deflect the network from a good 

mapping of the underlying function. The training algorithm 

dictates that once neurons have been placed in the network, 

they may not be removed or re-trained (weight freezing) and 

so the problem becomes irreconcilable [5]. 

The problem is one of decision theory – specifically 

evidential decision theory: how can a training process place a 

neuron in the network which, later in time, will combine with 

downstream neurons in only a beneficial way? 

A more formal description can be found in [7] where they 

consider the problems caused when training on the simple 

“double-tanh” function. The problem is seen to be sufficient 

to preclude, or at least delay, convergence of the CasCor 
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network. Variants of the CasCor neural network include one 

that only adds neurons to a single hidden layer (breadth) [2] 

and one that chooses whether to add depth or breadth to the 

network [8]. Both have mixed success against the standard 

CasCor. 

In our training experiments with datasets that contain 

highly multimodal functions (Table I), the training problem 

becomes clearer when monitoring the validation MSE. As the 

network is training, the insertion of new neurons should be 

conferring a greater information capacity to the neural 

network, and the validation MSE should decrease. Inserting 

the first two or three hidden neurons does cause a small 

decrease in the validation MSE, but soon after, this error 

increases resulting in a very poor generalization of the 

underlying function. 

 

 
Figure 3 Langermann function, range x(i) [0,2] 

 
Figure 4 CasCor mapping of Langermann with ensembling and 

early stopping 

 

The hypothesis behind patchworking is that by subdividing 

the input domain, the number of extrema that any one neural 

network must approximate is kept below the multimodal 

threshold. Hence, CasCor networks with a small number of 

neurons can approximate the function over each subdivision 

with a lower MSE. In this way, patchworking overcomes the 

problems associated with weight freezing. Ensembling and 

early stopping can be used in conjunction with patchworking 

and are, in fact, logical accompaniments. 

III. EXPERIMENTAL SET UP 

The architecture of the CasCor algorithm is well known 

[1],[2],[9]. The CasCor neural networks under consideration 

are created from the open source library created by Nissen 

[10]. The library contains an implementation of the Cascade 

Correlation II algorithm based on the original Lisp code 

written by Fahlman in 1996 (unpublished).  

Here, the FANN C source code is used with default 

settings chosen for CasCor training. The target MSE for the 

training is 10−4  when early stopping is not used and an 

arbitrary setting of 10−5 when early stopping is used. In use, 

the lower target will never be reached, due to early stopping 

triggering a halt to the training. The current release, 

2.1.0-Beta, does not yet provide a neural network copy utility 

or functions that correctly scale and de-scale datasets, and so 

these have been added to our implementation. 

One traditional test for the quality of regression fits (such 

as presented in the current work) is to calculate the MSE 

against a testing set, in which the samples differ from those in 

the training set. Lower is better, and so we can measure the 

success of the techniques herein by how much they reduce 

the MSE. Our testing sets are generated from the algorithm in 

[11]. The size is chosen as 1000 × 𝑑 where 𝑑 is the number 

of inputs to the neural network (or dimensions). The 

positioning of so many points is computationally expensive, 

especially when trying to maintain space filling properties. 

For this reason only one template was generated for each of 

the four different dimensions that were tested. 

The range of all inputs and outputs is normalized to the 

interval [0.1,0.9] with the scaling factors saved after 

processing. These factors are later used to scale down the 

queries and scale up the neural network response.  

Note: All MSE errors presented in this paper are also 

calculated on scaled data [0.1,0.9], thus making possible fair 

comparisons between otherwise disparate function output 

ranges. 

A. Sample size 

When choosing the size of the training datasets, how many 

samples should be used? Too few samples will mean that our 

training set may not accurately represent the underlying 

pattern. However, in situations where generating training 

data is very time-expensive, we would like to know the 

minimum size that can be of practical use in training our 

neural networks. We would also like to answer the question 

of how the demand for training data varies with the 

dimensions of the problem at hand. To determine the answers 

to these questions we performed CasCor training using 13 

test functions (defined in Table I) in two, three, four and five 

dimensions with training datasets sizes in the range [16 ×
𝑑, 384 × 𝑑] (where 𝑑 is the number of dimensions). 

Orthogonal arrays (OAs) were chosen to generate our 

training datasets. An OA is defined in the form 𝑂𝐴.𝑁. 𝑘. 𝑠. 𝑡 
indicating an orthogonal array with 𝑁  runs, 𝑘  factors, 𝑠 
levels, and strength 𝑡. This is an array of size 𝑁 by 𝑘, with 

entries from 0 to 𝑠 − 1 with the property that in any of the 𝑡 
columns each of the 𝑠𝑡  possibilities occurs equally often [12]. 

The training set is made up from repeated runs of  

𝑂𝐴. 16.5.4.2 [13]. With 16 evaluations being made each time, 

6 runs of this OA would be required to generate a training 

dataset of 96 points. The selection of the factors in each 

subsequent OA is known as the infill criteria [14]; when 

subsequent OAs are evaluated, each of its factors is chosen to 

be numerically furthest from all previously tested factors. 

The use of orthogonal arrays in the current work is only an 

artifact of the intended application of this work in surrogate 
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Table I Multimodal test functions 

Function Name  Range  

Ackley = −20 ∙ exp −
1

5
∙  

1

𝑛
 𝑥𝑗

2

𝑛

𝑗=1

  − exp 
1

𝑛
∙ 𝑐𝑜𝑠 2𝜋𝑥𝑗  

𝑛

𝑗=1

 + 20 + exp(1)  
−30 ≤  𝑥𝑗 ≤ 30 

𝑗 = 𝑛 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 
(1) 

De Jong‟s 5th 

=   0.002 +   𝑖 +  𝑥1 − 𝑎1𝑖 
6 +  𝑥2 − 𝑎2𝑖 

6 −1

25

𝑖=1

 

−1

 

where 

 
𝑎1𝑖

𝑎2𝑖
 =  

−32 − 16    0    16    32  − 32 …  0  16   32

−32− 32− 32− 32− 32− 16…32 32 32
  

 

−20 ≤  𝑥𝑗 ≤ 20 

𝑗 = 1,2 
 

(2) 

Langermann 

=  𝑐𝑖exp −
1

𝜋
  𝑥𝑗 − 𝑎𝑖𝑗  

2
2

𝑗=1

 

5

𝑖=1

cos 𝜋  𝑥𝑗 − 𝑎𝑖𝑗  
2

2

𝑗=1

  

where 

 𝑎𝑖𝑗  =  
3   5   2   1   7

5   2   1   4   9
 
𝐓

 𝑐𝑖 =  1   2   5   2   3 𝐓 

 

0 ≤  𝑥𝑗 ≤ 2 

𝑗 = 1,2 
 
 

(3) 

Michalewicz = − sin 𝑥𝑗  ∙  sin 
𝑗 ∙ 𝑥𝑗

2

𝜋
  

20𝑛

𝑗=1

 

𝑗 = 𝑛 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠  
 

When 𝑗 = 2, 0 ≤  𝑥𝑗 ≤ 𝜋 

When 𝑗 = 5, 1.0 ≤  𝑥𝑗 ≤ 1.5 

(4) 

Schwefel = 418.9829𝑛 −  𝑥𝑗 sin  𝑥𝑗   

𝑛

𝑗=1

 

𝑗 = 𝑛 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠  
 

When 𝑗 = 2, 0 ≤  𝑥𝑗 ≤ 500 

When 𝑗 = 4, 100 ≤  𝑥𝑗 ≤ 300 

When 𝑗 = 5, 100 ≤  𝑥𝑗 ≤ 300 

(5) 

Shubert =   𝑖 cos  𝑖 + 1 𝑥1 + 𝑖 

5

𝑖=1

 ∙   𝑖 cos  𝑖 + 1 𝑥2 + 𝑖 

5

𝑖=1

  
−8 ≤  𝑥𝑗 ≤ −6.2 

𝑗 = 1,2 
(6) 

Six Hump Camel Back =  4− 2.1𝑥1
2 +

𝑥1
4

3
  ∙ 𝑥1

2 + 𝑥1𝑥2 +  −4 + 4𝑥2
2 ∙ 𝑥2

2 
−1.9 ≤  𝑥1 ≤ 1.9 

−1 ≤  𝑥2 ≤ 1 
(7) 

Hartmann, 
3,4H  

 
4 3

2

1 1

expi ij j ij

i j

c a x p
 

 
    

 
   

where 

i  
ija  

ic  ijp  

1 

2 
3 

4 

3.0 

0.1 
3.0 

0.1 

10 

10 
10 

10 

30 

35 
30 

35 

1.0 

1.2 
3.0 

3.2 

0.6890 

0.4699 
0.1091 

0.0381 

0.1170 

0.4387 
0.8732 

0.5743 

0.2673 

0.7470 
0.5547 

0.8828 
 

0 ≤  𝑥𝑗 ≤ 1 

𝑗 = 3 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 

(8) 

 

Rosenbrock =   100 𝑥𝑗
2 − 𝑥𝑗+1 

2
+  𝑥𝑗 − 1 

2
 

𝑛−1

𝑗=1

 
−10 ≤  𝑥𝑗 ≤ 10 

𝑗 = 𝑛 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 
(9) 

 

 

  

modelling, and their inclusion is not believed to alter the 

findings of this paper. In creating training datasets, less 

complex sampling methods should be sufficient to repeat our 

results. 

B. Early stopping 

Several tests were undertaken in order to answer two 

questions: 1. What is the smallest size of validation set that 

can be used? 2. Does the use of larger size validation sets 

have any beneficial effect on improving the fit of the trained 

networks? The validation sets ranged from a size of 5% of the 

training set to 100% of the training set. Code from 

Beachkofski and Grandhi [11] provides the method of 

distributing the samples in the validation set. This “improved 

Latin hypercube” sampling was chosen because: 

1) Generating validation sets of less than 1000 points is not 

computationally expensive and can be done at run time, 

2) The algorithm in [11] produces points that fill the 

hypercube uniformly, the statistical properties of which 

are desirable as described in [14], 

3) The technique is fundamentally different from that used 

to generate the training set - ensuring that most, if not all, 

of the validation data points are automatically 

independent from those in the training set. 

After the validation error is initialized to 1.0, our heuristic 

algorithm for early stopping is run each time a new hidden 

neuron is added to the network, and is given below: 

 Test the network against the validation set. 

 If this new validation error is less than the old one, 

update the old validation error with this new value and 

make a copy of this “best network so far”. 

 Do not initiate early stopping until at least five hidden 

neurons exist in the network. 

 Trigger early stopping on the earliest of: 

o The error on the validation set becoming less than 

5 × 10−5 (suitably low error) 

o The validation error growing to be 50% larger than 

the smallest experienced validation error (network 

is diverging) 

o More than 31 hidden neurons existing in the 

network (likelihood of a diverging network) 

 When early stopping occurs, the “best network so far” is 

recalled from memory to replace the active network. The 
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training is halted and the network is saved to permanent 

storage. The saved neural network is that which had the 

smallest validation error.  

C. Dispensing with the testing set 

Our early stopping validation set shares the same property 

of a testing set in that they both contain samples wholly 

independent from the training dataset. The only difference is 

that testing sets are usually of a large size. Testing sets are 

useful in determining how successful a neural network‟s 

training has been. However, there may be circumstances 

where sampling is very time-expensive, for example 

surrogate modelling. If we want to avoid the cost of 

generating a large testing set, yet still retain a test for the 

quality of the fit, is there a size of validation set that can give 

us a reasonable approximation to the results we would get 

from a testing set? Experiments were performed that compare 

the MSE calculated from validation sets of sizes [5%,100%] 

of the training set against MSE calculations from our much 

larger testing sets of size 1000 × 𝑑. 

D. Ensembling 

When preparing an ensemble, we need to answer the 

question of how many neural networks to include in that 

ensemble. Others have chosen an arbitrary number [4],[15] 

for their ensembles, but we investigated the ensemble size 

with respect to its influence on reducing the MSE. 

Ensembles of CasCor neural networks were trained on our 

13 test functions; each test was repeated ten times for the 

larger ensembles and 30 times for ensembles smaller than 

ten. 

E. Patchworking 

The algorithm used to construct the patchwork is shown in 

the appendix. It allows for a user defined number of 

subdivisions known as “depth” and can be applied to as many 

input dimensions as is practical. Note, though, that the 

number of required networks grows exponentially 
( )2 depthxdimensions

 and so this method may not be practical if the 

dimensions number more than nine or ten. The patchworking 

technique is shown in Fig. 5 and is applied as follows:  

1. Train at first without subdividing the domain 

(patchwork depth=0) 

2. Test the MSE after this training. 

3. Subdivide the input domain if the test error is 

undesirably high (depth = depth + 1). 

4. Create more training samples if necessary and 

re-train on these subdivisions (or „patches‟). 

5. Repeat steps 2-4 until the testing MSE is 

satisfactorily low. 

 

A relatively simple algorithm can be constructed to query 

such a patchwork, assuming that we have stored on file the 

minimum and maximum bounds of each network‟s domain.  

 
Figure 5 Patchworking subdivisions for a 2D function 

IV. RESULTS 

A. Sample size 

Fig. 6 shows the results of the sample size test. Neural 

networks were trained on the 13 test functions, covering two 

to five dimensions. Each test was repeated ten times. After 

each training, the quality of the fit was evaluated by a testing 

set of size 1000 × 𝑑. The resulting MSEs often differed by 

one or two orders of magnitude, hence a need to normalize 

the results. In normalizing the results, the set of mean squared 

errors for each function were scaled such that the size of the 

training dataset that yielded the worst error was attributed 1.0; 

the dataset set size with the lowest MSE was attributed a 

score of 0.0. Therefore, Fig. 6 shows the mean of the 

normalized results of training across the 13 test functions.  

 
Figure 6 Change in test MSE against training set size 

The demand for training data scales linearly with the 

number of dimensions. Less than 32 samples/dimension 

leads to poor mappings of the underlying function. Optimal 

training occurred when the training datasets were of size 96 

samples/dimension. For more cost-effective training, 48 to 64 

samples/dimension are sufficient to yield low mapping 

errors. 

B. Early stopping 

Fig. 7 shows the results of an experiment that aimed to 

determine how big the validation set should be with respect to 

the training set. For this experiment, we chose to train our 

neural networks with 96 samples per dimension. As before, 

we trained on all 13 test functions and each test was repeated 

ten times – Fig. 7 showing the mean average of the results. 

 
Figure 7 Reductions in the tested MSE with larger validation sets 

A trend line has been added to Fig. 7 that shows the error 

reducing by 25% as we increase the size of the validation set 
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from 5% to 100% of the training set. The conclusion we make 

is that validation set sizes as small as 5% (or minimum size of 

10 samples) can be relied on to achieve the early stopping 

behavior that we desire.  

In column five of Table II, the results of early stopping are 

displayed. For all the experiments in this table, the training 

datasets were created from 48 samples per dimension and the 

validation sets were set at 20% of the size of the training 

datasets. The mean reductions in the MSE range from 10% to 

57% due to early stopping (ES). In all test cases, early 

stopping has reduced the common tendency of the CasCor 

neural network to overfit.  

C. Dispensing with a testing set 

There was one other early stopping experiment for which 

we desired an answer. If we are using unseen data for our 

early stopping set, then could we dispense with a testing set 

entirely – relying only on the MSE calculated from the 

validation dataset? If this approach is viable then, in 

circumstances when creating datasets is time-expensive, we 

could dispense with the creation of a testing set - relying 

solely on our validation error as a test for the quality of our 

fit. 

The results in Fig. 8 were generated from the same 

experiment performed for the results in Fig. 7. However, for 

each size of validation set, we also compared the MSE 

calculated from the validation set with the MSE calculated 

from our much larger testing sets (1000 × 𝑑). The results 

suggest that validation sets of 20% or greater are sufficient to 

give a close approximation to the results from a much larger 

testing set. Taking a two dimensional test function as an 

example; the training set would have numbered 48 × 2 = 96 

samples, and a 45% validation set would have been of size 

96 × 0.45 = 44 . The total number of samples we would 

have created = 140. With this validation set, Fig. 8 predicts 

that the MSE calculated from this, size = 44, validation set 

will be within 7% (σ = 5%) of the MSE calculated from a 

testing set of size = 2000 samples. 

 

 
Figure 8 How close the validation MSE is to the testing set MSE 

D. Ensembling 

For clarity, only three of the thirteen test functions are 

shown in Fig. 9, however, the form of the line graphs were 

similar throughout all 13 functions; the MSE reduced rapidly 

as the ensemble size increased from one to seven. Smaller 

reductions in the MSE occurred until ensembles with a size 

greater than 25 were seen to deliver little benefit. We also 

used early stopping in this experiment and so the MSEs in 

Fig. 9 reflect the combination of both techniques. 

 

 
Figure 9 Reduction in mean squared error due to ensembling 

The curves in Fig. 9 take the form:  

   

  2
1

2
EnsSize

Ensemble

MSE Bias
MSE Bias

EnsSize

 
   (10) 

 

where 1EnsSizeMSE  is the mean MSE of the neural networks 

that constitute the ensemble. Bias
2

 is the asymptote to which 

the curves tend. Effectively, the bias is an MSE boundary that 

no size of ensemble can reduce because ensembling acts only 

on the part of the error that is due to variance. Likewise the 

early stopping, provided by our validation set, acts only to 

reduce the variance by limiting overfitting. 

Equation (10) can be derived from the equations presented 

in the seminal paper of Geman [16] where he describes the 

bias/variance dilemma of neural network training. The 

general form of the error is given in their paper as: 

 
2Error Variance Bias   (11) 

 

and it can be shown that (10) and (11) are equivalent. 

Equation (10) provides us a convenient test for the relative 

contribution of variance and bias to the overall error. 

Evaluating the MSE is a function commonly built into neural 

network libraries and so, using MSE evaluations alone, we 

can estimate the bias (12) and then the variance (13) for any 

ensemble. If variance is found to dominate, then creating a 

larger size of ensemble will reduce the MSE and improve the 

mapping of the underlying function. If we find that the bias is 

the largest component of our mapping error, we know that the 

information capacity of our CasCor neural network has been 

exceeded. Installing more neurons will confer additional 

capacity and patchworking provides that utility. 

 

12 ( )

( 1)

EnsSizeEnsembleEnsSize MSE MSE
Bias

EnsSize

 



 (12) 

 

  2
1EnsSizeMSE Bias

Variance
EnsSize

 
  (13) 

 

By way of example, Fig. 10 presents a smaller region of 

Fig. 9 and, for clarity, only the Michalewicz data is 
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re-plotted.  Say that an ensemble of size 10 has been created. 

We calculate the MSE of that ensemble and also calculate the 

mean MSE of the 10 members of that ensemble. Now, by 

using (12) and (13), we find that our Bias
2
 = 0.01 and the 

Variance of our ensemble = 0.0004. Ensembling to a size of 

15 would reduce our variance to 0.00027, but it is clear that 

the dominant component of our MSE is the bias. A CasCor 

ensemble that possesses a high bias indicates a highly 

multimodal function in the training dataset. When the MSE is 

undesirably high (and dominated by bias), the application of 

our patchworking method is advocated.  

 

 
Figure 10 Michalewicz scatter plot 

Table II Benefits of ES, Ens, and patchworking 

 
  103𝑀𝑆𝐸 

Test 

function 
Dims 

Size of train + 

early-stop sets. 

Patchwork 

Off/On 

Cascade 

Correlation 

(CasCor) 

CasCor 

+ ES 

CasCor with 

Patchworking 

CasCor 

with Ens 

+ ES 

CasCor with 

Patchworking 

+Ens + ES 

Ackley 2 116/461 
33.79 14.33 6.31 3.10 1.53 

Reduction in error: 57.59% 81.33% 90.82% 95.47% 

DeJongs5th  2 116/461 
176.33 80.06 33.20 58.10 11.23 

Reduction in error: 54.60% 81.17% 67.05% 93.63% 

Langermann  2 116/461 
77.33 33.32 3.82 22.43 1.48 

Reduction in error: 56.91% 95.06% 70.99% 98.09% 

Michalewicz  2 116/461 
22.90 14.38 5.23 10.78 3.27 

Reduction in error: 37.22% 77.16% 52.92% 85.72% 

Schwefel  2 116/461 
36.73 19.96 3.77 4.39 0.80 

Reduction in error: 45.67% 89.75% 88.06% 97.81% 

Shubert  2 116/461 
32.08 20.24 3.11 4.59 0.27 

Reduction in error: 36.89% 90.31% 85.69% 99.15% 

Six Hump 2 116/461 
13.39 6.77 1.46 4.26 0.36 

Reduction in error: 49.42% 89.09% 68.15% 97.34% 

Ackley 3 173/1383 
14.66 6.36 4.78 5.64 2.37 

Reduction in error: 56.62% 67.38% 61.56% 83.84% 

Hartmann 3 173/1383 
12.67 11.60 2.44 6.50 2.38 

Reduction in error: 8.40% 80.76% 48.66% 81.18% 

Rosenbrock 4 231/3687 
18.27 14.41 4.88 8.19 2.99 

Reduction in error: 21.10% 73.27% 55.18% 83.61% 

Schwefel 4 231/3687 
27.47 20.73 2.84 13.70 2.37 

Reduction in error: 24.51% 89.66% 50.12% 91.36% 

Michalewicz 5 288/9216 
10.64 9.52 1.74 5.38 1.35 

Reduction in error: 10.53% 83.62% 49.45% 87.35% 

Schwefel 5 288/9216 
44.77 22.61 3.66 22.07 1.55 

Reduction in error: 49.50% 91.83% 50.71% 96.54% 

Average 

reduction in 

error 

  

 
39.15% 83.88% 64.57% 91.62% 
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E. Patchworking  

In Table II Enssize = 15 was used and the basic CasCor 

results are shown alongside the benefits of early stopping, 

patchworking, ensembling (Ens) + early stopping (ES), and 

all three combined. Patchworking is applied to a depth of one. 

The same computer program was used to generate all the 

neural networks, the only changes being flags that turn on/off 

the features shown. Results shown are formed from the 

arithmetic mean of ten trials. 

When compared to a standalone CasCor neural network, 

the mean effect of patchworking is to reduce the error 6.2 

times. Employing ensembling and early stopping on these 

functions reduces the error by a mean factor of 2.8. However, 

the real benefit of patchworking is that it can be combined 

with the techniques of early stopping and ensembling – here 

delivering a mean reduction in neural network testing error of 

11.9 times (91.6%). 

F. Visualization of patchworking + Ens + ES results 

Fig. 2 showed the ensembled and early stopped mapping of 

a small part of the Schwefel function. Similarly, Fig. 4 

showed the ensembled and early stopped plot of part of the 

Langermann function. After patchworking to a depth of one, 

Figs. 11 and 12 show clearly the significant improvement 

achieved from using the patchworking method. 

 
Figure 11 CasCor mapping of Schwefel (Patchworking + Ens + ES) 

 
 

Figure 12 CasCor mapping of Langermann (Patchworking + Ens + 

ES) 

G. Patchworking for larger depths and dimensions 

From our experience with the CasCor neural network, no 

more than nine features can be mapped satisfactorily by one 

network alone. Taking the full domain of the two 

dimensional Schwefel function as an example, Fig. 13, we 

see significantly more than nine stationary points on this 

surface. Patchworking to a depth of one, Fig. 14, begins to 

approximate the Schwefel surface but, using the recursive 

facility of the patchworking algorithm, we can see the 

significant improvement in Fig. 15 when patchworking has 

been allowed to continue to a depth of three. 

 

 
Figure 13 Schwefel function, range x(i) [-500,500] 

 

 
Figure 14 CasCor of Schwefel (Patchworking, depth=1 + Ens +ES) 

 
Figure 15 CasCor of Schwefel (Patchworking, depth=3 + Ens +ES) 

The required sizes of training datasets per patch remain the 

same for any given problem, but the number of patches grows 

exponentially = 2 𝑑𝑒𝑝𝑡 ℎ×𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠   therefore, so too will the 

total training data required. Some fields in which 

patchworking may be appropriate are those which already 

have very large datasets e.g. health databases, astronomy 

data, chemical process data, or any other collection of data 

samples where the data available is exponentially larger than 
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the dimensions of that data. The information capacity of 

patchworked CasCor networks also grows exponentially and 

so we can provide a calculation for the number of features 

that can be mapped. In the general case: 

  

Maximum features mappable ( )9 2 depthxdimensions   

 

Therefore, given an eight-dimensional problem, 

patchworking to a depth of one could map as many as 2,304 

unique features in a training dataset numbering 98,304 

samples. 

 

V. CONCLUSION 

The architecture of the Cascade Correlation neural 

network means that it is quick and simple to configure for 

training. However, its weight freezing mechanism hinders the 

mapping of multimodal functions. To address the 

bias/variance problem for this neural network type, three 

techniques have been presented: early stopping, ensembling, 

and patchworking. 

Early stopping and ensembling have been shown to be 

valuable tools in reducing the variance component of error. 

Early stopping sets as small as 5% of the training set have 

been shown to be effective in reducing the variance error. Our 

work also suggests that there may be no need for a separate 

testing set. A validation set of size 45% of the training set can 

substitute for a testing set 45 times larger, returning an MSE 

calculation within 7% of the MSE from that testing set 

( 5%)  . This offers the possibility of saving a significant 

amount of time that would otherwise have been spent 

sampling for a testing set. 

Ensembling has been shown to be more effective than 

early stopping in reducing variance and, in the limit, will 

reduce the variance to zero. Equations have been presented in 

this work that will provide approximations for the variance 

and the bias of an ensemble using mean square error 

calculations alone. 

Our patchworking technique has been introduced to reduce 

the bias component of error by raising exponentially the 

information capacity of the Cascade Correlation neural 

network. Although patchworking does require exponentially 

larger training datasets, it overcomes the weight freezing 

problem of this neural network type and leads to significantly 

improved fits for multimodal problems - yielding a reduction 

in error of over ten in some cases.  

 

APPENDIX 

 
Figure 16 The Patchworking algorithm  
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